Awesome Geo-localization

Awesome Geo-localization

News

  • Recently, we raise a special issue on Remote Sensing (IF=5.349) from now to 16 June 2023 16 Dec 2023. You are welcomed to submit your manuscript at (https://www.mdpi.com/journal/remotesensing/special_issues/EMPK490239), but you need to keep open-source fee in mind.

University-1652 Dataset

Drone <-> Satellite

Methods R@1 AP R@1 AP Reference
  Drone -> Satellite   Satellite -> Drone    
Contrastive Loss 52.39 57.44 63.91 52.24  
Triplet Loss (margin=0.3) 55.18 59.97 63.62 53.85  
Triplet Loss (margin=0.5) 53.58 58.60 64.48 53.15  
Weighted Soft Margin Triplet Loss 53.21 58.03 65.62 54.47 Liu L, Li H. Lending orientation to neural networks for cross-view geo-localization[C]. CVPR, 2019: 5624-5633. [Paper]
Instance Loss 58.23 62.91 74.47 59.45 Zheng Z, Zheng L, Garrett M, et al. Dual-Path Convolutional Image-Text Embedding with Instance Loss. TOMM 2020. [Paper]
Instance Loss + Verification Loss 61.30 65.68 75.04 62.87 Zheng Z, Zheng L, Yang Y. A discriminatively learned cnn embedding for person reidentification[J]. TOMM, 2017, 14(1): 1-20. [Paper] [Code]
Instance Loss + GeM Pooling 65.32 69.61 79.03 65.35 Radenović, Filip, Giorgos Tolias, and Ondřej Chum. “Fine-tuning CNN image retrieval with no human annotation.” TPAMI (2018): 1655-1668.
Instance Loss + Weighted Soft Margin Triplet Loss 65.93 70.18 76.03 66.36  
RK-Net (USAM) 66.13 70.23 80.17 65.76 Lin J, Zheng Z, Zhong Z, Luo Z, Li S, Yang Y, Sebe N. Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization. TIP 2022. [Paper] [Code]
LCM (ResNet-50) 66.65 70.82 79.89 65.38 Ding L, Zhou J, Meng L, et al. A Practical Cross-View Image Matching Method between UAV and Satellite for UAV-Based Geo-Localization[J]. Remote Sensing, 2021, 13(1): 47. [Paper]
DWDR 69.77 73.73 81.46 70.45 Tingyu W, Zhedong Z, Zunjie Z, Yuhan G, Yi Y, and Chenggang Y. “Learning Cross-view Geo-localization Embeddings via Dynamic Weighted Decorrelation Regularization” IEEE Transactions on Geoscience and Remote Sensing, 2024. [Paper] [Code]
Instance Loss + GNN ReRanking 70.30 74.11 - - Zhang, Xuanmeng, Minyue Jiang, Zhedong Zheng, Xiao Tan, Errui Ding, and Yi Yang. “Understanding Image Retrieval Re-Ranking: A Graph Neural Network Perspective.” arXiv 2020. [Paper][Code]
Instance Loss + USAM + SAFA 72.19 75.79 83.23 71.77  
MuSe-Net (Normal Weather) 74.48 77.83 88.02 75.10 Wang T, Zheng Z, Sun Y, et al. Multiple-environment Self-adaptive Network for Aerial-view Geo-localization[J]. Pattern Recognition, 2024. [Code]
LPN 75.93 79.14 86.45 74.79 Tingyu W, Zhedong Z, Chenggang Y, and Yi Y. Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization. TCSVT 2021. [Paper] [Code]
LPN + CA-HRS 76.67 79.77 86.88 74.84 Zeng Lu, Tao Pu, Tianshui Chen, and Liang Lin. Content-Aware Hierarchical Representation Selection for Cross-View Geo-Localization ACCV2022. [Paper] [Code]
Instance Loss + Weighted Soft Margin Triplet Loss + LPN 76.29 79.46 81.74 73.58  
Instance Loss + Verification Loss + LPN 77.08 80.18 85.02 73.80  
Instance Loss + USAM + LPN 77.60 80.55 86.59 75.96 Lin J, Zheng Z, Zhong Z, Luo Z, Li S, Yang Y, Sebe N. Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization. TIP 2022. [Paper] [Code]
F3Net 78.64 81.60 - - Bo Sun, Ganchao Liu and Yuan Yuan. F3-Net: Multiview Scene Matching for Drone-Based Geo-Localization. TGRS 2023.
SAIG-D 78.85 81.62 86.45 78.48 Yingying Zhu, Hongji Yang, Yuxin Lu and Qiang Huang. Simple, Effective and General: A New Backbone for Cross-view Image Geo-localization. ArXiv 2023
LDRVSD 78.66 81.55 89.30 79.17 Qian Hu, Wansi Li, Xing Xu, Ning Liu, Lei Wang. Learning discriminative representations via variational self-distillation for cross-view geo-localization. Computers and Electrical Engineering 2022 [Paper]
PCL 79.47 83.63 87.69 78.51 Xiaoyang Tian, Jie Shao, Deqiang Ouyang, and Heng Tao Shen. UAV-Satellite View Synthesis for Cross-view Geo-Localization. TCSVT 2021. [Paper]
LPN + DWDR 81.51 84.11 88.30 79.38 Tingyu W, Zhedong Z, Zunjie Z, Yuhan G, Yi Y, and Chenggang Y. “Learning Cross-view Geo-localization Embeddings via Dynamic Weighted Decorrelation Regularization” IEEE Transactions on Geoscience and Remote Sensing, 2024. [Paper] [Code]
FSRA (k=1) 82.25 84.82 87.87 81.53 Ming Dai, Jianhong Hu, Jiedong Zhuang, Enhui Zheng. A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization. TCSVT 2022. [Paper] [Code]
FSRA (k=3) 84.51 86.71 88.45 83.37  
TransFG 84.01 86.31 90.16 84.61 Zhao, H., Ren, K., Yue, T., Zhang, C., & Yuan, S. (2024). TransFG: A Cross-View Geo-Localization of Satellite and UAVs Imagery Pipeline Using Transformer-Based Feature Aggregation and Gradient Guidance. IEEE Transactions on Geoscience and Remote Sensing.
PAAN 84.51 86.78 91.01 82.28 Duc Viet Bui, Masao Kubo, Hiroshi Sato. A Part-aware Attention Neural Network for Cross-view Geo-localization between UAV and Satellite. Journal of Robotics Networking and Artificial Life 2022 [Paper]
Swin-B + DWDR 86.41 88.41 91.30 86.02 Tingyu W, Zhedong Z, Zunjie Z, Yuhan G, Yi Y, and Chenggang Y. “Learning Cross-view Geo-localization Embeddings via Dynamic Weighted Decorrelation Regularization” IEEE Transactions on Geoscience and Remote Sensing, 2024. [Paper] [Code]
MBF 89.05 90.61 93.15 88.17 Runzhe Zhu , Mingze Yang , Ling Yin * , Fei Wu and Yuncheng Yang. “UAV’s Status Is Worth Considering: A Fusion Representations Matching Method for Geo-Localization” Sensors
MCCG 89.64 91.32 94.30 89.39 Tianrui Shen, Yingmei Wei, Lai Kang, Shanshan Wan and Yee-Hong Yang. MCCG: A ConvNeXt-based Multiple-Classifier Method for Cross-view Geo-localization. TCSVT 2023 [Code]
MFJR 91.87 93.15 95.29 91.51 Ge, F., Zhang, Y., Wang, L., Liu, W., Liu, Y., Coleman, S., & Kerr, D. (2024). Multi-level Feedback Joint Representation Learning Network Based on Adaptive Area Elimination for Cross-view Geo-localization. IEEE Transactions on Geoscience and Remote Sensing.
Sample4Geo 92.65 93.81 95.14 91.39 Fabian Deuser, Konrad Habel, Norbert Oswald. Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation. ICCV 2023 [Paper] [Code]

Ground <-> Satellite

Methods Training Set R@1 AP R@1 AP Reference
    Ground -> Satellite   Satellite -> Ground    
Instance Loss Satellite + Ground 0.62 1.60 0.86 1.00 Zheng Z, Zheng L, Garrett M, et al. Dual-Path Convolutional Image-Text Embedding with Instance Loss. TOMM 2020. [Paper]
Instance Loss Satellite + Drone + Ground 1.28 2.29 1.57 1.52  
Instance Loss Satellite + Drone + Ground + Google Image 1.20 2.52 1.14 1.41  
LPN Satellite + Ground 0.74 1.83 1.43 1.31 Tingyu W, Zhedong Z, Chenggang Y, and Yi Y. Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization. TCSVT 2021. [Paper] [Code]
LPN Satellite + Drone + Ground 0.81 2.21 1.85 1.66 Tingyu W, Zhedong Z, Chenggang Y, and Yi Y. Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization. TCSVT 2021. [Paper] [Code]
PCLD Satellite + Drone + Ground 9.15 14.16 - - Zeng, Z., Wang, Z., Yang, F., & Satoh, S. I. (2022). Geo-Localization via Ground-to-Satellite Cross-View Image Retrieval. IEEE Transactions on Multimedia. [Paper]

cvusa Dataset

Methods R@1 R@5 R@10 R@Top1 Reference
Workman - - - 34.40 Scott Workman, Richard Souvenir, and Nathan Jacobs. ICCV 2015. Wide-area image geolocalization with aerial reference imagery [Paper]
Zhai - - - 43.20 Menghua Zhai, Zachary Bessinger, Scott Workman, and Nathan Jacobs. CVPR 2017. Predicting ground-level scene layout from aerial imagery.[Paper]
Vo - - - 63.70 Nam N Vo and James Hays. ECCV 2016. Localizing and orienting street views using overhead imagery
CVM-Net 18.80 44.42 57.47 91.54 Sixing Hu, Mengdan Feng, Rang MH Nguyen, and Gim Hee Lee. CVPR 2018. CVM-net:Cross-view matching network for image-based ground-to-aerial geo-localization. [Paper]
Orientation** 27.15 54.66 67.54 93.91 Liu Liu and Hongdong Li. CVPR 2019. Lending Orientation to Neural Networks for Cross-view Geo-localization [Paper]
Siam-FCANet - - - 98.3 Sudong C, Yulan G, Salman K, et al. Ground-to-Aerial Image Geo-Localization With a Hard Exemplar Reweighting Triplet Loss. ICCV 2019. [Paper]
Feature Fusion 48.75 - 81.27 95.98 Krishna Regmi, Mubarak Shah, et al. Bridging the Domain Gap for Ground-to-Aerial Image Matching. ICCV 2019. [Paper]
Instance Loss 43.91 66.38 74.58 91.78 Zheng Z, Zheng L, Garrett M, et al. Dual-Path Convolutional Image-Text Embedding with Instance Loss. TOMM 2020. [Paper] [Code]
RK-Net (USAM) 52.50 - - 96.52 Lin J, Zheng Z, Zhong Z, Luo Z, Li S, Yang Y, Sebe N. Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization. TIP 2022. [Paper] [Code]
CVFT 61.43 84.69 90.49 99.02 Shi Y, Yu X, Liu L, et al. Optimal Feature Transport for Cross-View Image Geo-Localization. AAAI 2020. [Paper]
DWDR 75.62 90.45 93.60 98.60 Tingyu W, Zhedong Z, Zunjie Z, Yuhan G, Yi Y, and Chenggang Y. “Learning Cross-view Geo-localization Embeddings via Dynamic Weighted Decorrelation Regularization” IEEE Transactions on Geoscience and Remote Sensing, 2024. [Paper] [Code]
MS Attention w DataAug 75.95 91.90 95.00 99.42 Rodrigues, Royston, and Masahiro Tani. “Are These From the Same Place? Seeing the Unseen in Cross-View Image Geo-Localization.” WACV 2021. [Paper]
MuSe-Net (Normal Weather) 78.04 - - - Wang T, Zheng Z, Sun Y, et al. Multiple-environment Self-adaptive Network for Aerial-view Geo-localization[J]. Pattern Recognition, 2024.
LPN 85.79 95.38 96.98 99.41 Tingyu Wang, Zhedong Zheng, Chenggang Yan, and Yi, Yang. Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization. TCSVT 2021. [Paper] [Code]
LPN + CA-HRS 87.16 95.98 97.55 99.49 Zeng Lu, Tao Pu, Tianshui Chen, and Liang Lin. Content-Aware Hierarchical Representation Selection for Cross-View Geo-Localization ACCV2022. [Paper] [Code]
SAFA* 89.84 96.93 98.14 99.64 Yujiao Shi, Liu Liu, Xin Yu, et al. Spatial-Aware Feature Aggregation for Cross-View Image based Geo-Localization. NeurIPS 2019. [Paper]
SAFA* + USAM 90.16 - - 99.67 Lin J, Zheng Z, Zhong Z, Luo Z, Li S, Yang Y, Sebe N. Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization. TIP 2022. [Paper] [Code]
LPN + USAM 91.22 - - 99.67 Lin J, Zheng Z, Zhong Z, Luo Z, Li S, Yang Y, Sebe N. Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization. TIP 2022. [Paper] [Code]
DSM* 91.96 97.50 98.54 99.67 Yujiao Shi, Xin Yu, Dylan Campbell, and Hongdong Li. “Where am i looking at? joint location and orientation estimation by cross-view matching.” CVPR 2020. [Paper] [Code]
Toker etal.* 92.56 97.55 98.33 99.67 Aysim Toker, Qunjie Zhou, Maxim Maximov, Laura Leal-Taixé. Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization. CVPR 2021 [Paper]
Shi etal.* 92.69 97.78 98.60 99.61 Yujiao Shi, Xin Yu, Liu Liu, Dylan Campbell, Piotr Koniusz, and Hongdong Li. Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image Matching. TPAMI 2022. [Paper] [Code]
SAFA* + LPN 92.83 98.00 98.85 99.78 Tingyu Wang, Zhedong Zheng, Chenggang Yan, and Yi, Yang. Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization. TCSVT 2021. [Paper] [Code]
SIRNet* 93.74 98.02 98.85 99.76 Xiufan Lu, Siqi Luo, Yingying Zhu. “It’s Okay to Be Wrong: Cross-View Geo-Localization With Step-Adaptive Iterative Refinement” IEEE Transactions on Geoscience and Remote Sensing 2022 [Paper]
Polar-L2LTR* 94.05 98.27 98.99 99.67 Hongji Yang, Xiufan Lu, Yingying Zhu. Cross-view Geo-localization with Layer-to-Layer Transformer. NeurIPS 2021 [Paper] [Code]
TransGeo 94.08 98.36 99.04 99.77 Sijie Zhu, Mubarak Shah, Chen Chen. TransGeo: Transformer Is All You Need for Cross-view Image Geo-localization. CVPR 2022 [Paper] [Code]
MGTL* 94.11 98.30 99.03 99.74 Jianwei Zhao, Qiang Zhai, Rui Huang, Hong Cheng. Mutual Generative Transformer Learning for Cross-view Geo-localization [Paper]
GeoDTR 93.76 98.47 99.22 99.85 Xiaohan Zhang, Xingyu Li, Waqas Sultani, Yi Zhou, Safwan Wshah. Cross-view Geo-localization via Learning Disentangled Geometric Layout Correspondence [Paper] [Code]
TransGeo + 4SCIG 94.10 98.74 99.22 99.81 Li, J., Yang, C., Qi, B., Zhu, M., & Wu, N. (2024). 4SCIG: A four-branch framework to reduce the interference of sky area in cross-view image geo-localization. IEEE Transactions on Geoscience and Remote Sensing.
LPN* + DWDR 94.33 98.54 99.09 99.80 Tingyu W, Zhedong Z, Zunjie Z, Yuhan G, Yi Y, and Chenggang Y. “Learning Cross-view Geo-localization Embeddings via Dynamic Weighted Decorrelation Regularization” arXiv 2022. [Paper]
GeoDTR* 95.43 98.86 99.34 99.86 Xiaohan Zhang, Xingyu Li, Waqas Sultani, Yi Zhou, Safwan Wshah. Cross-view Geo-localization via Learning Disentangled Geometric Layout Correspondence [Paper] [Code]
FI* 95.50 - - - Wenmiao Hu, Yichen Zhang, Yuxuan Liang, Yifang Yin, Anderi Georgecu, An Tran, Hannes Kruppa, See-Kiong Ng, Roger Zimmermann. Beyond Geo-localization: Fine-grained Orientation of Street-view Images by Cross-view Matching with Satellite Imagery. ACM MM 2022 [Paper]
SAIG-D* 96.34 99.10 99.50 99.86 Yingying Zhu, Hongji Yang, Yuxin Lu and Qiang Huang. Simple, Effective and General: A New Backbone for Cross-view Image Geo-localization. ArXiv 2023
Sample4Geo 98.68 99.68 99.78 99.87 Fabian Deuser, Konrad Habel, Norbert Oswald. Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation. ICCV 2023 [Paper] [Code]
BEV 98.71 99.70 99.78 99.86 Ye, J., Lv, Z., Li, W., Yu, J., Yang, H., Zhong, H., & He, C. (2024). Cross-view image geo-localization with Panorama-BEV Co-Retrieval Network. ECCV2024.
*: The method utilizes the polar transformation (assuming that all satellite images face north) as input.          
** : The method utilizes the polar prior hint.          

cvact val Dataset

Methods R@1 R@5 R@10 R@Top1 Reference
CVM-Net 20.15 45.00 56.87 87.57 Sixing Hu, Mengdan Feng, Rang MH Nguyen, and Gim Hee Lee. CVPR 2018. CVM-net:Cross-view matching network for image-based ground-to-aerial geo-localization. [Paper]
Instance Loss 31.20 53.64 63.00 85.27 Zheng Z, Zheng L, Garrett M, et al. Dual-Path Convolutional Image-Text Embedding with Instance Loss. TOMM 2020. [Paper] [Code]
RK-Net (USAM) 40.53 - - 89.12 Lin J, Zheng Z, Zhong Z, Luo Z, Li S, Yang Y, Sebe N. Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization. TIP 2022. [Paper] [Code]
Orientation** 46.96 68.28 75.48 92.04 Liu Liu and Hongdong Li. CVPR 2019. Lending Orientation to Neural Networks for Cross-view Geo-localization [Paper]
CVFT 61.05 81.33 86.52 95.93 Shi Y, Yu X, Liu L, et al. Optimal Feature Transport for Cross-View Image Geo-Localization. AAAI 2020. [Paper]
DWDR 66.76 83.34 87.11 95.10 Tingyu W, Zhedong Z, Zunjie Z, Yuhan G, Yi Y, and Chenggang Y. “Learning Cross-view Geo-localization Embeddings via Dynamic Weighted Decorrelation Regularization” IEEE Transactions on Geoscience and Remote Sensing, 2024. [Paper] [Code]
MS Attention w DataAug 73.19 90.39 93.38 97.45 Rodrigues, Royston, and Masahiro Tani. “Are These From the Same Place? Seeing the Unseen in Cross-View Image Geo-Localization.” WACV 2021. [Paper]
LPN 79.99 90.63 92.56 97.03 Tingyu Wang, Zhedong Zheng, Chenggang Yan, and Yi, Yang. Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization. TCSVT 2021. [Paper] [Code]
LPN + CA-HRS 80.91 90.95 92.93 97.07 Zeng Lu, Tao Pu, Tianshui Chen, and Liang Lin. Content-Aware Hierarchical Representation Selection for Cross-View Geo-Localization ACCV2022. [Paper] [Code]
LDRVSD 80.98 91.48 93.33 - Qian Hu, Wansi Li, Xing Xu, Ning Liu, Lei Wang. Learning discriminative representations via variational self-distillation for cross-view geo-localization. Computers and Electrical Engineering 2022
SAFA* 81.03 92.80 94.84 98.17 Yujiao Shi, Liu Liu, Xin Yu, et al. Spatial-Aware Feature Aggregation for Cross-View Image based Geo-Localization. NeurIPS 2019. [Paper]
LPN + USAM 82.02 - - 98.18 Lin J, Zheng Z, Zhong Z, Luo Z, Li S, Yang Y, Sebe N. Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization. TIP 2022. [Paper] [Code]
SAFA* + USAM 82.40 - - 98.00 Lin J, Zheng Z, Zhong Z, Luo Z, Li S, Yang Y, Sebe N. Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization. TIP 2022. [Paper] [Code]
DSM* 82.49 92.44 93.99 97.32 Yujiao Shi, Xin Yu, Dylan Campbell, and Hongdong Li. “Where am i looking at? joint location and orientation estimation by cross-view matching.” CVPR 2020. [Paper] [Code]
Shi etal.* 82.70 92.50 94.24 97.65 Yujiao Shi, Xin Yu, Liu Liu, Dylan Campbell, Piotr Koniusz, and Hongdong Li. Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image Matching. TPAMI 2022. [Paper] [Code]
Toker etal.* 83.28 93.57 95.42 98.22 Aysim Toker, Qunjie Zhou, Maxim Maximov, Laura Leal-Taixé. Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization. CVPR 2021 [Paper]
SAFA* + LPN 83.66 94.14 95.92 98.41 Tingyu Wang, Zhedong Zheng, Chenggang Yan, and Yi, Yang. Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization. TCSVT 2021. [Paper] [Code]
LPN* + DWDR 83.73 92.78 94.53 97.78 Tingyu W, Zhedong Z, Zunjie Z, Yuhan G, Yi Y, and Chenggang Y. “Learning Cross-view Geo-localization Embeddings via Dynamic Weighted Decorrelation Regularization” IEEE Transactions on Geoscience and Remote Sensing, 2024. [Paper] [Code]
Polar-L2LTR* 84.89 94.59 95.96 98.37 Hongji Yang, Xiufan Lu, Yingying Zhu. Cross-view Geo-localization with Layer-to-Layer Transformer. NeurIPS 2021 [Paper] [Code]
TransGeo 84.95 94.14 95.78 98.37 Sijie Zhu, Mubarak Shah, Chen Chen. TransGeo: Transformer Is All You Need for Cross-view Image Geo-localization. CVPR 2022 [Paper] [Code]
TransGeo + 4SCIG 83.73 94.41 95.79 98.41 Li, J., Yang, C., Qi, B., Zhu, M., & Wu, N. (2024). 4SCIG: A four-branch framework to reduce the interference of sky area in cross-view image geo-localization. IEEE Transactions on Geoscience and Remote Sensing.
MGTL* 85.35 94.45 96.06 98.48 Jianwei Zhao, Qiang Zhai, Rui Huang, Hong Cheng. Mutual Generative Transformer Learning for Cross-view Geo-localization [Paper]
SIRNet* 86.02 94.45 96.02 98.33 Xiufan Lu, Siqi Luo, Yingying Zhu. “It’s Okay to Be Wrong: Cross-View Geo-Localization With Step-Adaptive Iterative Refinement” IEEE Transactions on Geoscience and Remote Sensing 2022 [Paper]
GeoDTR 85.43 94.81 96.11 98.26 Xiaohan Zhang, Xingyu Li, Waqas Sultani, Yi Zhou, Safwan Wshah. Cross-view Geo-localization via Learning Disentangled Geometric Layout Correspondence [Paper] [Code]
GeoDTR* 86.21 95.44 96.72 98.77 Xiaohan Zhang, Xingyu Li, Waqas Sultani, Yi Zhou, Safwan Wshah. Cross-view Geo-localization via Learning Disentangled Geometric Layout Correspondence [Paper] [Code]
FI* 86.79 - - - Wenmiao Hu, Yichen Zhang, Yuxuan Liang, Yifang Yin, Anderi Georgecu, An Tran, Hannes Kruppa, See-Kiong Ng, Roger Zimmermann. Beyond Geo-localization: Fine-grained Orientation of Street-view Images by Cross-view Matching with Satellite Imagery. ACM MM 2022 [Paper]
SAIG-D* 89.06 96.11 97.08 98.89 Yingying Zhu, Hongji Yang, Yuxin Lu and Qiang Huang. Simple, Effective and General: A New Backbone for Cross-view Image Geo-localization. ArXiv 2023
Sample4Geo 90.81 96.74 97.48 98.77 Fabian Deuser, Konrad Habel, Norbert Oswald. Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation. ICCV 2023 [Paper] [Code]
BEV 91.90 97.23 97.84 98.84 Ye, J., Lv, Z., Li, W., Yu, J., Yang, H., Zhong, H., & He, C. (2024). Cross-view image geo-localization with Panorama-BEV Co-Retrieval Network. ECCV2024.
*: The method utilizes the polar transformation (assuming that all satellite images face north) as input.          
** : The method utilizes the polar prior hint.