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Joint Representation Learning and Keypoint
Detection for Cross-view Geo-localization
Jinliang Lin, Zhedong Zheng, Zhun Zhong, Zhiming Luo, Shaozi Li, Yi Yang, Nicu Sebe

Abstract—In this paper, we study the cross-view geo-
localization problem to match images from different viewpoints.
The key motivation underpinning this task is to learn a dis-
criminative viewpoint-invariant visual representation. Inspired
by the human visual system on mining local patterns, we
propose a new framework called RK-Net, to jointly learn the
discriminative Representation and detect salient Keypoints with
a single Network. Specifically, we introduce a Unit Subtraction
Attention Module (USAM) that can automatically discover repre-
sentative keypoints from feature maps and draw attention to the
salient regions. USAM contains very few learning parameters
but yields significant performance improvement, and can be
easily plugged into different networks. We demonstrate through
extensive experiments that: (1) By incorporating USAM, RK-
Net facilitates end-to-end joint learning without the prerequi-
site of extra annotations. Representation learning and keypoint
detection are two highly-related tasks. Representation learning
helps keypoint detection. Keypoint detection, in turn, enriches
the model capability against large appearance changes caused
by viewpoint variants. (2) USAM is easy to implement and can
be integrated with existing methods, further improving the state-
of-the-art performance. We achieve competitive geo-localization
accuracy on three challenging datasets, i.e., University-1652,
CVUSA and CVACT. Code is available at https://github.com/
AggMan96/RK-Net.

Index Terms—Geo-localization, Representation learning, Key-
point, Attention.

I. INTRODUCTION

CROSS-VIEW geo-localization refers to inferring the ge-
ographical location from images of different viewpoints,

being usually viewed as an image retrieval task [1]–[4]. Given
a query image collected from one platform, e.g., drone, the
system aims to retrieve the images of the target location
from candidate images collected in another platform, e.g.,
satellite. Since the satellite-view data is usually accompanied
by detailed GPS metadata, we can efficiently infer the location
of the query image. Cross-view geo-localization has been
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Fig. 1: Illustration of our motivation. We are inspired by
the human visual system in distinguishing images: given two
images, people usually focus on the whole image at a coarse
level (left) and then compare for salient regions at a fine
comparison stage (right). The positive/negative image of the
query is in the green/red box at the final stage.

applied to a wide range of real-world tasks, including drone
navigation [5]–[8], event detection [9]–[13], drone delivery
[14], [15], and so on. Compared with the GPS devices with
2∼15 meters position error range [16], the primary advantage
of the cross-view geo-localization is benefiting from more fine-
grained and accurate environment information for the target
place. Besides, it can be utilized as an independent auxiliary
tool to help user localization when GPS signal is missing or
is relatively weak.

The key aim underpinning cross-view geo-localization is to
extract discriminative features, which remains challenging due
to the small inter-class difference. Specifically, this is because
most architectures/locations share similar building styles and
homogeneous appearances, which are difficult to distinguish
from the coarse level. The way that the human visual sys-
tem [17] distinguishes two similar images greatly inspires us.
As shown in Fig. 1, when looking for the differences between
two buildings, the human visual system first focuses on the
general properties of the architecture, such as shape, style,
color, and so on. If it is difficult to identify the positive image
from the global feature in a rough comparison, the human
visual system further extracts some view-invariant keypoints
with discriminative fine-grained information to find out the
positive candidates.

Despite the great success of the deep models in cross-view
geo-localization [3], [18]–[24], the view-invariant keypoints
containing discriminative information have not been well-
explored. Inspired by the process of the human visual system
and the classical hand-crafted descriptors (e.g., SIFT [25]–[27]
and LBP [28]–[30]), we propose a novel framework, called

https://github.com/AggMan96/RK-Net
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Fig. 2: A comparison of keypoint detection by the baseline
approach [18] and our method. As shown in yellow circles,
our method generally takes more attention to discriminative
regions, e.g., roof, while the baseline model focuses on “non-
special” areas, e.g., vegetation. It is worth noting that our
model automatically extracts keypoints from corresponding
regions for both satellite-view images and drone-view images
without extra supervision.

RK-Net, to jointly learn Representation and detect Keypoints
with one Network. RK-Net contains a novel Unit Subtraction
Attention Module (USAM), which is a plug-and-play module.
As shown in Fig 3, the key operation of USAM is the Unit
Subtraction Convolution (USC). Without the prerequisite of
extra keypoint annotation, USC can effectively and efficiently
detect keypoints to help the model learn a discriminative repre-
sentation. Specifically, USC explicitly enables the comparison
between the center point and the surrounding points in the
receptive field of the convolution kernel. RK-Net leads an
interaction between keypoints and visual representation. The
keypoint information extracted by our module contains fine-
grained features of the target, helping to extract discrimina-
tive representations. Representation learning, in turn, encour-
ages the model to obtain more representative keypoints from
USAM. As shown in Fig. 2, the baseline model [18] usually
focuses on some “non-special” areas (such as vegetation)
while ignores the distinctive parts of buildings (such as roof).
Instead, our model can effectively mine more salient keypoints
and assign higher confidences to discriminative regions that are
essential to distinguish different buildings/locations.

To summarize, our contributions are threefold:

• We present a novel framework, called RK-Net, to jointly
learn discriminative representation and detect keypoints
for Cross-view Geo-localization without the prerequisite
of extra annotations.

• We design a Unit Subtraction Attention Module (USAM)
as the primary component of RK-Net that can automat-
ically discover representative keypoints. The keypoints
enforce the model to focus on salient regions, yielding
robust features against viewpoints.

• Our framework can be integrated with most existing
methods, and can significantly improve the performance,

e.g., boosting the global-based model [18] and the
ad-hoc part-based model [24]. Extensive experiments
show that the proposed method achieves competitive
results on three cross-view geo-localization datasets, i.e.,
University-1652, CVUSA and CVACT.

II. RELATED WORK

Cross-view Image-based Geo-localization. Image-based geo-
localization has attracted significant attention for its numer-
ous applications. Due to the large viewpoint changes of
images from different platforms, the development of cross-
view geo-localization has encountered a bottleneck in the way
of hand-crafted feature matching [31]–[33]. Benefiting from
the use of deep convolutional neural networks, recent geo-
localization works focus on learning deep representations for
both ground and aerial images to improve the performance
of geo-localization. Workman et al. [19] are the first to adopt
deep learned features for the cross-view matching task. Specif-
ically, [19] uses a network pre-trained on Imagenet [34] and
Places [35] to extract features for the cross-view localization,
which can well distinguish the target between two geographic
regions. Moreover, [19] finds that the discrimination of the
model representation can be further improved by minimizing
the feature distance between positive pairs of ground-view
images and aerial images [20]. To leverage orientation infor-
mation, Liu et al. [3] design a Siamese network to explicitly
encode the orientation information of the images. To handle
the problem of orientation misalignment in cross-view geo-
localization, [36] designs a Dynamic Similarity Matching
(DSM) module to measure the feature similarity of the image
pair. Shi et al. [21] propose a spatial-aware layer that exploits
the spatial information to improve the performance of localiza-
tion. In the view of image generation, Krishna et al. [22] utilize
the conditional GANs [37] to synthesize images from one view
to the other, which minimizes the domain gap between the
two views. Toker et al. [23] also create realistic street views
from satellite images and localize the corresponding query
street-view simultaneously in an end-to-end manner. Recently,
Wang et al. [24] propose a feature-level partition strategy to
make use of the contextual information of neighboring areas.
There are some works which pay attention on metric learning
and design different losses to train a discriminative network,
e.g., weighted soft margin ranking loss [38] for fast training
convergence, contrastive loss [1] motivated by face verifica-
tion [39], foreground loss [40], orientation regression loss
for learning orientation-aware representations, and instance
loss [18] inspired by cross-modality retrieval [41].
Attention Mechanism in Geo-localization. Attention mech-
anism is an effective technique to reassign the available
resources towards the most important part/region of an image.
Over the past years, the attention mechanism has been used
in a wide range of tasks, which require to identify subtle
contrastive clues from different images, such as person re-
identification [42]–[46], fine-grained image recognition [47]–
[49], and geo-localization [4], [50], [51]. To exploit attention
for objects and patches of interest, Altwaijry et al. [50] inject
the Spatial Transformer module [52] into a Siamese network
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for exploring a set of possible matching patches. Besides,
Tian et al. [4] present a two-stage framework by taking
the advantage of image classification and object detection.
Specifically, [4] employs the Faster R-CNN [53] to detect
buildings in the query and reference images, and represents
the images by the dominant sets constructed by features
inferred from patches of buildings. This approach can achieve
a good geo-localization accuracy and is able to generalize to
images at unseen locations. Both methods [4], [50] enhance
the robustness of object features to visual transformations
by exploring specific landmark areas with an extra off-the-
shelf detection network. To address the challenge of temporal
variation in scenes for cross-view image geo-localization, [54]
proposes a semantically driven data augmentation technique
and a multi-scale attention module to enable the network
to hallucinate unseen objects. Cai et al. [51] propose a
context-based attention module (FCAM), which sequentially
re-weights features by using channel and spatial attention sub-
modules. Yang et al. [55] propose the L2LTR network based
on Transformer to model global dependencies. Specifically, a
self-cross attention mechanism is designed to interact within
cross-layer patches, which can ensure effective information
flow across Transformer blocks. Different from existing works,
we focus on automatically discovering remarkable salient
keypoints from feature maps and encouraging the model to
pay attention on salient regions, yielding more discriminative
visual representations.
Keypoint detection. Traditional handcrafted feature detectors
are widely used for keypoint detection. In Harris [56], the
first and second-order derivatives of images are computed
to excavate the geometric structures. To speed up keypoint
retrieval, FAST [57] counts the number of brighter or darker
pixels around a point followed by a decision tree to improve
performance and efficiency. Integrating detectors and descrip-
tors, SIFT [25] looks for scale-invariant corners or blobs by
convolving the image with Gaussian filters over multiple scale
levels. Later, SURF [58] aims to accelerate the detection
process by using an approximation of the Hessian matrix
and integral images. In MSER [59], the images are binarized
at various thresholds, and the stable regions are selected as
keypoints. As newer classical algorithms, KAZE [60] and its
extension, A-KAZE [61] apply the Hessian matrix to a non-
linear diffusion scale space, which is computed at multiple
scales. With the advent of deep learning, recent works learn
to detect and describe keypoints by convolutional neural
networks. To extract robust keypoints under severe weather
and illumination changes, TILDE [62] trains a multiple piece-
wise linear regression model. In Lenc et al. [63], a feature
covariant constraint is introduced to train a keypoints detector.
SuperPoint [64] is an encoder-decoder architecture, which is
trained in a self-supervised mechanism. Savinov et al. [65]
use a ranking scheme of point responses and quadruple image
patches to train a model for keypoints detection. LF-Net [66]
embeds the entire feature extraction pipeline and estimates
position, scale and orientation of features by optimizing jointly
the detector and descriptor, which can be trained end-to-end
with just a collection of images.

In contrast, the proposed method is mainly different from

existing methods as follows: (1) Additional annotations, such
as camera pose, depth, and so on, are not required with our
method. (2) Orientation estimation is not conducted in our
method. (3) The proposed method takes the point-to-point
relationship into account.

III. METHODOLOGY

This section introduces the proposed joint Representation
learning and Keypoint detection Network (RK-Net). In our
RK-Net, the key component is the proposed Unit Subtraction
Attention Module (USAM). We first review the traditional
convolution in Sec. III-A. Then, in Sec. III-B, we introduce
the core operator of USAM, i.e., Unit Subtraction Convolution
(USC) and discuss on the differences from existing works. In
Sec. III-C, we present how to generate the keypoint attention
mask with our USC, followed by the residual attention fusion
with the generated keypoint attention mask in Sec. III-D. In
Sec. III-E, we illustrate the baseline model [18] and the model
equipped with USAM, where the latter model enables us to
jointly learn the representation and to detect keypoints during
training.
Overall Framework. An overview of our RK-Net is shown
in Fig. 3. We embed the proposed USAM between different
stages of the network, each of which takes the features from
the previous stage as input and outputs the features produced
by USAM to the next stage. As shown in Fig. 3 (A), USAM
consists of feature aggregation, keypoint mask generation by
USC and residual attention fusion. In Fig. 3 (B), USAM can
extract the salient keypoints from images of different views,
where red points represent detected keypoints and yellow lines
indicate the corresponding relationship between the keypoints
from two images. This important property can help the model
to extract a more discriminative representation.

A. Traditional Convolution Review

In a traditional convolutional neural network, the convolu-
tion operation is conducted on feature maps that are repre-
sented by a three-dimensional form (i.e., height h, width w,
and channel c). In the following part, we discuss the convolu-
tion method in a 2D spatial map for better explanation and
understanding. The traditional convolution mainly includes
two steps: 1) Element-wise product, where a matrix sampled
from an input feature map and the values of convolution kernel
are multiplied element by element; 2) Summation, where all
the values obtained in the first step are summed. Given an
input feature map F and the kernel weight ψ, the output of
the convolution operation can be obtained by:

F ′ (i, j) =
∑

u,v∈A
ψ (u, v) · F (i− u, j − v) , (1)

where i and j denote the coordinates of an element in terms of
the height and width dimensions, respectively. ψ is the weight
value of convolution kernel. u and v represent the locations
in the local receptive field area A. For example, if the size of
convolution kernel is 3×3, the area A is {−1, 0, 1}.
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Fig. 3: Overview of the proposed RK-Net framework. The backbone of our network is ResNet-50, which contains five stages.
We embed the proposed Unit Subtraction Attention Module (USAM) behind stage 1 (S1) and stage 2 (S2). We remove the
original classifier of ResNet-50 and insert one 512-dim fully-connected layer (FC), one batch normalization layer (BN) and
one classification layer (CLs) to form a new classifier block. The instance loss is adopted to train our model. The details of
USAM is shown in sub-figure (A), which consists of feature aggregation, keypoint mask generation by the proposed Unit
Subtraction Convolution (USC), and the residual attention fusion. In sub-figure (B), we provide an example to show that
the salient keypoints extracted by our USAM reduce the difficulty of matching images from different views. Note that, the
keypoints extracted by USAM are only used to enhance the feature discrimination of images rather than detect actual mapping.

B. Unit Subtraction Convolution

In our task, the keypoints are discriminative positions that
are important to distinguish the targets. In general, a keypoint
has a high response value in the feature map and has a
large difference from its surrounding points. The traditional
convolution uses a weighted sum to aggregate values in a
region, which however ignores the point-to-point relationship
between an element and its surroundings. Considering this
fact, we propose the Unit Subtraction Convolution (USC)
to extract the keypoints from the feature map. By replacing
the multiplication operation of traditional convolution with a
subtraction operation, our USC can be formulated as:

F ′ (i, j) =
∑

u,v∈A
(F (i, j)− F (i− u, j − v)) . (2)

Comparing Eq. 1 with Eq. 2, we can observe that there are
two differences between our USC and the traditional convo-
lution. First, USC does not introduce any learning parameter
while the traditional convolution requires a parametric kernel
to produce the output. Second, USC compares the relationship
between the center element and its adjacent elements by the
subtraction operation, instead of summing the values in an area
A with the weights of the kernel. By doing so, if an element
has a high value in a feature map and has a large margin from
the surrounding elements, it can have a high positive value
with USC and can be regarded as a keypoint. To reduce the
computation cost and efficiently implement USC in practical,
we convert Eq. 2 to:

F ′ (i, j) = K · F (i, j)−
∑

u,v∈A
F (i− u, j − v) . (3)

In this way, USC is divided into two parts. The first part is the
multiplication between the input feature map and a weight K,
where the value of K is equal to the size of convolution kernel.
For instance, if the size of convolution kernel is 3×3, K is set
to 9. The second part is performing the traditional convolution
on the input feature map using a kernel with a fixed weight
of 1. That is, the second part can be obtained by Eq. 1 with
ψ = 1. Consequently, USC can be implemented fast with the
convolution operation that is built in the existing deep-learning
tools. An example of USC is illustrated in Fig. 4.
Discussion. Some existing works [67], [68] have applied
the unsharp mask method to generate a masking layer for
their deep learning networks. Although both our module and
their works use the position information between the center
pixel and its surrounding pixels, our method has two main
differences from this line of works: 1) Different inputs. Our
module can be implemented on any feature map and can be
embedded in different layers of the network. The works of
unsharp masking layer are implemented on the input original
images rather than the feature maps, which is a pre-processing
layer. 2) Different filter settings. There are no learning filter
parameters in our proposed USC, while their works require
learnable filters.

C. Keypoint Attention Mask

In this paper, USC is performed on a single feature channel
and can be injected into any convolutional layer of a network.
Given an input image I ∈ R3∗H∗W , we first extract an
intermediate feature map from a certain convolutional layer l,
by feeding the input image into a network. The intermediate
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Fig. 4: Example of the proposed Unit Subtraction Convolution.
The weight K is equal to the size of convolution kernel. In
this example, the kernel size is 3×3 and K = 9.

feature map is denoted as Fl ∈ Rc∗h∗w, where c, h and w
indicate channel numbers, height and width, respectively. In
order to take all elements along the feature channels into
consideration and efficiently compute the keypoint attention
map, we apply the sum-pooling operation along the channel
axis to aggregate the feature map (see Fig. 3 (A)). This
simple manner has been verified to be effective in highlight-
ing salient/informative regions in the feature map [69]. The
aggregated feature map can be obtained by,

Fa = SumPool (Fl) , (4)

where SumPool(·) is the sum-pooling operation performed
on a feature map along the channel axis. Given the aggregated
feature map Fa ∈ R1∗h∗w, we take it as input for the proposed
USC and generate the keypoint attention mask by:

M = ReLU (BN (USC (Fa))) , (5)

where USC is the Unit Subtraction Convolution proposed in
Sec. III-B. BN is the batch normalization [70] and ReLU is
the rectified linear unit activation function [71]. M ∈ R1∗h∗w

is the produced keypoint attention mask, which is employed to
generate discriminative feature map that focuses on keypoint
regions, in the following Sec. III-D. It is worth noting that the
keypoint attention mask is a soft mask without a pre-defined
threshold.

D. Residual Attention Fusion

Given the generated keypoint attention map M , we aim to
utilize it to highlight important regions in the feature map.
Since M is a soft mask, we can regard it as a weight function
and use the element-wise product to re-weight the values in
the feature map. We first reduplicate the channel of M to the
same size of Fl ∈ Rc∗h∗w and obtain the weighted feature
map by:

F ′l = Fl · Expand(M, c), (6)

where c is channel size of Fl. To avoid the phenomenon that
the soft mask might potentially discard important information
of the original feature map Fl, we adopt a residual struc-
ture [72], [73] to produce the final feature map,

F ∗l = Fl + F ′l . (7)

Algorithm 1 Pseudocode of USAM in a PyTorch-like style.
Inputs: A feature map Fl, kernel size n
Outputs: A new feature map F ∗l produced by USAM.

1: # generate the aggregated feature map.
2: Fa = Fl.sum(1, keepdim=True)
3: # calculate the weight K of USC.
4: K = n * n
5: # initialize a kernel with a fixed weight of 1 for USC.
6: kernel = parameter(

data = torch.ones(1, 1, n, n), requires grad = False)
7: # unit subtraction convolution for Fa.
8: Fusc = K * Fa - conv2d(Fa, kernel)
9: # batch normalization layer.

10: M = BatchNorm2d(Fusc)
11: # rectified linear unit layer.
12: M = ReLU(M )
13: # residual attention fusion.
14: F

′

l = Fl * M .expand as(Fl)
15: F ∗l = F

′

l + Fl

16: Return F ∗l

We call this process residual attention fusion. In this way,
we can preserve important information in the original feature
map while enforcing the model to pay attention to keypoint
regions for producing a discriminative representation. Note
that, our USAM only contains very few learning parameters
that are learnable affine parameters in the BN [70] layer
and requires only a neglectable computational cost. Therefore,
USAM can be viewed as a learning parameter-free module. As
shown in Alg. 1, we present the Pytorch-like pseudocode of
the proposed Unit Subtraction Attention Module (USAM) to
illustrate our method in detail.

E. Model Training

Baseline Model. Following [18], we use a three-branch CNN
network as the baseline model. The branches are designed
for the satellite-view, drone-view and street-view images,
respectively. The parameters of the satellite-view branch and
the drone-view branch are shared since both satellite-view and
drone-view images are from the aerial viewpoint. In this paper,
we adopt ResNet-50 [72] as the backbone and replace the last
classification layer with a new classifier block, which consists
of a fully connected layer (FC), a batch normalization layer
(BN) and a classification layer (Cls). The parameters of the
classifier block are shared for all branches.
Loss function. Our method utilizes the instance loss [41] as
the loss function to train the model. Concretely, the instance
loss regards each location as an individual class and trains the
model in a classification manner. Given an image Iyv , which is
from v view (satellite, drone or ground) and belongs to class
y, the instance loss can be formulated by,

p(Iyv ) = SoftMax(Cls(Fv(I
y
v ))), (8)

Linstance = −log(p(Iyv )[y]), (9)

where Fv is the feature extractor of v view and Cls is the
shared classifier layer.
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Training with USAM. Given the baseline model, we aim
to equip it with our proposed Unit Subtraction Attention
Module (USAM) for joint representation learning and keypoint
detection. Specifically, we regard the five convolution residual
blocks of ResNet-50 as five stages and embed USAM at the
end of stage 1 and stage 2. With the USAM, the output of
each stage is re-computed by aggregating the original feature
map with a new feature map re-weighted by the generated
attention mask. The output is then forwarded to the next stage.
After injecting the USAM into the network, the model can
be trained in the same manner used in the baseline without
further modification. Note that, the increase of running time is
limited (+7.5% for training and +1.6% for inference). During
training, the proposed USAM helps the model to extract
discriminative representations that are robust to viewpoint
variants. The representation learning, in turn, encourages the
model to extract more accurate keypoints in the feature map.
That is, RK-Net is gradually improved with the interaction of
two related tasks.

IV. EXPERIMENT

A. Datasets and Evaluation Protocol

We conduct experiments on three datasets, i.e., University-
1652 [18], CVUSA [20] and CVACT [3].
University-1652 [18] is a multi-view multi-source dataset, in-
cluding satellite-view images, drone-view images and ground-
view images collected from three different platforms. Instead
of selecting landmarks as the target locations, the dataset
selects 1,652 ordinary architectures of 72 universities around
the world as targets. Overall, every building has 1 satellite-
view image, 54 drone-view images, and 3.38 real street-view
images on average. There are 701 architectures of 33 uni-
versities in the training set, while the other 951 architectures
of 39 universities form the testing set. There is no overlap
between universities of the training and testing sets. The
dataset can be used to evaluate two new tasks, i.e., drone-view
target localization (Drone → Satellite) and drone navigation
(Satellite → Drone). CVUSA [20] & CVACT [3] are both
large-scale datasets, and each dataset contains 35,532 ground
and satellite training image pairs. 8,884 cross-view image pairs
are provided for testing in CVUSA and validating in CVACT
(denoted as CVACT val). Moreover, CVACT also provides
92,802 image pairs for testing (denoted as CVACT test). Note
that, all ground images of the dataset are panoramas, and
both street-view and satellite-view samples are high-resolution
images.
Evaluation Protocol. We adopt the recall accuracy at top K
(Recall@K) and the average precision (AP) as the evaluation
metrics to evaluate the model performance. The value of the
Recall@K is 1 if positive images appear in the top K of the
ranking list. In this paper, we evaluate K = 1 for University-
1652, and K = 1 and K = Top1% for CVUSA and CVACT,
where Top1% indicates the top 1% samples of the ranking list.
The average precision represents the area under the Precision-
Recall curve. We report the mean AP (mAP) over all queries.

B. Implementation Details

Model Detail. We employ the ResNet-50 [72] with pre-trained
weights on ImageNet [34] as our backbone network, which
has 5 stages in total. By default, we set the kernel size of
our USAM to 3 × 3 and insert USAM after stage 1 and
stage 2, respectively. Following [18], we add a 512-dim
fully-connected layer and a classification layer to replace the
original classifier dedicated for ImageNet, and initialize the
new classifier with kaiming initialization [74].
Training Detail. We resize the input images to the size of 256
× 256 for both training and testing phases. During training,
we adopt horizontal flipping and random cropping as data
augmentation. Following [24], we use polar transform for the
CVUSA and CVACT datasets, but not for the University-1652
dataset. Examples are shown in Fig. 5. The stochastic gradient
descent optimizer (SGD) with momentum=0.9 and weight
decay=0.0005 is employed to update the model. We train the
network for 360 epochs with a mini-batch of 16 in total.
For the learning rate, we use 0.01 and 0.001 for the newly-
added layers and the original backbone layers, respectively.
The learning rate is decayed by 0.1 after 200 epochs for all
layers. The dropout rate is 0.65. During testing, we exact
the output of the pooling-5 layer as the feature and use the
Euclidean distance to measure the similarity between the query
image and gallery images.

University-1652

CVUSA

CVACT

Satellite Drone

Polar-transformed Satellite

Polar-transformed Satellite

Fig. 5: Aerial examples for University-1652, CVUSA and
CVACT. Polar transform is only applied to CVUSA and
CVACT.

C. Comparison with State-of-the-art Methods

Results on University-1652. We first compare our method
with state-of-the-art methods on University-1652, including
approaches with different losses (i.e., Contrastive Loss [1],
Triplet Loss [75], Soft Magin Triplet Loss [38] and In-
stance Loss [18]), LCM [76], SAFA [77] and LPN [24].
LPN [24] explicitly considers the local information during
training. Comparison results are reported in Table I. It is noted
that the results of those methods which are anterior to the
dataset publication are borrowed from [18] except SAFA.
For SAFA, we reimplement it on the University-1652 dataset
with the provided source code. We can make the following
observations. First, without explicitly considering the local
information, baseline model with Instance Loss [18] produces
the best results. Second, when adding our USAM, the results
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TABLE I: Comparison with state of the art on University-
1652. M denotes the margin of the triplet loss. w/ G
stands that using the extra Google Image set during training.
Drone→Satellite denotes the drone-view target localization
task, and Satellite→Drone indicates the drone navigation task.

Method
Drone→Satellite Satellite→Drone
R@1 mAP R@1 mAP

Contrastive Loss [1] [18] 52.39 57.44 63.91 52.24
Triplet Loss ( M = 0.3 ) [75] [18] 55.18 59.97 63.62 53.85
Triplet Loss ( M = 0.5 ) [75] [18] 53.58 58.6 64.48 53.15
Soft Magin Triplet Loss [38] [18] 53.21 58.03 65.62 54.47
Instance Loss [18] 58.49 63.13 71.18 58.74
LCM [76] 66.65 70.82 79.89 65.38
SAFA [77] 68.27 72.06 80.16 68.11
SAFA (w/ G) [77] 69.34 73.15 82.60 69.78
LPN [24] 74.18 77.39 85.16 73.68
LPN (w/ G) [24] 75.93 79.14 86.45 74.79

Instance Loss + USAM 65.63 69.68 78.32 64.87
Instance Loss + USAM (w/ G) 66.13 70.23 80.17 65.76
SAFA+USAM 70.89 74.56 82.88 70.20
SAFA+USAM (w/ G) 72.19 75.79 83.23 71.77
LPN+USAM 77.07 80.09 85.16 74.06
LPN+USAM (w/ G) 77.60 80.55 86.59 75.96

TABLE II: Comparison with competitive methods on CVUSA
& CVACT val. *:using extra orientation information. +:using
transformer-based backbone.

Method
CVUSA CVACT val

R@1 R@Top1% R@1 R@Top1%

Hybrid-Net [50] 45.22 92.32 36.89 87.81
CVM-Net [38] 18.80 91.54 20.15 87.57
VGG global pooling [21] 31.53 95.09 28.98 91.72
Orientation* [3] 40.79 96.08 46.96 92.01
Instance Loss [18] 43.91 91.78 35.24 87.34
Regmi et al. [22] 48.75 95.98 - -
Siam-FCANet34 [51] - 98.30 - -
CVFT [21] 61.43 99.02 61.05 95.93
Rodrigues [54] 75.95 99.42 73.19 97.45
LPN [24] 85.79 99.41 79.99 97.03
SAFA [77] 89.84 99.64 81.03 98.17
DSM [36] 91.96 99.67 82.49 97.32
Polar-L2LTR+ [55] 94.05 99.67 84.89 98.37

Instance Loss+USAM 52.50 96.52 40.53 89.12
SAFA+USAM 90.16 99.67 82.40 98.00
LPN+USAM 91.22 99.67 82.02 98.18

of Instance Loss are significantly improved. For example,
without using the extra Google training set, “Instance Loss +
USAM” achieves 65.63% in Recall@1 accuracy and 69.68%
in mAP for “Drone → Satellite” and 78.32% in Recall@1
accuracy and 64.87% in mAP for “Satellite → Drone”. This
is clearly higher than Instance Loss by 6.55% for “Drone
→ Satellite” and 6.13% for “Satellite → Drone” in terms
of mAP. Our method is also benefited to SAFA [77]. For
example, “SAFA + USAM” boots R@1 accuracy from 69.34%
to 72.19% (+2.85%) in the drone-view target localization task
(Drone → Satellite) when using the extra Google training
set. Third, LPN [24] produces largely higher results than
other methods. Nonetheless, when combining our USAM with
LPN [24], we can obtain further improvement. For example,
when using extra Google data, “LPN [24]+Ours” improves the
mAP from 79.14% to 80.55% for “Drone → Satellite” and
from 74.79% to 75.96% for “Satellite → Drone”. The above

observations demonstrate the effectiveness of the proposed
USAM and that USAM is a flexible module that can be
embedded in different models to improve performance.
Results on CVUSA & CVACT. We also compare our ap-
proach with other competitive methods on the CVUSA and
CVACT datasets. As shown in Table II and Table III, we
observe similar phenomenon as the results on University-1652.
That is, 1) LPN [24] surpasses most CNN-based methods by
a large margin; 2) our USAM can consistently improve the
results of Instance Loss [18], SAFA [77] and LPN [24]. Specif-
ically, for CVUSA, when injecting USAM into the network,
the Recall@1 accuracy is improved from 43.91% to 52.50%
for Instance Loss [18], from 89.84% to 90.16% for SAFA [77]
and from 85.79% to 91.99% for LPN [24]. Similarly, the
improvement is also observed in CVACT (on the validation
set, 35.24% to 40.53% for Instance Loss [18], 81.03% to
82.40% for SAFA [77] and 79.99% to 82.02% for LPN [24]);
3) With LPN, our framework (“LPN+USAM”) produces very
competitive results, which are higher than SAFA [77] by
1.38% and 0.99% in recall@1 accuracy for CVUSA and
CVACT val, respectively. In addition, ‘LPN+USAM” obtains
better R@Top1% accuracy than DSM [36] on CVACT val
and CVACT test. (4) Compared to Hybrid-Net [50], which
uses a spatial transformer as the attention module, our method
largely outperforms it when using the instance loss as the
baseline. Note that, though Polar-L2LTR [55] achieves the
best performance, it uses a Transformer-based backbone that
is stronger than ResNet-50. Therefore, it is unfair to directly
compare Polar-L2LTR with existing CNN-based models. The
above results support the effectiveness and flexibility of our
USAM under different settings.

TABLE III: Results on the test set of CVACT. *:using extra
orientation information. +:using transformer-based backbone.

Method
CVACT test

R@1 R@Top1%

CVM-Net [38] 5.41 54.53
Instance loss [18] 11.25 52.42
Orientation* [3] 19.21 60.69
CVFT [21] 26.12 71.69
LPN [24] 35.03 84.27
DSM [36] 35.63 84.75
SAFA [77] 55.50 94.49
Polar-L2LTR+ [55] 60.72 96.12

Instance loss+USAM 13.42 55.69
LPN+USAM 37.71 87.04
SAFA+USAM 56.16 95.22

D. Evaluation

Effect of injecting USAM into different stages. We regard
the five residual blocks of ResNet-50 as 5 stages. In Table
IV, we investigate the impact of injecting USAM into differ-
ent stages. We first evaluate the performance by embedding
USAM after only one of the five stages. We find that injecting
USAM into any stage of the network can improve the results
of the baseline (“w/o USAM”). Specifically, injecting USAM
after a relative shallow stage (i.e., stage 1, 2 and 3) can
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TABLE IV: Effect of adding USAM into different stages of
the ResNet-50 network.

Stage
Drone→ Satellite Satellite→Drone
R@1 mAP R@1 mAP

w/o USAM 58.49 63.13 71.18 58.74
1 65.63 69.97 78.55 64.91
2 65.59 69.69 78.23 64.50
3 64.92 68.01 77.92 64.03
4 62.73 66.98 75.41 62.74
5 60.43 64.87 73.28 60.17
1+2 66.13 70.23 80.17 65.76
1+2+3 63.75 68.32 78.22 64.43
1+2+3+4 63.18 67.42 77.83 63.72
1+2+3+4+5 59.94 64.34 74.19 59.31

TABLE V: Effect of using different kernel sizes for USAM.

Kernel Sizes
Drone→Satellite Satellite→Drone
R@1 mAP R@1 mAP

w/o USAM 58.49 63.13 71.18 58.74
3 × 3 66.13 70.23 80.17 65.76
5 × 5 63.28 67.62 76.75 63.51
7 × 7 61.11 65.46 75.61 61.90
9 × 9 60.59 64.79 74.32 60.58

TABLE VI: Ablation study on different components in the
proposed USAM.

Operation Drone→Satellite Satellite→Drone
BN USC R@1 mAP R@1 mAP

- - 58.49 63.13 71.18 58.74
X - 59.39 63.79 73.32 59.82
- X 62.89 67.4 76.03 63.66
X X 66.13 70.23 80.17 65.76

achieve higher performance. The main reason is that the deep
stages (i.e., stage 4 and 5) mainly contain high-level semantic
information, which is not suitable to detect keypoints. We then
study the effect of adding USAM into multiple stages. The best
results are achieved by jointly injecting USAM after stage 1
and stage 2. Applying USAM on deeper stages hampers the
results. In our experiments, we use the same training setting
for corresponding CNN architectures for a fair comparison,
whether or not we apply the USAM module.
Sensitivity to the kernel size. The kernel size is an important
parameter of our USAM. To find the appropriate kernel size,
we compare the results of using different kernel sizes for
USAM. Table V shows that the best results are obtained when
kernel size = 3 × 3. Using a larger kernel size reduces the
performance.
Ablation study on different components in USAM. There
are two components in our USAM, i.e., Unit Subtraction
Convolution (USC) and Batch Normalization (BN). In Ta-
ble VI, we study the effectiveness of these two components
by removing one of them from USAM. When only using
BN, we directly apply BN on the feature map. When only
using USC, we use the Min-Max Normalization to scale the

TABLE VII: Effect of different feature aggregation functions.

Feature Aggregation
Drone→ Satellite Satellite→Drone
R@1 mAP R@1 mAP

w/o Pooling 59.94 64.34 73.05 60.00
Max-Pooling 63.44 67.57 77.89 64.03
Average-Pooling 65.47 69.57 79.74 65.28
Sum-Pooling 66.13 70.23 80.17 65.76

TABLE VIII: Evaluation of different attention fusion strate-
gies. M is the keypoint attention map. Fl and F ∗l is the input
feature map and output feature map of USAM, respectively. c
is channel size of Fl.

Fusion Strategy
Drone→Satellite Satellite→Drone
R@1 mAP R@1 mAP

Non: F ∗
l = Fl 58.49 63.13 71.18 58.74

Mul: F ∗
l = Fl · Expand(M, c) 54.19 58.83 68.05 55.50

Add: F ∗
l = Fl + Expand(M, c) 65.13 69.33 77.89 64.99

Res: F ∗
l = Fl + Fl · Expand(M, c) 66.13 70.23 80.17 65.76

TABLE IX: Compared to different forms of attention genera-
tion methods in USC on University-1652.

Attention Generation
Drone→Satellite Satellite→Drone
R@1 mAP R@1 mAP

Baseline 58.49 63.13 71.18 58.74
Addition 62.52 66.71 73.61 62.19
Hadamard Product 63.26 67.27 76.03 64.71
Dot Product 63.37 67.48 77.89 66.11
Concat+Mean 62.99 67.25 76.89 64.69
Concat+Max 63.98 67.98 76.18 64.14
Subtraction 66.13 70.23 80.17 65.76

generated attention mask. We observe that removing each of
them largely reduces the performance, especially USC. This
demonstrates the effectiveness of the proposed USC and shows
that the improvement of our USAM mainly depends on the
proposed USC rather than batch normalization.
Effect of different feature aggregation functions. In our
USAM, we use sum-pooling to aggregate feature map (Eq. 4).
To study the effectiveness of this strategy, we compare dif-
ferent aggregation methods in Table VII. The performance
confirms that 1) it is necessary to aggregate the feature map
and 2) feature aggregation with sum-pooling achieves the best
results compared to max-pooling and average-pooling.
Effect of the attention fusion strategy. To verify the effect
of the proposed residual attention fusion, we compare it with
other two fusion strategies, i.e., multiplication fusion strategy
and addition fusion strategy. For the multiplication fusion
strategy, we directly use the weighted feature map as the new
representation for the next stage. For addition fusion strategy,
we add the produced keypoint attention mask to the original
feature map as the new representation. The details and results
of these two fusion strategies are reported in Table VIII. We
find that it is important to keep the original feature map. When
only using the weighted feature map (“Mul”), the results are
clearly decreased. In addition, it is better to apply the generated
keypoint attention map to produce a weighted feature map
(“Res”) instead of directly adding it with the original feature
map (“Add”).
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TABLE X: Impact of input image size on University-1652.

Image Size
Drone→ Satellite Satellite→Drone
R@1 mAP R@1 mAP

224*224 63.96 69.19 77.89 64.76
256*256 66.13 70.23 80.17 65.76
320*320 69.08 72.90 82.45 69.91
384*384 68.05 71.97 80.74 69.17
512*512 68.10 71.53 80.96 69.35
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Fig. 6: Evaluation of rotating images on “Drone → Satellite”
of University-1652.

Compared to different forms of attention generation meth-
ods. In our USC, we use the subtraction operation to generate
attention. To verify its effectiveness, we additionally compare
with four attention generation operations as studied in [78],
including addition, Hadamard product, dot product and con-
catenation. To keep the dimension of generated attention mask,
we use mean operation or max operation after concatenation
(denoted as Concat-Mean and Concat-Max respectively). From
the results in Table IX, we can observe that (1) all the
attention operations can boost the model performance and (2)
the subtraction operation used in our USC achieves the best
improvement on both settings. This shows that our USAM is
more suitable for the cross-view geo-localization task.
Effect of the input image size. To evaluate the effect of
image size, we keep the ratio between width and height to
1:1 and vary the input size from 224 × 224 to 512 × 512.
Results in Table X show that (1) increasing the image size from
224× 224 to 320× 320 can clearly improve the performance
and (2) assigning a too large input size (e.g., 512 × 512)
leads a reduction. On the other hand, using a large image size
will exponentially increase the computation cost. Therefore,
considering the balance between speed and accuracy, we adopt
256× 256 as the input size in our experiments.
Effect of rotating images. We conduct experiments to study
the effect of rotating images. In this experiment, we only rotate
the query images and keep the gallery images unchanged.
We rotate the query images between 0° to 315°. Comparison
between our method and the baseline is shown in Fig. 6.
We can make the following observations. (1) Results of both
methods reduce with the increase of the rotating degree.
(2) Our method consistently outperforms the baseline in all
rotating cases. (3) The performance reduction of the baseline is
larger than ours after rotating. For instance, the R@1 accuracy

TABLE XI: Evaluation of computation costs. # Params:
number of parameters, FLOPs: floating point operations.

Method # Params (M) FLOPs (G)
Drone→Satellite
R@1 mAP

Instacnce loss [18] 48.426 24.425 58.49 63.13
Instacnce loss + Ours 48.426 24.425 65.63 69.68
LPN [24] 52.655 24.436 74.18 77.39
LPN + Ours 52.655 24.436 77.07 80.09

is reduced by 10% for the baseline and 7% for ours, when
rotating the images with 315°. The above observations verify
that our method is more robust to rotating variations.
Computation cost of USAM. To verify the lightweight
property of USAM, we conduct experiments by calculating the
number of parameters (# Params) and floating point operations
(FLOPs) of the network. Results in Table XI show that our
USAM can significantly improve the performance without
increasing the computation costs. Indeed, our USAM only
introduces very few learnable parameters that are produced
by BN layers. The extra computation costs are negligible
compared to the parameters of the overall network.

E. Visualization

To better understand our USAM, we also provide one quali-
tative experiment on visualizing keypoint heatmaps generated
by USAM. Specifically, we visualize the keypoint attention
mask generated by USC, which comes from the USAM
module behind stage 2 (S2). The generated attention mask is
scaled to [0, 1] by the min-max normalization. We then use the
same threshold (0.4) for the baseline model [18] and ours to
produce the visualization of keypoints. This operation ensures
a fair comparison between baseline and our RK-Net. (A) In
Fig. 7 (a), we provide the visualization of keypoints heatmaps
from satellite views (first row) and drone views (second
row). We can observe that our method can effectively extract
keypoints from discriminative regions of building / location
for different views images, regardless of the target scale in
the picture. (B) Then, in Fig. 7 (b), we show the visualization
results of the satellite-view image and drone-view images from
different shooting angles for the same object. The figures
show that our method can still discover remarkable keypoints
under the appearance changes caused by rotation variants. (C)
In Fig. 7 (c), we show the keypoint heatmaps generated in
different epochs. The results illustrate that with the increase
of training, our model can extract more and more significant
keypoints from discriminative regions, e.g., roof, and reduce
disturbance from the “non-special” area, e.g., greensward.
This demonstrates the mutual benefit of join representation
learning and keypoint detection. (D) We also compare the
keypoints heatmaps generated by the baseline model [18]
and ours. As shown in Fig. 7 (d), our method can extract
more salient keypoints and pay more attention to the target
building, while the baseline fails to focus on discriminative
regions. It should be highlighted that the number of keypoints
is almost the same between baseline and our method, which
illustrates that the improvement of our method is obtained
from learning with keypoints of structure region instead of
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Fig. 7: Visualization of keypoints produced by our USAM. (a) Results from different views. (b) Results from different angles
of the drone camera. (c) Results generated in different epochs. (d) Comparison of results between baseline [18] and ours. (e)
Failure results.

Threshold = 0.2 Threshold = 0.4 Threshold = 0.6 Threshold = 0.8

Baseline
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Fig. 8: Visualizations of generating keypoints with different
thresholds.

using more keypoints merely. (E) In addition, we show some
failure cases of our method in Fig. 7 (e). We observe that
our module is unable to perform well in the following two
cases: 1) the image texture is smooth and does not have
obvious change; and 2) there are shadows caused by buildings
in the images. For the first case, as shown in the first and
second images of Fig. 7 (e), the proposed method cannot mine
sufficient keypoints for discrimination. On the other hand, for
the second case, as shown in the red areas of the third and
fourth images of Fig. 7 (e), our method mistakes the shadows
of building as part of the target and extract keypoints from
the regions under the shadow. (F) We show the examples of
different thresholds in Fig. 8. We can observe that our RK-Net
consistently discovers more discriminative keypoints than the
baseline under different thresholds. (G) Finally, we show an
animation from the drone view in Fig. 9, which is composed of
images from different shooting angles of the same architecture.
The animation further verifies that our model can discover the
view-invariant keypoints.

Fig. 9: Frame-to-frame keypoint animation detected by our
USAM from drone view (Click on the image to see animation
using Adobe Reader). We note that the input video clip is from
the test set, and the model has not seen the building before.

V. FURTHER ANALYSIS AND DISCUSSION

A. Connection to Human Visual System (HVS)

We further elaborate the relevance between our motivation
and HVS in this subsection. In practice, humans commonly
recognize objects by a coarse-to-fine process [17], which
inspires us to consider both global and local information
during representation learning. Although we do not explicitly
divide the matching process into global comparison and local
comparison, our designed model fuses both the global feature
(coarse) and local feature (fine), enabling us to potentially
perform the coarse-to-fine matching process. Generally, the
general properties of images, which are extracted by the
backbone network, can be viewed as the global features with
coarse-grained information and are dominant in the matching
process. If the two images are similar, it is difficult to identify
them only by using the general properties. Therefore, human
further excavates keypoints with discriminative fine-grained
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(a)  Ground truth (b)  Ours (c)  Baseline

Fig. 10: Keypoint comparisons between the baseline ap-
proach [18] and our method. The first row images are satellite-
view pictures, and the second row images are drone-view
pictures. (a) are the groundtruth keypoint labels. (b) and (c)
are predicted keypoints from our model and baseline [18].

information to differentiate the two images. In our work, we
extract the keypoints with fine-grained features by the process
of Unit Subtraction Convolution (USC), which can play a key
role in fine-grained comparison. Finally, by pooling operation
and Unit Subtraction Attention Module (USAM), our designed
model can fuse both the global feature and local feature to
perform a coarse-to-fine matching process.

B. Keypoint Evaluation

To further validate the effectiveness of USAM, we conduct
extra experiments that produce the same number of keypoints
(60 top-ranked keypoints) for baseline and our method, and
add a quantitative evaluation of keypoints. Specifically, we
invite several experts to annotate the keypoints for the testing
set of University-1652 and collect 50 annotated samples for
validation. We use the percentage of correct keypoints (PCK)
metric [79] to evaluate the performance of keypoint detection.
Our method achieves 77.6% in PCK accuracy, which outper-
forms baseline by +34.9%. We also show some qualitative
examples for the keypoint annotation between our method
and baseline in Fig. 10. The figure shows that the keypoints
extracted by our method are closer to the ground truth.

VI. CONCLUSION

In this work, we introduce the framework (RK-Net), which
explores the joint learning on keypoint detection and represen-
tation learning for cross-view geo-localization. The main idea
underpinning RK-Net is to find salient regions to discriminate
different locations, which is also aligned with the human
visual system. In our RK-Net, we propose a novel Unit Sub-
traction Module (USAM) to automatically mine remarkable
keypoints from feature maps for extracting viewpoint-invariant
representations. Extensive experiments show that our method
can achieve competitive results on three benchmarks, i.e.,
University-1652, CVUSA and CVACT. In the future, we will

investigate other potential applications, such as vehicle re-
identification, product retrieval and other fine-grained retrieval
tasks.
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