Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Unsupervised Scene Adaptation with Memory Regularization in vivo

Zhedong Zheng'?, Yi Yang'*

'ReLER, University of Technology Sydney, Australia
2Baidu Research, China
zhedong.zheng @student.uts.edu.au, yi.yang @uts.edu.au

Abstract

This work focuses on the unsupervised scene adap-
tation problem of learning from both labeled source
data and unlabeled target data. Existing approaches
focus on minoring the inter-domain gap between
the source and target domains. However, the
intra-domain knowledge and inherent uncertainty
learned by the network are under-explored. In this
paper, we propose an orthogonal method, called
memory regularization in vivo, to exploit the intra-
domain knowledge and regularize the model train-
ing. Specifically, we refer to the segmentation
model itself as the memory module, and minor the
discrepancy of the two classifiers, i.e., the primary
classifier and the auxiliary classifier, to reduce the
prediction inconsistency. Without extra parameters,
the proposed method is complementary to most ex-
isting domain adaptation methods and could gener-
ally improve the performance of existing methods.
Albeit simple, we verify the effectiveness of mem-
ory regularization on two synthetic-to-real bench-
marks: GTAS — Cityscapes and SYNTHIA —
Cityscapes, yielding +11.1% and +11.3% mloU
improvement over the baseline model, respectively.
Besides, a similar +12.0% mloU improvement is
observed on the cross-city benchmark: Cityscapes
— Oxford RobotCar.

1 Introduction

Due to the unaffordable cost of the segmentation annotation,
unsupervised scene adaptation is to adapt the learned model
to a new domain without extra annotation. In contrast to the
conventional segmentation tasks, unsupervised scene adap-
tation reaches one step closer to the real-world practice. In
the real-world scenario, the annotation of the target scene is
usually hard to acquire. In contrast, abundant source data is
easy to access. To improve the model scalability on the un-
labeled target domain, most researchers resort to transfer the
common knowledge learned from the source domain to the
target domain. The existing scene adaptation methods typi-
cally focus on reducing the discrepancy between the source
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Figure 1: We leverage the auxiliary classifier of the widely-used
baseline model [Tsai ef al., 2018] to pinpoint the intra-domain un-
certainty. While the predictions of the source domain input are rel-
atively consistent, the unlabeled input from the target domain suf-
fers from the uncertain prediction. The model provides different
class predictions for the same pixel. It implies that the intra-domain
consistency is under-explored, especially in the unlabeled target do-
main. In contrast to the existing works, which focus on the inter-
domain alignment, we focus on one orthogonal direction of mining
intra-domain knowledge.

domain and the target domain. The alignment between the
source and target domains could be conducted on different
levels, such as pixel level [Hoffman er al., 2018; Wu er al.,
2018], feature level [Hoffman et al., 2018; Yue et al., 2019;
Luo et al., 2019b] and semantic level [Tsai et al., 2018;
Tsai et al., 2019; Wang et al., 2019]. Despite the great suc-
cess, the brute-force alignment drives the model to learn the
domain-agnostic shared features of both domains. We con-
sider that this line of methods is sub-optimal in that it ignores
the domain-specific feature learning on the target domain, and
compromise the final adaptation performance.

Since the domain-specific knowledge is ignored for the
target unlabeled data, the regularization by the data itself
does not aid in the domain adaptation. To qualitatively ver-
ify this, we leverage the auxiliary classifier of the baseline
model [Tsai er al., 2018] as a probe to pinpoint the inconsis-
tency. As shown in Fig. 1, we observe that the model predicts
one consistent supervised result of the source labeled data,
while the unlabeled target data suffers from the inconsistency.
The predicted result of the primary classifier is different from
the auxiliary classifier prediction, especially in the target do-
main. It implies that the intra-domain consistency has not
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Figure 2: Different Memory-based Methods: (a) MA-DNN [Chen et al., 2018] applies an extra memory module to save the class prediction
while training. (b) Mean teacher [Tarvainen and Valpola, 2017] and mutual learning [Zhang et al., 2018b] apply one external model to
memorize predictions and regularize the training. (c) Different from existing methods, the proposed method does not need extra modules or
external models. We leverage the running network itself, as the memory model. Given one input sample as the key, we could obtain the two
predictions (values) from the primary classifier and the auxiliary classifier.

been learned automatically, when we minor the inter-domain
discrepancy.

To effectively exploit the intra-domain knowledge and re-
duce the target prediction inconsistency, we propose a mem-
ory mechanism into the deep neural network training, called
memory regularization in vivo. Different from the previous
works focusing on the inter-domain alignment, the proposed
method intends to align the different predictions within the
same domain to regularize the training. As shown in Fig. 2(c),
we consider the inputs as key and the output prediction as the
corresponding value. In other words, the proposed method
deploys the model itself as the memory module, which mem-
orizes the historical prediction and learns the key-value pro-
jection. Since we have the auxiliary classifier and the primary
classifier, we could obtain two values for one key. We note
that the proposed method is also different from other semi-
supervised works deploying the extra memory terms. Since
the proposed method does not require additional parameters
or modules, we use the term “in vivo” to differentiate our
method from [Chen et al., 2018; Tarvainen and Valpola, 2017;
Zhang et al., 2018b]; these methods deploy external memory
modules. Our contribution is two-fold: (1) We propose to
leverage the memory of model learning to pinpoint the pre-
diction uncertainty and exploit the intra-domain knowledge.
This is in contrast to most existing adaption methods focusing
on the inter-domain alignment. (2) We formulate the mem-
ory regularization in vivo as the internal prediction discrep-
ancy between the two classifiers. Different from the existing
memory-based models, the proposed method does not need
extra parameters, and is compatible with most scene segmen-
tation networks.

2 Related Works
2.1 Domain Adaptation for Segmentation

Most existing works typically focus on minoring the domain
discrepancy between the source domain and the target do-
main to learn the shared knowledge. Some pioneering works
[Hoffman et al., 2018; Wu ef al., 2018] apply the image gen-

erator to transfer the source data to the style of the target
data, and intend to reduce the low-level visual appearance
difference. Similarly, Yu et al[Yue et al., 2019] and Wu
et al.[Wu et al., 2019] generate the training images of dif-
ferent styles to learn the domain-agnostic feature. Adversar-
ial loss is also widely studied. Tsai et al.[Tsai ef al., 2018;
Tsai et al., 2019] apply the adversarial losses to different net-
work layers to enforce the domain alignment. Luo et al.[Luo
et al., 2019b] leverage the attention mechanism and the class-
aware adversarial loss to further improve the performance.
Besides, some works also focus on mining the target domain
knowledge, which is close to our work. Zou et al.[Zou ef al.,
2018; Zou et al., 2019] leverage the confident pseudo labels
to further fine-tune the model on the target domain, yielding
a competitive benchmark. Different from the pseudo label
based methods, the proposed method focuses on target do-
main knowledge by mining the intrinsic uncertainty of the
model learning on the unlabeled target-domain data. We note
that the proposed method is orthogonal to the existing meth-
ods, including the inter-domain alignment [Tsai et al., 2018;
Tsai ef al., 2019; Luo ef al., 2019b] and self-training with
pseudo labels [Zou et al., 2018; Zou et al., 2019].

2.2 Memory-based Learning

As one of the early works, Weston et al.[Weston et al., 2014]
propose to use external memory module to store the long-
term memory. In this way, the model could reason with the
related experience more effectively. Chen et al.[Chen et al.,
2018] further apply the memory to the semi-supervised learn-
ing to learn from the unlabeled data. In this work, we ar-
gue that the teacher model, which is applied in many frame-
works, also could be viewed as one kind of external memory
terms. Because the teacher model distills the knowledge of
the original setting, and memorizes the key concepts to the
final prediction [Hinton et al., 2015]. For instance, one of
the early work, called temporal ensemble [Laine and Aila,
20161, uses the historical models to regularize the running
model, yielding the competitive performance. The training
sample could be viewed as the key, and the historical mod-
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Figure 3: Overview of the proposed framework. In the Stage-I, we train the model with the source domain input z% and the target domain
input z¢ to learn the inter-domain and intra-domain knowledge. In the Stage-II, the model focus on the target-domain data and is further
fine-tuned with pseudo labels. The proposed memory regularization L, is applied to regularize the model training in both stages.

els are the memory model to find the corresponding value
for the key. Since the historical models memorize the ex-
perience from the previous training samples, the temporal
ensemble could provide stable and relatively accurate pre-
dictions of the unlabeled data. Except for [Laine and Aila,
20161, there are different kinds of external memory models.
Mean Teacher [Tarvainen and Valpola, 2017] leverages the
weight moving average model as the memory model to regu-
larize the training. Further, French et al.[French et al., 2017]
extend Mean Teacher for visual domain adaptation. Zhang
et al.[Zhang et al., 2018b] propose mutual learning, which
learns the knowledge from multiple student models. Differ-
ent from existing memory-based methods [Chen er al., 2018;
Tarvainen and Valpola, 2017; Zhang et al., 2018b], the pro-
posed method leverages the memory of the model itself to
regularize the running modelwithout introducing extra pa-
rameters or external modules. (see Fig. 2)

3 Method
3.1 Algorithm Overview

Formulation. We denote the images from the source do-
main and the target domain as X, = {z{}}X, and X; =
{z] }f[:l, where M, N are the number of the source images
and target images. Every source domain data in X is an-
notated with corresponding ground-truth segmentation maps
Ys = {yi}M,. Given one unlabeled target domain image
x], we intend to learn a function to project the image to the
segmentation map y;. Following the practice in [Tsai er al.,
2018; Luo et al., 2019b], we adopt the modified DeepLabv2
as our baseline model, which contains one backbone model
and two classifiers, i.e., the primary classifier C, and the aux-
iliary classifier C,. To simplify, we denote the two functions
F, and F, as the segmentation functions, where F}, projects
the image to the prediction of the primary classifier, and F,
maps the input to the prediction of the auxiliary classifier.

Overview. As shown in Fig. 3, the proposed method has
two training stages, i.e., Stage-I and Stage-II, to progressively
transfer the learned knowledge from the labeled source data
to the unlabeled target data. In the Stage-I, we follow the
conventional domain adaptation methods to minor the inter-
domain discrepancy between the source domain and the target
domain. When training, we regularize the model by adding
the memory regularization. The memory regularization helps
to minor the intra-domain inconsistency, yielding the perfor-
mance improvement. In the Stage-II, we leverage the trained
model to predict the label for the unlabeled target data. Then
the model is further fine-tuned on the target domain. With
the help of pseudo labels, the model could focus on learn-
ing domain-specific knowledge on the target domain. The
pseudo labels inevitably contain noise, and the memory reg-
ularization in Stage-II could prevent the model from overfit-
ting to the noise in pseudo labels. Next we introduce differ-
ent objectives for the model adaptation in detail. We divide
the losses into two classes: (1) Domain-agnostic learning to
learn the shared inter-domain features from the source do-
main; (2) Domain-specific learning to learn the intra-domain
knowledge, especially the features for the target domain.

3.2 Domain-agnostic Learning

Segmentation loss. First, we leverage the annotated
source-domain data to learn the source-domain knowledge.
The segmentation loss is widely applied, and could be formu-
lated as the pixel-wise cross-entropy loss:

H W C

Lzs)eg == Z Z Zy; log(Fp(m;))7 (1)

h=1w=1c=1
H W «C

Loy ==Y >3 yllog(Fu(al)), )

h=1w=1c=1

where the first loss is for the primary prediction, and the sec-
ond objective is for the auxiliary prediction. / and W denote

1078



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

the height and the width of the input image, and C' is the num-
ber of segmentation classes.

Adversarial loss. Segmentation loss only focuses on the
source domain. We demand one objective to minor the dis-
crepancy of the target domain and the source domain, and
hope that the model could transfer the source-domain knowl-
edge to the target domain. We, therefore, introduce the adver-
sarial loss [Tsai et al., 2018] to minor the discrepancy of the
source domain and the target domain. The adversarial loss is
applied to both predictions of the primary classifier and the
auxiliary classifier:

Ly, = ]E[log(Dp(Fp(xi))) +log(1 — Dp(Fp(x{)))L 3
&40 = Ellog(Da(Fa(2?))) + log(1 — Du(Fa(z1)))], 4)

where D denotes the discriminator. In this work, we deploy
two different discriminators, i.e., D, and D, for the primary
prediction and the auxiliary prediction, respectively. The dis-
criminator is to find out whether the target prediction F'(x;)
is close to the source prediction F'(z,) in the semantic space.
By optimizing the adversarial loss, we force the model to
bridge the inter-domain gap on the semantic level.

3.3 Domain-specific Learning

However, the segmentation loss and the adversarial loss do
not solve the intra-domain inconsistency, especially in the tar-
get domain. In the Stage-I, we consider leveraging the uncer-
tainty in the target domain and propose the memory regular-
ization in vivo to enforce the consistency. In the Stage-II, we
further utilize the memory to regularize the training and pre-
vent the model overfitting to the noisy pseudo labels.

Memory regularization. In this paper, we argue that the
model itself could be viewed as one kind of memory mod-
ule, in that the model memorizes the historical experience.
Without introducing extra parameters or external modules,
we enforce the model to learn from itself. In particular, we
view the input image as the key, and the model as the memory
module. Given the input image (key), the model could gen-
erate the value by simply feeding forward the key. We could
obtain two values by the primary classifier and the auxiliary
classifier, respectively. To minor the uncertainty of the model
learning on the target domain, we hope that the two values of
the same key could be as close to each other as possible, so
we deploy the KL-divergence loss:

SPI0S Fy(})
Ly = Z Z ZF -T,L ]og )
h=1w=1c=1 ( )
H W C 4 P (o) %
=220 3 Bal)log( T ):
h=1w=1 c=1 P\t

We only apply the memory regularization loss on the target
domain X; and ask the mapping functions F7, and Fj, to gen-
erate a consistent prediction on the unlabeled target data.

Discussion. 1. What is the advantage of the memory reg-
ularization? By using the memory regularization, we en-
able the model to learn the intra-domain knowledge on the
unlabeled target data with an explicit and complementary ob-
jective. As discussed in the [Tarvainen and Valpola, 2017;
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Chen et al., 2018], we could not ensure that the memory al-
ways provides a right class prediction for the unlabeled data.
The memory mechanism is more likely to act as a teacher
model, providing the class distribution based on the histori-
cal experience. 2.Will the auxiliary classifier hurt the pri-
mary classifier? As shown in many semi-supervised meth-
ods [Zhang et al., 2018b; Tarvainen and Valpola, 2017], the
bad-student model also could provide essential information
for the top-student models. Our experiment also verifies that
the sub-optimal auxiliary classifier could help the primary
classifier learning, and vice versa (see Section 4.2).

Self-training with pseudo labels. In the Stage-II, we do
not use the source data anymore. The model is fine-tuned on
the unlabeled target data and mine the target domain knowl-
edge. Following the self-training policy in [Zou et al., 2018;
Zou et al., 2019], we retrain the model with the pseudo la-
bel yt The pseudo label combines the output of F,(x]) and
F,(z7) from the trained model in the Stage-1. In particular,
we set the ] = arg max(Fj,(x]) + 0.5F,(x])). The pseudo
segmentation loss could be formulated as:

H W C . )

Ly == > D il log(Fy(x))). (©6)
h=1w=1c=1

H W C

Loy == Z Z log(Fa(af)). (D
h=1 c=1

We apply the pixel-wise cross-entropy loss as the supervised
segmentation loss. Since most pseudo labels are correct, the
model still could learn from the noisy labels. In Section 4.2,
we show the self-training with pseudo labels further boosts
the performance on the target domain despite the noise in
pseudo labels.

Discussion. What is the advantage of the memory regu-
larization in the Stage-II? In fact, we treat the pseudo labels
as the supervised annotations in the Stage-II. However, the
pseudo labels contain the noise and may mislead the model
to overfit the noise. The proposed memory regularization in
the Stage-II works as a smoothing term, which enforces the
consistency in the model prediction, rather than focusing on
fitting the pseudo label extremely.

3.4 Optimization

We integrate the above-mentioned losses. The total loss of
the Stage-I and Stage-II training could be formulated as:

Ls1 (F F D D ) = Lseg + Lago + )\merr; (8)
LSQ(Fa> F, ) Lpseg + )\merrv (9)

where A\, is the weight for the memory regularization. We
follow the setting in PSPNet [Zhao er al., 2017] to set 0.5
for segmentation losses on the auxiliary classifier. Lg., =
L%, +0.5L5,4, Lpseqg = Lbsq + 0.5L5,. . For adversarial

pseg’
losses, we follow the setting in [Tsai et al., 2018; Luo et al.,
2019b] and select small weights for adversarial loss terms
Lagy = 0.001L7 , +0.0002L%, . Besides, we fix the weight

adv adv*
of memory regularization as A, = 0.1 for all experiments.
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Method without L, with L,
Auxiliary Classifier 40.04 44.45
Primary Classifier 43.11 45.29
Ours (Stage-I) 42.73 45.46

Table 1: Ablation study of the memory regularization on both clas-
sifiers, i.e., the auxiliary classifier and the primary classifier, in the
Stage-I training. The result suggests that the memory regularization
helps both classifiers, especially the auxiliary classifier. The final
results of the full model combine the results of both classifiers, and
therefore improve the performance further.

Method Lseg Ladw Loy mloU
Without Adaptation v 37.23
Adversarial Alignment v v 4273
Memory Regularization v v 43.75
Ours (Stage-I) v v v 45.46

Table 2: Ablation study of different losses in the Stage-I training.

3.5 Implementation Details

Network architectures. We deploy the widely-used
Deeplab-v2 [Chen et al., 2017] as the baseline model, which
adopts the ResNet-101 [He et al., 2016] as the backbone
model. Since the auxiliary classifier has been widely adopted
in the scene segmentation frameworks, such as PSPNet [Zhao
et al., 2017] and modified DeepLab [Tsai et al., 2018;
Luo et al., 2019b], for fair comparison, we also applied the
auxiliary classifier in our baseline model as well as the final
full model. Besides, we follow the PatchGAN [Isola et al.,
2017] and deploy the multi-scale discriminator model.

Implementation details. The input image is resized to
1280 x 640, and we randomly crop 1024 x 512 for train-
ing. We deploy the SGD optimizer with the batch size 2 for
the segmentation model, and the initial learning rate is set to
0.0002. The optimizer of the discriminator is Adam and the
learning rate is set to 0.0001. Following [Zhao et al., 2017;
Zhang et al., 2019], both segmentation model and discrim-
inator deploy the ploy learning rate decay by multiplying
the factor (1 — —H<-—)9  We set the total iteration as
100% iteration and adopt the early-stop policy. The model
is first trained without the memory regularization for 10k
to avoid the initial prediction noise, and then we add the
memory regularization to the model training. For Stage-I,
we train the model with 25k iterations. We further fine-
tune the model in the Stage-II for 25k iterations. We also
adopt the class balance policy in the [Zou er al., 2018] to
increase the weight of the rare class, and the small-scale ob-
jects. When inference, we combine the outputs of both clas-
sifiers ] = argmax(F),(z7) + 0.5F,(x})). Our Pytorch
implementation is available at !. We also use PaddlePaddle to
implement our method and achieve similar performances.

4 Experiment

4.1 Dataset and Evaluation Metric

We mainly evaluate the proposed method on the two un-
supervised scene adaption settings, i.e., GTAS [Richter et

"https://github.com/layumi/Seg-Uncertainty
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Method Lpseg Loy mloU
Ours (Stage-I) 45.46
Pseudo Label v 47.90
Ours (Stage-1I) v v 48.31

Table 3: Ablation study of different losses in the Stage-II training.

al., 2016] — Cityscapes [Cordts er al., 2016] and SYN-
THIA [Ros et al., 2016] — Cityscapes [Cordsts et al., 2016].
Both source datasets, i.e., GTAS and SYNTHIA, are the
synthetic datasets. GTAS contains 24, 966 training images,
while SYNTHIA has 9,400 images for training. The target
dataset, Cityscapes, is collected in the realistic scenario, in-
cluding 2,975 unlabeled training images. Besides, we also
evaluate the proposed method on the cross-city benchmark:
Cityscapes [Cordts et al., 2016] — Oxford RobotCar [Mad-
dern er al., 2017]. We follow the setting in [Tsai et al.,
2019] and evaluate the model on the Cityscapes validation
set/ RobotCar validation set. For the evaluation metric, we
report the mean Intersection over Union (mloU).

4.2 Ablation Studies

Effect of the memory regularization. To investigate how
the memory helps both classifiers, we report the results of
the single classifier in Table 1. The observation suggests
two points: First, memory regularization helps both classifier
learning and improves the performance of both classifiers, es-
pecially the auxiliary classifier. Second, the accuracy of the
primary classifier prediction does not decrease due to the rel-
atively poor results of the auxiliary classifier. The primary
classifier also increases by 2.18% mloU. It verifies that the
proposed memory regularization helps to reduce the inconsis-
tency and mine intra-domain knowledge. Furthermore, we re-
port the results of the full model after Stage-I training, which
combines the predictions of both classifiers. The full model
arrives 45.46% mloU accuracy, which is slightly higher than
the prediction accuracy of the primary classifier. It also in-
dicates that the predictions of the auxiliary classifier and pri-
mary classifier are complementary.

Effect of different losses in Stage-I. As shown in Ta-
ble 2, the full model could improve the performance from
37.23% to 45.46% mloU. When only using the adversarial
loss Ly, , the model equals to the widely-used domain adap-
tation method [Tsai er al., 2018]. We note that the model only
using the memory regularization L,,, also achieves signifi-
cant improvement comparing to the baseline model without
adaption. We speculate that the memory regularization helps
to mine the target domain knowledge, yielding the better per-
formance on the target domain. After combining all three loss
terms, the full model arrives 45.46% mIoU on Cityscapes.

Effect of different losses in Stage-II. If we only deploy
the pseudo segmentation loss Lys.4, the model equals to
several previous self-training methods [Zou et al., 2018;
Zou et al., 2019]. However, this line of previous methods
usually demands a well-designed threshold for the label con-
fidence. In contrast, we do not introduce any threshold, but
apply the memory regularization to prevent overfitting toward
noisy labels. As shown in Table 3, the full model with mem-
ory regularization arrives 48.31% mloU accuracy, which is
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Method Backbone | Road SW  Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike | mloU

Source DRN26 | 227 263 517 55 68 138 236 69 755 115 368 493 09 467 34 50 00 50 14 | 217

CyCADA [Hoffman et al., 2018] 79.1 331 779 234 173 321 333 318 815 267 690 628 147 745 209 256 69 188 204 | 395
Source DRN.105 | 364 142 674 164 120 201 87 07 698 133 569 370 04 536 106 32 02 09 00 | 222

MCD [Saito et al., 2018] 903 310 785 197 173 286 309 161 837 300 69.1 585 196 815 238 300 57 257 143 397
Source 758 168 772 125 210 255 301 201 813 246 703 538 264 499 172 259 65 253 360 | 366
AdaptSegNet [Tsai et al., 2018] 865 360 799 234 233 239 352 148 834 333 756 585 276 737 325 354 39 301 281 | 424
SIBAN [Luo et al., 2019al DeeoLabyz | 883 354 795 263 243 285 325 183 812 400 765 581 258 826 303 344 34 2016 215 | 426
CLAN [Luo et al., 2019b] COPLADYS | 870 271 796 273 233 283 355 242 836 274 742 586 280 762 331 367 67 319 314 | 432
PatchAlign [Tsai et al., 2019] 923 519 821 292 251 245 338 330 824 328 822 586 272 843 334 463 22 295 323 | 465
AdVEnt [Vu ef al., 2019] DeepLabv2 | 894 33.1 810 266 268 272 335 247 839 367 788 587 305 848 385 445 17 316 324 | 455
Source DeepLabv2 - - - - - - - - - - - - - - - - - - - 292

FCAN [Zhang et al., 2018al p - - - - - - - - - - - - - - - - - - - | 466
Source 713 192 691 184 100 357 273 68 796 248 721 576 195 555 155 151 117 211 120 338

CBST [Zou et al., 2018] DeepLabv2 | 91.8 53.5 80.5 327 210 340 289 204 839 342 809 531 240 827 303 359 160 259 428 | 459
MRKLD [Zou et al., 2019] 910 554 800 337 214 373 329 245 850 341 808 577 246 841 278 301 269 260 423 | 471
Source SI1 183 758 188 168 347 363 272 800 233 649 592 193 746 267 138 01 324 340 372

Our (Stage-T) DeepLabv2 | 89.1 239 822 195 20.1 335 422 39.1 853 337 764 602 337 860 361 433 59 228 308 | 455

Our (Stage-II) 905 350 84.6 343 240 368 441 427 845 336 825 631 344 858 329 382 20 271 418 | 483

Table 4: Quantitative results on GTAS — Cityscapes

. We present pre-class IoU and mloU.

The best accuracy in every column is in bold.

Method Backbone Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike | mloU* | mloU
Source DRN-105 149 114 587 1.9 0.0 24.1 1.2 60 688 760 543 7.1 342 150 0.8 0.0 26.8 234
MCD [Saito et al., 2018] 848 43.6 79.0 39 0.2 29.1 72 55 838 831 510 11.7 799 272 6.2 0.0 435 37.3
Source 556 238 746 — — — 6.1 121 748 79.0 553 19.1 396 233 137 250 | 386 —
SIBAN [Luo et al., 2019al 825 240 794 - — - 165 127 792 828 583 180 793 253 176 259 | 463 -
PatchAlign [Tsai et al., 2019] DeepLaby2 824 38.0 78.6 8.7 0.6 260 39 I1.1 755 846 535 216 714 326 193 317 | 465 40.0
AdaptSegNet [Tsai et al., 2018] P 843 427 715 — — - 47 7.0 719 825 543 21.0 723 322 189 323 | 467 -
CLAN [Luo et al., 2019b] 81.3 37.0 80.1 — — - 16.1 137 782 815 534 212 730 329 226 307 | 478 —
AdvEnt [Vu et al., 2019] DeepLabv2 | 856 422 79.7 8.7 0.4 259 54 81 804 841 579 238 733 364 142 330 480 41.2
Source 643 213 731 2.4 1.1 314 70 277 631 676 422 199 731 153 105 389 | 403 349
CBST [Zou et al., 2018] DeepLabv2 | 68.0 299 763 108 1.4 339 228 295 776 783 60.6 283 816 235 188 39.8 | 489 42.6
MRKLD [Zou et al., 2019] 677 322 739 10.7 1.6 374 222 312 808 805 60.8 291 828 250 194 453 50.1 43.8
Source 440 193 709 8.7 0.8 282 161 167 798 814 578 192 469 172 120 438 | 404 352
Ours (Stage-I) DeepLabv2 | 82.0 36.5 804 42 0.4 337 180 134 81.1 808 613 21.7 844 324 148 457 50.2 43.2
Ours (Stage-1I) 83.1 382 817 9.3 1.0 351 303 199 82.0 80.1 628 21.1 844 378 245 533 | 538 46.5

Table 5: Quantitative results on SYNTHIA — Cityscapes. We present pre-class [oU, mloU and mIoU*. mloU and mloU* are averaged over
16 and 13 categories, respectively. The best accuracy in every column is in bold.

=z 3
5 2 s E £
s 2 2 = s B3
: 2 2 3 5 z § & ¢
Method g 7 2 = G 4 2 B 2 | mloU
Source 792 493 731 556 373 361 540 813 49.7| 619
AdaptSegNet 95.1 640 757 613 355 639 581 84.6 57.0 | 69.5
PatchAlign 944 635 820 613 360 764 610 865 58.6| 72.0
Ours (Stage-I) | 959 73,5 862 693 319 873 579 888 615 725
Ours (Stage-II) | 95.1 725 87.0 722 374 879 634 905 589 | 739

Table 6: Quantitative results on Cityscapes — Oxford RobotCar.

higher than the result of the model only trained on the pseudo
labels. It verifies that the proposed memory regularization
also helps the model learning from noisy labels.

Hyperparameter analysis. In this work, we introduce
Amr as the weight of the memory regularization. As
shown in Fig. 4, we evaluate different weight values
{0,0.01,0.05,0.1,0.2,0.5}. We observe that the model is ro-
bust to the value of A,,,,.. However, when the value )\,,,, is too
large or small, the model may mislead to overfitting or under-
fitting the consistency. Therefore, without loss of generality,
we use A, = 0.1 for all experiments.

4.3 Comparisons with State-of-the-art Methods

Synthetic-to-real. We compare the proposed method with
different domain adaptation methods on GTAS — Cityscapes
(See Table 4). For a fair comparison, we mainly show
the results based on the same backbone, i.e., DeepLabv2.
The proposed method has achieved 48.3% mloU, which is
higher than the competitive methods, e.g., pixel-level align-
ment [Hoffman er al., 2018], semantic level alignment [Tsai
et al., 2018], as well as the self-training methods, i.e., [Zou et
al.,2018; Zou et al., 2019]. Compared with the strong source-
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0
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Weight of Memory Regularization
Figure 4: Sensitivity of mloU to the hyper-parameter Ay, .

only model, the proposed method yields +11.1% improve-
ment. Besides, we observe a similar result on SYNTHIA —
Cityscapes (see Table 5). The proposed method arrives 53.8%
mloU* and 46.5% mIoU, which is competitive to other meth-
ods. Cross-city. We also evaluate the proposed method on
adapting the model between different cities. The two real
datasets, i.e., Cityscapes and Oxford RobotCar, are different
from collection locations and weather conditions. Cityscapes
is collected in the sunny days when Oxford RobotCar con-
tains rainy scenarios. As shown in Table 6, our method also
achieves competitive results, i.e., 73.9% mloU.

5 Conclusion

We propose a memory regularization method for unsuper-
vised scene adaption. Our model leverages the intra-domain
knowledge and reduces the uncertainty of model learning.
Without introducing any extra parameters or external mod-
ules, we deploy the model itself as the memory module to
regularize the training. Albeit simple, the proposed method is
complementary to previous works and achieves competitive
results on three prevailing benchmarks.
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