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Abstract
This paper focuses on the unsupervised domain adaptation of transferring the knowledge from the source domain to the target
domain in the context of semantic segmentation. Existing approaches usually regard the pseudo label as the ground truth
to fully exploit the unlabeled target-domain data. Yet the pseudo labels of the target-domain data are usually predicted by
the model trained on the source domain. Thus, the generated labels inevitably contain the incorrect prediction due to the
discrepancy between the training domain and the test domain, which could be transferred to the final adapted model and
largely compromises the training process. To overcome the problem, this paper proposes to explicitly estimate the prediction
uncertainty during training to rectify the pseudo label learning for unsupervised semantic segmentation adaptation. Given the
input image, the model outputs the semantic segmentation prediction as well as the uncertainty of the prediction. Specifically,
we model the uncertainty via the prediction variance and involve the uncertainty into the optimization objective. To verify
the effectiveness of the proposed method, we evaluate the proposed method on two prevalent synthetic-to-real semantic
segmentation benchmarks, i.e., GTA5 → Cityscapes and SYNTHIA → Cityscapes, as well as one cross-city benchmark, i.e.,
Cityscapes → Oxford RobotCar. We demonstrate through extensive experiments that the proposed approach (1) dynamically
sets different confidence thresholds according to the prediction variance, (2) rectifies the learning from noisy pseudo labels,
and (3) achieves significant improvements over the conventional pseudo label learning and yields competitive performance
on all three benchmarks.

Keywords Unsupervised domain adaptation · Domain adaptive semantic segmentation · Image segmentation · Uncertainty
estimation

1 Introduction

Deep neural networks (DNNs) have been widely adopted
in the field of semantic segmentation, yielding the state-of-
the-art performance (Liang et al. 2017; Wei et al. 2018).
However, recent works show that DNNs are limited in the
scalability to the unseen environments, e.g., the testing data
collected in rainy days (Hendrycks and Dietterich 2019; Wu
et al. 2019). One straightforward idea is to annotate more
training data of the target environment and then re-train
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the segmentation model. However, semantic segmentation
task usually demands dense annotations and it is unafford-
able to manually annotate the pixel-wise label for collected
data in new environments. To address the challenge, the
researchers, therefore, resort to unsupervised semantic seg-
mentation adaption, which takes one step closer to real-world
practice. In unsupervised semantic segmentation adaptation,
two datasets collected in different environments are consid-
ered: a labeled source-domain dataset where category labels
are provided for every pixel, and an unlabeled target-domain
dataset where only provides the collected data without anno-
tations. Compared with the annotated data in the target
domain, the unlabeled data is usually easy to collect. Seman-
tic segmentation adaptation aims at leveraging the labeled
source-domain data as well as the unlabeled target-domain
data to adapt the well-trained model to the target environ-
ment.
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The main challenge of semantic segmentation adaption
is the discrepancy of data distribution between the source
domain and the target domain. There are two lines ofmethods
for semantic segmentation adaptation. On one hand, several
existing works focus on the domain alignment by minimiz-
ing the distribution discrepancy in different levels, such as
pixel level (Wu et al. 2018, 2019; Hoffman et al. 2018), fea-
ture level (Huang et al. 2018; Yue et al. 2019; Luo et al.
2019a; Zhang et al. 2019b) and semantic level (Tsai et al.
2018, 2019; Wang et al. 2019). Despite great success, this
line of work is sub-optimal. Because the alignment objec-
tive drives the model to learn the shared knowledge between
domains but ignores the domain-specific knowledge. The
domain-specific knowledge is one of the keys to the final
target, i.e., the model adapted to the target domain. On the
other hand, some researchers focus on learning the domain-
specific knowledge of the target domain by fully exploiting
the unlabeled target-domain data (Zou et al. 2018, 2019;
Han et al. 2019). Specifically, this line of methods usually
adopts the two-stage pipeline, which is similar to the tradi-
tional semi-supervised framework (Lee 2013). The first step
is to predict pseudo labels by the knowledge learned from the
labeled data, e.g., the model trained on the source domain.
The second step is to minimize the cross-entropy loss on
the pseudo labels of the unlabeled target-domain data. In the
training process, pseudo labels are usually regarded as accu-
rate annotations to optimize the model.

However, one inherent problem exists in the pseudo label
based scene adaptation approaches. Pseudo labels usually
suffer from the noise caused by the model trained on dif-
ferent data distribution (see Fig. 1). The noisy label could
compromise the subsequent learning. Although some exist-
ing works (Zou et al. 2018, 2019) have proposed tomanually
set the threshold to neglect the low-confidence pseudo labels,
it is still challenging in several aspects: First, the value of the
threshold is hard to be determined for different target domain.
It depends on the similarity of the source domain and target
domain, which is hard to estimate in advance. Second, the
value of the threshold is also hard to be determined for dif-
ferent categories. For example, the objectives, such as traffic
signs, have rarely appeared in the source domain. The overall
confidence score for the rare category is relatively low. The
high threshold may ignore the information of rare categories.
Third, the threshold is also related to the location of the pixel.
For example, the pixel in the center of objectives, such as cars,
is relatively easy to predict, while the pixel on the objective
edge usually faces ambiguous predictions. It reflects that the
threshold should not only consider the confidence score but
also the location of the pixel. In summary, every pixel in the
segmentation map needs to be treated differently. The fixed
threshold is hard to match the demand.

To address thementioned challenges,we propose one sim-
ple and effective method for semantic segmentation adaption

via modeling uncertainty, which could provide the pixel-
wise threshold for the input image automatically. Without
introducing extra parameters or modules, we formulate the
uncertainty as the prediction variance. The prediction vari-
ance reflects the model uncertainty towards the prediction in
a bootstrapping manner. Meanwhile, we explicitly involve
the variance into the optimization objective, called variance
regularization, which works as an automatic threshold and is
compatible with the standard cross-entropy loss. The auto-
matic threshold rectifies the learning from noisy labels and
ensures the training in a coherent manner. Therefore, the pro-
posed method could effectively exploit the domain-specific
information offered by pseudo labels and takes advantage of
the unlabeled target-domain data.

In a nutshell, our contributions are as follows:

– To our knowledge, we are among the first attempts to
exploit the uncertainty estimation and enable the auto-
matic threshold to learn from noisy pseudo labels. This
is in contrast tomost existing domain adaptationmethods
that directly utilize noisy pseudo labels or manually set
the confidence threshold.

– Without introducing extra parameters or modules, we
formulate the uncertainty as the prediction variance.
Specifically, we introduce a new regularization term,
variance regularization, which is compatible with the
standard cross-entropy loss. The variance regularization
works as the automatic threshold, and rectifies the learn-
ing from noisy pseudo labels.

– We verify the proposed method on two synthetic-to-real
benchmarks andone cross-city benchmark. The proposed
method has achieved significant improvements over the
conventional pseudo label learning, yielding competitive
performance to existing methods.

2 RelatedWork

2.1 Semantic Segmentation Adaptation

The main challenge in unsupervised domain adaptation is
different data distribution between the source domain and
the target domain (Fu et al. 2015; Wang et al. 2018; Li et al.
2020, ?; Kang et al. 2020). To deal with the challenge, some
pioneering works (Hoffman et al. 2018; Wu et al. 2018) pro-
pose to transfer the visual style of the source-domain data to
the target domain. In this way, the model could be trained on
the labeled data with the target style. Similarly, some recent
works leverage Adversarial Domain Adaptation (Tzeng et al.
2015; Ganin and Lempitsky 2015; Luo et al. 2020) to trans-
fer the source-domain images or features tomultiple domains
and intend to learn the domain-invariant features (Wu et al.
2019; Yue et al. 2019). Furthermore, some works focus on
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Fig. 1 Samples of the noisy pseudo labels on Cityscapes (Cordts et al.
2016). We leverage the widely-used baseline model (Tsai et al. 2018) to
generate pseudo labels. Despite the large area of correct prediction, the

pseudo labels still suffer from the data distribution biases, and inevitably
contains incorrect predictions. (Best viewed in color)

the alignment among the middle activation of neural net-
works. Luo et al. (2019a, b) utilize the attentionmechanism to
refine the feature alignment. Instead of modifying the visual
appearance, the alignment between the high-level semantic
features also attracts a lot of attention. Tsai et al. (2018, 2019)
propose to utilize the discriminator to demand the similar
semantic outputs between two domains. In summary, this
line of methods focuses on the alignment, learning the shared
knowledge between the source and target domains. However,
the domain-specific information is usually ignored, which is
one of the keys to the adaptation in the target environment.
Therefore, in this paper, we resort to another line of methods,
which is based on pseudo label learning.

2.2 Pseudo Label Learning

Another line of semantic segmentation adaptation approaches
utilizes the pseudo label to adapt the model to target domain
(Zou et al. 2018, 2019; Zheng andYang 2020). The main
idea is close to the conventional semi-supervised learning
approach, entropy minimization, which is first proposed to
leverage the unlabeled data (Grandvalet and Bengio 2005).
Entropy minimization encourages the model to give the pre-
diction with a higher confidence score. In practice, Reed
et al. (2014) propose bootstrapping via entropy minimiza-
tion and show the effectiveness on the object detection and
emotion recognition. Furthermore, Lee (2013) exploit the
trained model to predict pseudo labels for the unlabeled
data, and then fine-tune the model as supervised learning

methods to fully leverage the unlabeled data. Recently, Pan
et al. (2019) utilize the pseudo label learning to minimize the
distribution of target-domain data with the source-domain
prototypes. For unsupervised semantic segmentation, Zou
et al. (2019, 2018) introduce the pseudo label strategy to
the semantic segmentation adaptation and provide one com-
prehensive analysis on the regularization terms. In a similar
spirit, Zheng andYang (2020) also apply the pseudo label
to learn the domain-specific features, yielding competitive
results. However, one inherent weakness of the pseudo label
learning is that the pseudo label usually contains noisy pre-
dictions. Despite the fact that most pseudo labels are correct,
wrong labels also exist, which could compromise the subse-
quent training. If the model is fine-tuned on the noisy label,
the error would also be transferred to the adaptedmodel. Dif-
ferent from existing works, we do not treat the pseudo labels
equally and intend to rectify the learning from noisy labels.
The proposed method explicitly predict the uncertainty of
pseudo labels, when fine-tuning the model. The uncertainty
could be regarded as an automatic threshold to adjust the
learning from noisy labels.

2.3 Co-training

Co-training is a semi-supervised learning method, which
demands two classifiers to learn complementary informa-
tion (Blum and Mitchell 1998). Some domain adaptation
works also explore a similar learning strategy. Saito et al.
(2018); Luo et al. (2019b) explicitly maximizes the discrep-
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ancy of two classifiers by introducing one extra loss, i.e., the
Ladv in Saito et al. (2018) and the Lweight in Luo et al.
(2019b), to obtain complementary classifiers. Saito et al.
(2018) minimizes the feature discrepancy via adversarial
training. Similarly, Luo et al. (2019b) apply the classifier dis-
crepancy on the discriminator loss to stabilize the training. In
contrast, the proposed method enables the classifier discrep-
ancy in nature, since we deploy two classifiers on different
intermediate layers.We do not introduce such loss to encour-
age the classifier discrepancy. Otherwise, every pseudo label
will be high-uncertainty. For instance, if the two classifiers
output one identical category prediction, we will not punish
the network. In contrast, Saito et al. (2018) will punish the
classifiers for enabling adversarial training. Besides, Saito
et al. (2018); Luo et al. (2019b) still use conventional seg-
mentation loss and do not deal with noisy labels, when the
proposedmethod uses the classifier discrepancy to rectify the
pseudo label learning on segmentation.

2.4 Uncertainty Estimation

To address the noise, existing works have explored the uncer-
tainty estimation from different aspects, such as the input
data, the annotation and the model weights. In this work, we
focus on the annotation uncertainty. Our target is to learn a
model that could predict whether the annotation is correct,
and learn from noisy pseudo labels. Among existing works,
Bayesian networks are widely used to predict the uncertainty
ofweights in the network (Nielsen and Jensen2009). In a sim-
ilar spirit, Kendall and Gal (2017) apply the Bayesian theory
to the prediction of computer vision tasks, and intend to pro-
vide not only the prediction results but also the confidence of
the prediction. Further, Yu et al. (2019) explicitly model the
uncertainty via an extra auxiliary branch, and involve the ran-
dom noise into training. The model could explicitly estimate
the feature mean as well as the prediction variance. Inspired
by the above-mentioned works, we propose to leverage the
prediction variance to formulate the uncertainty. There are
two fundamental differences between previous works and
ours: (1) We do not introduce extra modules or parameters
to simulate the noise. Instead, we leverage the prediction
discrepancy within the segmentation model. (2) We explic-
itly involve the uncertainty into the training target and adopt
the adaptive method to learn the pixel-wise uncertainty map
automatically. The proposed method does not need manually
setting the threshold to enforce the pseudo label learning.

3 Methodology

In Sect. 3.1, we first provide the problem definition and deno-
tations. We then revisit the conventional domain adaption
method based on the pseudo label and discuss the limitation

of the pseudo label learning (see Sect. 3.2). To deal with
the mentioned limitations, we propose to leverage the uncer-
tainty estimation. In particular, we formulate the uncertainty
as the prediction variance and provide one brief definition in
Sect. 3.3, followed by the proposed variance regularization,
which is compatible with the standard cross-entropy loss in
Sect. 3.4. Besides, the implementation details are provided
in Sect. 3.5.

3.1 Problem Definition

Given the labeled dataset Xs = {xis}Mi=1 from the source

domain and the unlabeled dataset Xt = {x j
t }Nj=1 from the

target domain, semantic segmentation adaptation intends to
learn the projection function F , which maps the input image
X to the semantic segmentation Y . M and N denote the
number of the labeled data and the unlabeled data. The
source-domain semantic segmentation label Ys = {yis}Mi=1
is provided for every labeled data of the source domain
Xs , while the target-domain label Yt = {y j

t }Nj=1 remains
unknown during the training. The aim of unsupervised
domain adaptation is to estimate the model parameter θt ,
which could minimize the prediction bias on the target-
domain inputs:

Bias(pt ) = E[F(x j
t |θt ) − p j

t ], (1)

where pt is the ground-truth class probability of target data.
Ideally, p j

t is one-hot vector and the maximum value of p j
t

is 1. The ground-truth label y j
t = argmax p j

t . In contrast,
F(x j

t |θt ) is the predicted probability distribution of x j
t .When

we minimize the prediction bias in Eq. 1, the discrepancy
between predicted results and the ground-truth probability is
minimized.

3.2 Pseudo Label Learning Revisit

Pseudo label learning is to leverage the pseudo label to learn
from the unlabeled data. The common practice contains two
stages. The first stage is to generate the pseudo label for
the unlabeled target-domain training data. The pseudo labels
could be obtained via the model trained on source-domain
data: ŷ j

t = argmax F(x j
t |θs). We note that θs is the model

parameters learned from the source-domain training data.
Therefore, the pseudo labels ŷt , are not accurate in nature
due to different data distribution between Xs and Xt . We
denote p̂ j

t as the one-hot vector of ŷ j
t . If the class index c

equals to ŷ j
t , p̂

j
t (c) = 1 else p̂ j

t (c) = 0. The second stage of
pseudo learning is to minimize the prediction bias. We could
formulate the bias as the similar style of Equation 1:

Bias(pt ) = E[F(x j
t |θt ) − p̂ j

t ] + E[ p̂ j
t − p j

t ]. (2)
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The first term is the difference between the prediction and the
pseudo label, while the second term is the error between the
pseudo label and the ground-truth label. When fine-tuning
the model in the second stage, we fix the pseudo label.
Therefore, the second term is one constant. Existingmethods
usually optimize the first term as the pretext task. It equals
to considering the pseudo labels p̂t as true labels. Existing
methods train the model parameter θt to minimize the bias
between the prediction and pseudo labels. In practice, the
cross-entropy loss is usually adopted (Zou et al. 2018, 2019;
Zheng andYang 2020). The objective could be formulated as:

Lce = E[− p̂ j
t log F(x j

t |θt )]. (3)

Discussion There are two advantages of pseudo label
learning : First, themodel is only trained on the target-domain
data. The training data distribution is close to the testing
data distribution, minoring the input distribution discrep-
ancy. Second, despite the domain discrepancy, most pseudo
labels are correct. Theoretically, the fine-tuned model could
arrive the competitive performance with the fully-supervised
model. However, one inherent problem exists that the pseudo
label inevitably contains noise. The wrong annotations are
transferred from the source model to the final model. Noisy
pseudo label could largely compromise the training.

3.3 Uncertainty Estimation

To address the label noise, we model the uncertainty of the
pseudo label via the prediction variance. Intuitively, we could
formulate the variance of the prediction as:

Var(pt ) = E[(F(x j
t |θt ) − p j

t )
2]. (4)

Since pt remains unknown, one naive way is to utilize the
pseudo label p̂t to replace the pt . The variance could be
approximated as:

Var(pt ) ≈ E[(F(x j
t |θt ) − p̂ j

t )
2]. (5)

However, in Eq. 2, we have pushed F(x j
t |θt ) to p̂t . When

optimizing the prediction bias, the variance in Eq. 5 will also
be minimized. It could not reflect the real prediction variance
during training. In this paper, therefore, we adopt another
approximation as:

Var(pt ) ≈ E[(F(x j
t |θt ) − Faux (x

j
t |θt ))2], (6)

where Faux (xt |θt ) denotes the auxiliary classifier output of
the segmentation model. As shown in Fig. 2, we adopt the
widely-used two-classifier model, which contains one pri-
mary classifier as well as one auxiliary classifier. We note
that the extra auxiliary classifier could be viewed as a free

Fig. 2 Illustration of the two-classifier model based on Deeplab-v2
(Chen et al. 2017), which adopts ResNet-101 (He et al. 2016a) as back-
bone. We follow the previous works (Zhao et al. 2017; Tsai et al. 2018,
2019; Luo et al. 2019a, b; Zheng andYang 2020) to add an auxiliary clas-
sifier with the similar structure as the primary classifier. The auxiliary
classifier takes the activation of the shallow layer res4b22 as the input,
while the primary classifier leverages that of res5c. The ASPP mod-
ule denotes Atrous Spatial Pyramid Pooling layer (Chen et al. 2017),
and the fc layer denotes the fully-connected layer. The original goal of
two-classifier model is to evade the problem of gradient vanishing and
help the training. In this work, we take one step further to leverage the
prediction discrepancy of two classifiers as the uncertainty estimation

lunch since most segmentation models, including PSPNet
(Zhao et al. 2017) and themodifiedDeepLab-v2 in (Tsai et al.
2018, 2019; Luo et al. 2019a; Zheng andYang 2020), contain
the auxiliary classifier to solve the gradient vanish problem
(He et al. 2016b) and help the training. In this paper, we fur-
ther leverage the auxiliary classifier to estimate the variance.
In practice, we utilize the KL-divergence of two classifier
predictions as the variance:

Dkl = E

[
F(x j

t |θt ) log
(

F(x j
t |θt )

Faux (x
j
t |θt )

)]
, (7)

If two classifiers provide two different class predictions, the
approximated variance will obtain one large value. It reflects
the uncertainty of the model on the prediction. Besides, it is
worthy to note that the proposed variance in Eq. 7 is inde-
pendent with the pseudo label p̂t .

Discussion What leads to the discrepancy of the primary
classifier and the auxiliary classifier? First of all, the main
reason is different receptive fields. As shown in Fig. 2, the
auxiliary classifier is located at the relatively shallow layer,
when the primary classifier learns from the deeper layer. The
input activation is different between twoclassifiers, leading to
the prediction difference. Second, the two classifiers have not
been trained on the target-domain data. Therefore, both clas-
sifiers may have different biases to the target-domain data.
Third, we apply the dropout function (Srivastava et al. 2014)
to two classifiers, which also could lead to the different pre-
diction during training. The prediction discrepancy helps us
to estimate the uncertainty.
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3.4 Variance Regularization

In this paper, we propose the variance regularization term
to rectify the learning from noisy labels. It leverages the
approximated variance introduced in Sect. 3.3. The rectified
objective could be formulated as:

Lrect = E

[
1

Var(pt )
Bias(pt ) + Var(pt )

]
(11)

It is worthy to note that we do not intend to minimize the pre-
diction bias under all conditions. If the prediction variance
has received one large value,wewill not punish the prediction
bias Bias(pt ).Meanwhile, to prevent that themodel predicts
the large variance all the time, as a trade-off, we introduce
the regularization term via adding Var(pt ). Besides, since
Var(pt ) could be zero, it may lead to the problem of divid-
ing by zero. To stabilize the training, we adopt the policy in
Kendall and Gal (2017) that replace 1/Var as exp(−Var).
Therefore, the loss term could be rewritten with the approx-
imated terms as:

Lrect = E[exp{−Dkl}Lce + Dkl ]. (12)

The training procedure of the proposed method is summa-
rized in Algorithm 1. In practice, we utilize the parameter θs
learned in the source-domain dataset to initialize the θt . In
every iteration, we calculate the prediction variance as well
as the cross-entropy loss for the given inputs. We utilize the
Lrect to update the θt . The training cost of the rectified objec-
tive approximately equals to the conventional pseudo label
learning, since no extra modules are introduced.

Fig. 3 Illustration of the prediction variance between two classifiers,
i.e., the primary classifier and the auxiliary classifier. The areas, where
have ambiguous predictions, obtain large value of the prediction vari-
ance. Meanwhile, we could observe that the high-variance area has
considerable overlaps with the noise in the pseudo label. (Best viewed
in color)

Discussion What are the advantages of the proposed
variance regularization? First, the proposed variance reg-
ularization does not introduce extra parameters or modules
to model the uncertainty. Different from Yu et al. (2019),
we do not explicitly introduce the Gaussian noise or extra
branches. Instead, we leverage the prediction variance of the
model itself. Second, the proposed variance regularization
has good scalability. If the variance equals to zero, the opti-
mization loss degrades to the objective of the conventional
pseudo learning and the model will focus on minimizing
the prediction bias only. In contrast, when the value of vari-
ance is high, the model is prone to neglect the bias and skip
ambiguous pseudo labels; Third, the proposed variance reg-
ularization has the same shape of the prediction, and could
works as the pixel-wise threshold of the pseudo label. As
shown in Fig. 3, we could observe that the noise usually
exists in the area with high variance. The proposed recti-
fied loss assigns different thresholds to different areas. For
example, for the location with coherent predictions, the vari-
ance regularization drives the model trust pseudo labels. For
the area with ambiguous predictions, the variance regular-
ization drives the model to neglect pseudo labels. Different
from existingworks that set the unified threshold for all train-
ing samples, the proposed pseudo label could provide more
accurate and adaptive threshold for every pixel.

3.5 Implementation

Network Architecture In this work, we utilize the widely-
used Deeplab-v2 (Chen et al. 2017) as the baseline model,
which adopts the ResNet-101 (He et al. 2016a) as the back-
bonemodel.We followmost existing works Tsai et al. (2018,
2019); Luo et al. (2019a, b); Zheng andYang (2020) to add
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one auxiliary classifier. The auxiliary classifier has similar
structure with the primary classifier, including one Atrous
Spatial Pyramid Pooling (ASPP) module (Chen et al. 2017)
and one fully-connected layer. The auxiliary classifier is
added after the res4b22 layer.We also insert the dropout layer
(Srivastava et al. 2014) before the fully-connected layer, and
the dropout rate is 0.1.

Pseudo Label To verify the effectiveness of the proposed
method, we deploy two existing methods, i.e., AdaptSegNet
Tsai et al. (2018) and MRNet (Zheng andYang 2020), to
generate the pseudo labels of the target-domain dataset.

– AdaptSegNet (Tsai et al. 2018) is one widely-adopted
baseline model, which utilize the adversarial training to
align the semantic outputs.

– MRNet (Zheng andYang 2020) is one recent work, which
leverages the memory module to regularize the model
training, especially for the target-domain data.

Specifically, MRNet arrives superior performance to Adapt-
SegNet in terms of mIoU on three benchmarks. Therefore,
if not specific, we adopt the pseudo label generated by the
stronger baseline, i.e., MRNet. It is worth mentioning that
we do not use source-domain training data. In practice,
wefine-tune themodel only on the target-domain training
data with pseudo labels.

TrainingDetailsThe input image is resized to 1280×640
with scale jittering from [0.8, 1.2], and then we randomly
crop 512 × 256 for training. Horizontal flipping is applied
with the possibility of 50%. We train the model with mini-
batch size of 9, and the parameters of batch normalization
layers are also fine-tuned. The learning rate is set to 0.0001.
Following (Zhao et al. 2017; Zhang et al. 2019a, 2020), we
deploy the ploy learning rate policy by multiplying the factor
(1− i ter

total−i ter )
0.9. The total iteration is set as 100k iterations

and we adopt the early-stop strategy. We stop the train-
ing after 50k iterations. When inference, we follow Zheng
andYang (2020) to combine the output of both classifier as the
final result. Output = argmax(F(x j

t |θt )+0.5Faux (x
j
t |θt )).

Our implementation is based on Pytorch Paszke et al. (2017).

4 Experiment

4.1 Datasets and EvaluationMetric

Datasets. To simplify, we denote the test setting as A →
B, where A represents the labeled source domain and B
denotes the unlabeled target domain. We evaluate the pro-
posed method on two widely-used synthetic-to-real bench-
marks: i.e., GTA5 (Richter et al. 2016)→Cityscapes (Cordts
et al. 2016) and SYNTHIA5 (Ros et al. 2016)→Cityscapes
(Cordts et al. 2016). Both source dataset, i.e., GTA5 and

SYNTHIA are the synthetic datasets, and the corresponding
annotation is easy to obtain. Specifically, the GTA5 dataset
is collected from a video game, which contains 24, 966
images for training. The SYNTHIA dataset is rendered
from a virtual city and comes with pixel-level segmentation
annotations, containing 9, 400 training images. The realistic
dataset, Cityscapes, collect street-view scenes from 50 dif-
ferent cities, which contains 2, 975 training images and 500
images for validation. Besides, we also evaluate the perfor-
mance on the cross-city benchmark, i.e., Cityscapes (Cordts
et al. 2016)→Oxford RobotCar (Maddern et al. 2017). We
utilize the annotation of Cityscapes training images in this
setting. The Oxford RobotCar dataset serves as the unlabeled
target domain, containing 894 training images and 271 val-
idation images. We note that this setting is challenging in
different weather conditions. Oxford RobotCar is collected
in the rainy days, while the Cityscapes dataset is mostly col-
lected in the sunny days. The differences between datasets
are listed in Table 1.

Evaluation Metric We report pre-class IoU and mean
IoU over all classes. For SYNTHIA → Cityscapes, due the
limited annotated classes in the source dataset, we report
the results based on 13 categories as well as 16 categories
with three small-scale categories. For Cityscapes → Oxford
RobotCar, we follow the setting in Tsai et al. (2019) and
report 9 pre-class IoU as well as the mIoU accuracy.

4.2 Comparisons with State-of-the-Art Methods

Synthetic-to-real. We compare the proposed method with
other recent semantic segmentation adaptation methods that
have reported the results or can be re-implemented by us on
three benchmarks. For a fair comparison, we mainly com-
pare the results based on the same network structure, i.e.,
DeepLabv2. The competitive methods cover a wide range of
approaches and could be roughly categorised according to
the usage of pseudo label: AdaptSegNet (Tsai et al. 2018),
SIBAN(Luoet al. 2019a),CLAN(Luoet al. 2019b),APODA
(Yang et al. 2020) and PatchAlign (Tsai et al. 2018) do not
leverage the pseudo labels and focus on aligning the distri-
bution between the source domain and the target domain;
CBST (Zou et al. 2018), MRKLD (Zou et al. 2019), and
our implementedMRNet+Pseudo are based citealtthe pseudo
label learning to fully exploit the unlabeled target-domain
data.

First of all, we consider the widely-used GTA5 →
Cityscapes benchmark. Table 2 shows that:

(1) The proposed method arrives the state-of-the-art results
50.3% mIoU, which surpasses other methods. Besides,
the proposed method also yields the competitive perfor-
mance in terms of the pre-class IoU.
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Table 1 List of categories and
number of images in four
datasets, i.e., GTA5 Richter
et al. (2016), SYNTHIA Ros
et al. (2016), Cityscapes (Cordts
et al. 2016) and Oxford
RobotCar (Maddern et al. 2017)

Datasets GTA5 SYNTHIA Cityscapes Oxford RobotCar

#Train 24,966 9,400 2,975 894

#Test – – 500 271

#Category 19 16 19 9

Synthetic � � × ×

(2) Comparing to our baseline, i.e., MRNet+Pseudo (48.3%
mIoU), which adopts the conventional pseudo learning,
the proposed method (50.3% mIoU) gains +2.0% mIoU
improvement. It verifies the effectiveness of the proposed
method in rectifying the learning from the noisy pseudo
label. The variance regularization plays an important role
in achieving this result;

(3) Meanwhile, we could observe that the proposed method
outperforms the source-domain model, i.e., MRNet
(45.5% mIoU), which provides the pseudo label, 4.8
mIoU. It verifies the effectiveness of the pseudo label
learning that push the model to be confident about the
prediction. If most pseudo labels are correct, the pseudo
label learning could effectively boost the target-domain
performance.

(4) The proposed method also surpasses the other domain
alignmentmethod by a relatively largemargin. For exam-
ple, the modified AdaptSegNet, i.e., PatchAlign (Tsai
et al. 2018), leverages the patch-level information, yield-
ing 46.5%, which is inferior to ours.

(5) Without using the prior knowledge, the proposed method
is also superior to other pseudo label learning works, i.e.,
CBST (Zou et al. 2018) and MRKLD (Zou et al. 2019).
CBST (Zou et al. 2018) introduces the location knowl-
edge, e.g., sky is always in the upper bound of the image.
In this work, we do not apply such prior knowledge, but
we note that the prior knowledge is compatible with our
method.

We observe a similar result on SYNTHIA→Cityscapes (see
Table 3). Following the setting in Zou et al. (2018, 2019), we
include the mIoU results of 13 categories as well as 16 cat-
egories, which also calculate IoU of other three small-scale
objectives, i.e., Wall, Fence and Pole. The proposed method
has achieved 47.9 mIoU of 16 categories and 54.9 mIoU∗ of
13 categories. Comparing to the baseline, MRNet+Pseudo,
we yield +1.4% mIoU and +1.1% mIoU∗ improvement.
Meanwhile, the proposed method also outperforms the sec-
ond best method, i.e., APODA Yang et al. (2020), 1.8%
mIoU∗.

Cross-City We further evaluate the proposed method on
the cross-city benchmark, i.e., Cityscapes → Oxford Robot-
Car. Both of the source-domain and target-domain datasets
are collected in the real-world scenario. We follow the set-

tings in Tsai et al. (2019) to report IoU of the shared 9
categories between the two datasets. As shown in Table 4,
the proposed method arrives 74.4% mIoU. Comparing to
the baseline, i.e., MRNet+Pseudo (73.9%), the improvement
(+0.5%) on the cross-city benchmark is relatively limited.
Therefore, the baseline, MRNet+Pseudo, also could obtain
competitive results by directly utilizing all pseudo labels.
Besides, it is worthy to note that the proposed method has
arrived the 6 of 9 best pre-class IoU accuracy, and achieved
+5.7% on the class of traffic sign, which is a small-scale
objective.

Visualization As shown in Fig. 4, we provide the qualitative
results of the semantic segmentation adaptation on all three
benchmarks. Comparing to the source model, the pseudo
label learning could significantly improve the performance.
Besides, in contrast with the baseline method with conven-
tional pseudo label learning, we observe that the proposed
variance regularization has better scalability to small-scale
objectives, such as traffic signs and poles. It is because that
the noisy pseudo label usually contains the error of predict-
ing the rare category to the common category, i.e., large-scale
objectives. The proposed method rectifies the learning from
such mistakes, yielding more reasonable segmentation pre-
diction.

4.3 Further Evaluations

Variance Regularization vs. Handcrafted Threshold. The
proposed variance regularization is free from setting the
threshold. To verify the effectiveness of the variance reg-
ularization, we also compare the conventional pseudo label
learning with different thresholds. As shown in Table 5, the
proposed regularization arrives the superior performance to
the hand-crafted threshold. It is due to that the variance regu-
larization could be viewed as a dynamic threshold, providing
different thresholds for different pixels in the same image.
For the coherent predictions, the model is prone to learning
the pseudo label and maximizing the impact of such labels.
For the incoherent results, the model is prone to neglecting
the pseudo label automatically and minimizing the negative
effect of noisy labels. The best handcrafted threshold is to
neglect the label with the prediction score ≤ 0.90, yield-
ing 48.4% mIoU. In contrast, the proposed method achieves
50.3% mIoU with +1.9% increment.
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Table 4 Quantitative results on the cross-city benchmark: Cityscapes → Oxford RobotCar

Method road sidewalk building light sign sky person automobile two-wheel mIoU

Source 79.2 49.3 73.1 55.6 37.3 36.1 54.0 81.3 49.7 61.9

AdaptSegNet Tsai et al. (2018) 95.1 64.0 75.7 61.3 35.5 63.9 58.1 84.6 57.0 69.

PatchAlign Tsai et al. (2019) 94.4 63.5 82.0 61.3 36.0 76.4 61.0 86.5 58.6 72.0

MRNet Zheng andYang (2020) 95.9 73.5 86.2 69.3 31.9 87.3 57.9 88.8 61.5 72.5

MRNet+Pseudo 95.1 72.5 87.0 72.2 37.4 87.9 63.4 90.5 58.9 73.9

MRNet+Ours 95.9 73.7 87.4 72.8 43.1 88.6 61.7 89.6 57.0 74.4

The best accuracy in every column is in bold

Fig. 4 Qualitative results of semantic segmentation adaptation on
GTA5 → Cityscapes, SYNTHIA → Cityscapes and Cityscapes →
Oxford RobotCar. We show the original target image, the ground-truth

segmentation, the output of the sourcemodel, i.e.,MRNet, and the base-
line, i.e., MRNet+Pseudo. Our results are in the right column. (Best
viewed in color)

Could the proposed method work on the pseudo label
generated by other models (e.g., with more noise)? To
verify the scalability of the proposed method, we adopt the
AdaptSegNet (Tsai et al. 2018) to generate pseudo labels.
AdaptSegNet is inferior to MRNet in terms of the mIoU on
GTA5 → Cityscapes. As shown in Table 6, the proposed
method still could learn from the label generated by Adapt-
SegNet, improving the performance from 42.4% to 47.4%.

Meanwhile, the proposedmethod is also superior to the base-
line method with the conventional pseudo learning (46.8%
mIoU).

Training Convergence As shown in Fig. 6, the conven-
tional pseudo label learning (orange line) is prone to over-fit
all pseudo labels, including the noisy label. Therefore, the
training loss converges to zero. In contrast, the proposed
method (blue line) also converges, but does not force the loss
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Table 5 Variance Regularization vs. Handcrafted Threshold

Methods Threshold mIoU

MRNet Zheng andYang (2020) – 45.5

Pseudo Learning > 0.99 45.5

Pseudo Learning > 0.95 47.2

Pseudo Learning > 0.90 48.4

Pseudo Learning > 0.80 48.1

Pseudo Learning > 0.70 48.2

Pseudo Learning > 0.00 48.3

Ours – 50.3

The proposedmethod is free fromhand-crafted threshold. ‘> k’ denotes
that we only utilize the label confidence > k to train the model. We
report the mIoU accuracy on GTA5 → Cityscapes

Table 6 Ablation study of the impact of different pseudo labels

Methods Pseudo Label mIoU

AdaptSegNet Tsai et al. (2018) – 42.4

Pseudo Learning AdaptSegNet 46.8

Ours AdaptSegNet 47.4

MRNet Zheng andYang (2020) – 45.5

Pseudo Learning MRNet 48.3

Ours MRNet 50.3

The model name in the ‘Pseudo Label‘ column denotes that we deploy
the pseudo label generated by the corresponding model

to be zero. It is because that we provide the variance regu-
larization term, which could punish the wrong prediction for
the uncertain pseudo labels with flexibility.

Effect of Dropout The proposed method is not very sen-
sitive to the dropout rate. As shown in Table 7, we could
observe two points: (1) The dropout function is not the
main reason for variance of the predictions. Without dropout
function (p = 0), the proposed method still could achieve

Fig. 6 The training loss of the proposed method and the pseudo label
learning. The pseudo label learning is prone to over-fit all pseudo label,
and the training loss converges to zero. In contrast, the proposedmethod
would converge to one non-zero constant while training

Table 7 Ablation study of
dropout rate on GTA5 →
Cityscapes

Dropout Rate mIoU

Pseudo Learning 48.3

Droprate = 0 49.6

Droprate = 0.1 50.3

Droprate = 0.3 50.1

Droprate = 0.5 50.1

Droprate = 0.7 50.0

49.6% mIoU, which is better than the conventional pseudo
label learning. (2) With a propose dropout rate, the proposed
method could generally achieve better results around 50%
mIoU.

Uncertainty of High-Confidence Predictions We ana-
lyze thevarianceof high-confidencepredictions onCityscape.
Specifically, we calculate the average uncertainty of right-
assigned and wrong-assigned prediction with a confidence
score> 0.95. Here we use the metric exp{−Dkl} in Equa-
tion 12 to report the variance value. The high value means
low uncertainty. The average variance of right-assigned high-

Fig. 5 Qualitative results of the discrepancy between the prediction
variance and the prediction confidence. We could observe that the pre-
diction variance used in thiswork hasmore overlapswith the ambiguous

predictions, while the prediction confidence usually focuses on the edge
of the two different classes. (Best viewed in color)
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Table 8 Comparison with Monte Carlo Dropout

Methods Right-prediction Certainty Wrong-prediction Certainty Uncertainty Gap

MC-dropout 0.5 0.9945 0.9733 0.0212

MC-dropout 0.7 0.9870 0.9396 0.0474

MC-dropout 0.9 0.9486 0.8118 0.1368

Ours 0.9767 0.8410 0.1357

Ours + dropout 0.5 0.9673 0.8065 0.1608

confidence labels is 0.9901, when the average variance of
wrong-assigned high-confidence labels is 0.9332. We could
see one significant variance gap between the right-assigned
labels and wrong-assigned labels, even if they all achieve a
high confidence score. The result verifies that the variance
value could reflect the difference between wrong-assigned
labels and right-assigned labels.

Comparison with Monte Carlo Dropout Monte Carlo
Dropout (MC-Dropout) Gal and Ghahramani (2016) acti-
vates the dropout function when inference to obtain various
predictions. Here we compare the ability of representing the
uncertainty of the proposed method and MC-Dropout. For
a fair comparison, we just replace the prediction of the aux
classifier with themain classifier Fdrop withMCdropout rate
of {0.5, 0.7, 0.9}.

Dmc = E

[
F(x j

t |θt ) log
(

F(x j
t |θt )

Fdrop(x
j
t |θt )

)]
. (13)

Since the prediction score could not reflect the ground-truth
uncertainty, we introduce one new metric called uncertainty
gap as indicator. Uncertainty gap is the variance difference of
right predictions and wrong predictions. Generally, we hope
that the right prediction obtains low uncertainty value, while
the wrong prediction obtains high uncertainty value. In prac-
tice,we use the exp(−D) to keep the value in [0,1]. As shown
in Table 8, the proposedmethod obtains 0.1357 variance gap,
which is competitive to MC-dropout with 0.9 drop rate. The
proposedmethod is also complementary toMC-dropout. The
proposed method with MC-dropout could further boost the
uncertainty gap. Meanwhile, it is worth noting that the pro-
posed method directly leverages the variance of both main
and auxiliary classifiers without multiple inferences, which
can largely save the test time.

Effect ofDistance Functions In fact, KL-divergence is an
alternative option for variance calculation.We could swap the
main and aux classifiers to calculate the distance or usemean-
square error (MSE). Here we add one experiment to compare
common distance functions (see Table 9). First, we could
observe that the model is not very sensitive to the distance
metric, since the performances are close. Second, the KL-

Table 9 Ablation study of distance functions on GTA5 → Cityscapes

Distance Functions mIoU

E[(F(x j
t |θt ) − Faux (x

j
t |θt ))2] 49.6

E

[
Faux (x

j
t |θt ) log

(
Faux (x

j
t |θt )

F(x j
t |θt )

)]
49.4

E

[
F(x j

t |θt ) log
(

F(x j
t |θt )

Faux (x
j
t |θt )

)]
50.3

Table 10 Sensitivity of
inference weighting

α β mIoU

1.0 0.0 49.3

0.0 1.0 47.8

1.0 1.0 50.1

1.0 0.5 50.3

divergence used in Method is slightly better than swapping
the predictions and MSE distance.

Effect of Inference Weighting Inference weighting is
one practical trick to combine the predictions of both
main and auxiliary classifiers. Generally, the main clas-
sifier could achieve better performance, so we give the
prediction of the main classifier a larger weight of α = 1
and assign β = 0.5 to the prediction of auxiliary classi-
fier. Output = argmax(αF(x j

t |θt ) + βFaux (x
j
t |θt )). This

trick could slightly improve the final performance. Here we
provide the ablation study on the sensitivity of inference
weighting in Table 10. If we only deploy the main classi-
fier (α = 1, β = 0), the model could achieve 49.3% mIoU
accuracy.Whenwe combine the prediction of two classifiers,
the performance could be improved about 1.0% mIoU.

Uncertainty Visualization As a by-product, we also
could estimate the prediction uncertainty when inference.
We provide the visualization results to show the difference
between the uncertainty estimation and the confidence score.
As shown in Fig. 5, we observe that themodel is prone to pro-
vide the low confidence score of the boundary pixels, which
does not provide the effective cue to the ambiguous predic-
tion. Instead, the proposed prediction variance reflects the
label uncertainty, and the highlight area in prediction vari-
ance map has lots of overlaps with the wrong prediction.
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5 Conclusion

We identify the challenge of pseudo label learning in adap-
tive semantic segmentation and present a simple and effective
method to estimate the prediction uncertainty during train-
ing. We also involve the uncertainty into the optimization
objective as the variance regularization to rectify the train-
ing. The regularization helps the model learn from the noisy
label, without introducing extra parameters or modules. As
a result, we achieve the competitive performance on three
benchmarks, including two synthetic-to-real benchmarks and
one cross-city benchmark. In the future, we will continue to
investigate the usage of uncertainty and the applications to
other related tasks, e.g., medical imaging.
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