Dual-Path Convolutional Image-Text Embeddings with Instance Loss

Candidate Assessment

Zhedong Zheng

Centre for Artificial Intelligence
Faculty of Engineering and Information Technology
University of Technology Sydney

About Me

Present

- 3rd year PhD student
- Advised by Prof. Yi Yang and Dr. Liang Zheng
- Published two top-conference papers and two journal papers

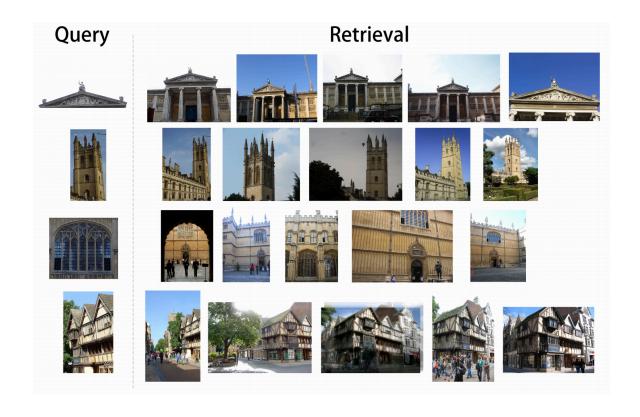
Research Interests

Computer Vision, Image Retrieval, Image-text Understanding,

Image Generation, Generative Adversarial Networks



Single-modal Retrieval



What is Multi-modal Retrieval?

"A boy playing basketball in a gym"

"A little girl sits in a plastic swing set ."

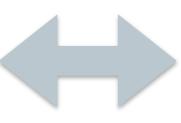
What is Multi-modal Retrieval?

- 1. Brown and white dog yawning.
- 2. A dog with its mouth opened.
- 3. Dog yawns
- 4. The dog 's mouth is open like he is yawning.
- 5. Closeup of dog in profile with mouth open.

- 1. The tennis player is wearing a yellow and blue shirt and a blue headband.
- 2. a tennis player wearing a yellow, white and blue shirt carrying a racquet
- 3. A tennis player is carrying a tennis racket .
- 4. A male athlete is wearing a teal sweatband and a shirt from Nike and is holding a tennis racket.
- 5. A tennis player in an orange outfit hits a ball .

Main Challenge

Images



Sentences

```
communications papadopoulos officials hicks times public kislyak including kilimnik individuals statements contacts advisor congress prince
```

Better Features

Are the off-the-shelf features good?

Faster Inference Speed

RNN needs wait the former output.

Scalable to Large Datasets

We evaluate our methods on two large-scale datasets.

Better Features

Are the off-the-shelf features good?

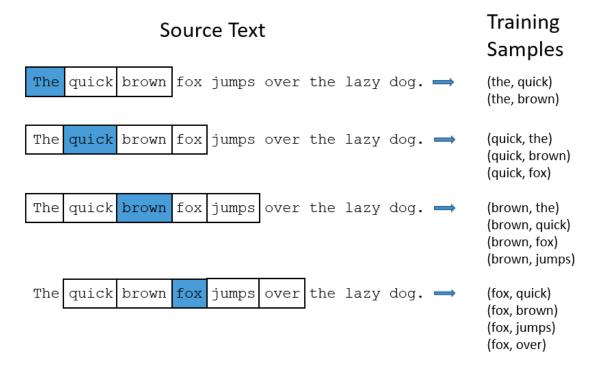
Fast Inference Speed

RNN needs wait the former output.

Scalable to Large Datasets

We evaluate our methods on two large-scale datasets.

Word2vec



T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," arXiv: 1301.3781, 2013

Word2vec may learn similar representation for keywords.

The quick brown fox jumps over the lazy dog.

The quick **grey** fox jumps over the lazy dog.

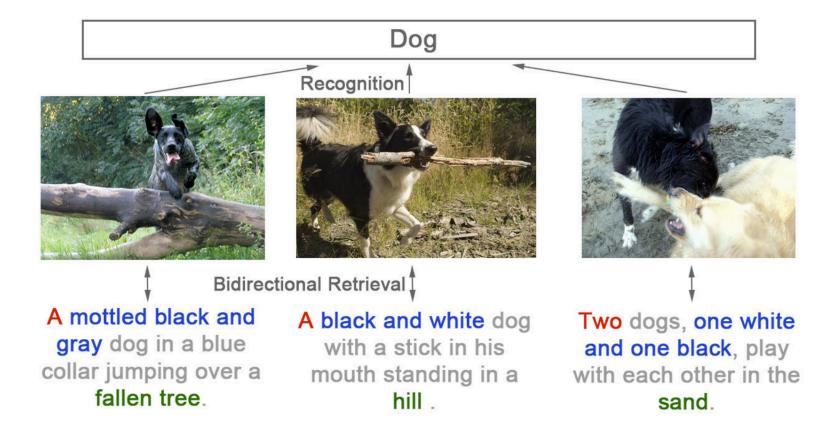
Word2vec may learn similar representation for keywords.

The quick brown **fox** jumps over the lazy dog.

The quick brown **dog** jumps over the lazy fox.

CNN model trained on ImageNet is not perfect.

CNN model trained on ImageNet



Better Features

Are the off-the-shelf features good? No.

- Faster Inference Speed
 RNN needs wait the former output.
- Scalable to Large Datasets

We evaluate our methods on two large-scale datasets.

Instance Loss (Based on an unsupervised assumption)

- 1. A light brown dog with his tail in the air jumps of a pontoon toward the water .
- 5. a gray and brown dog jumps off a dock into a lake

- 1.A dog playing with a dog toy as someone tries to pull it from its mouth .
- 5. The photographer is playing tug-of-war with a dog.

- one man wearing a gray shirt and a backpack with snowy mountains in the backgroud
- 5. A man in a blue shirt sitting on the side of a mountain wearing a backpack.

Instance Loss Definition

Formulation. For two modalities, we formulate two classification objectives as follows,

Shared Classifier

$$P_{visual} = softmax(W_{share}^{T}f_{img}), (4.5)$$

$$L_{visual} = -\log(P_{visual}(c)), \tag{4.6}$$

$$P_{textual} = softmax(W_{share}^T f_{text}), (4.7)$$

$$L_{textual} = -\log(P_{text}(c)), \tag{4.8}$$

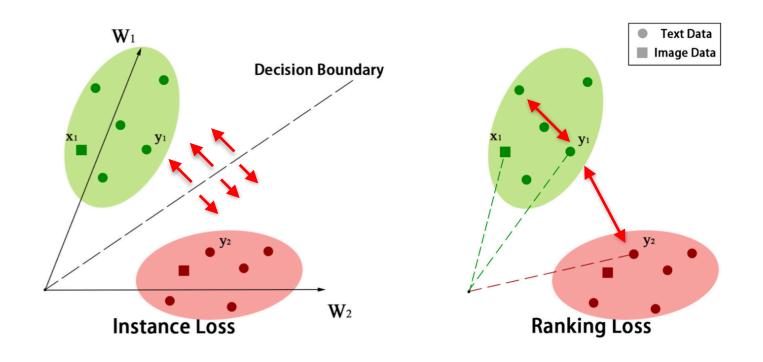
where f_{img} and f_{text} are image and text features defined in Eq. 4.1 and Eq. 4.3, respectively. W_{share} is the parameter of the final fully connected layer (Fig. 4.1).

Ranking Loss Definition

$$L_{rank} = \overbrace{max[0, \alpha - (D(f_{I_a}, f_{T_a}) - D(f_{I_a}, f_{T_n}))]}^{image\ anchor} + \underbrace{max[0, \alpha - (D(f_{T_a}, f_{I_a}) - D(f_{T_a}, f_{I_n}))]}_{text\ anchor},$$

$$L = \lambda_1 L_{rank} + \lambda_2 L_{visual} + \lambda_3 L_{textual},$$

Instance Loss + Ranking Loss



Better Features

Are the pretext tasks good? No

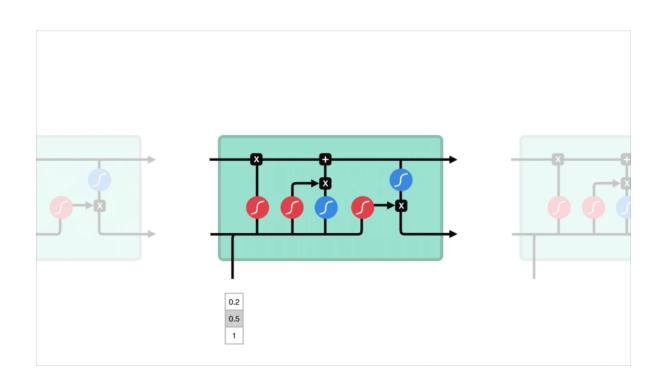
Faster Inference Speed

RNN needs wait the former output.

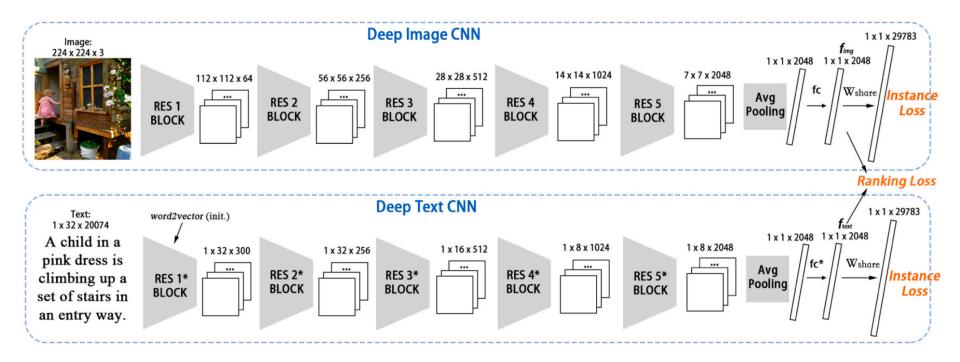
Scalable to Large Datasets

We evaluate our methods on two large-scale datasets.

CNN+RNN



CNN+CNN: Dual-path Convolutional Neural Network



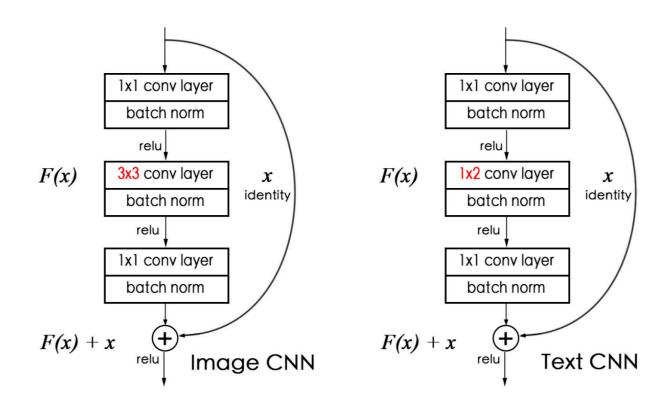
CNN+CNN: Dual-path Convolutional Neural Network

A child in a pink dress is climbing upon a set of stairs in an entry way.

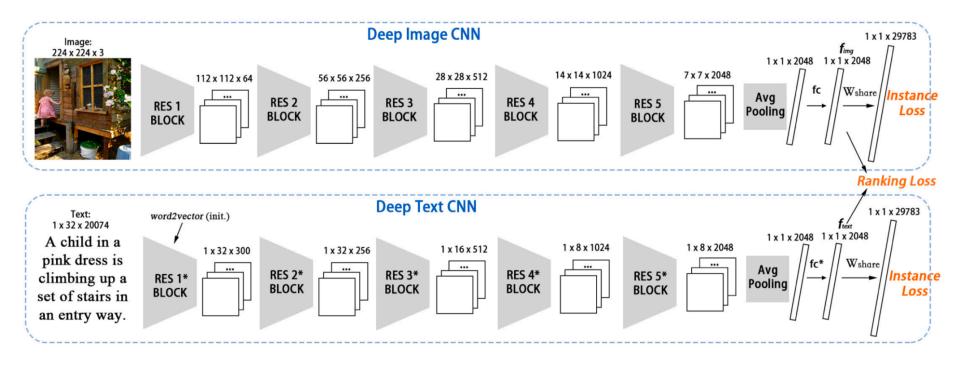
224 x 224 x 3

1 x Length x Dictionary Size 1 x 32 x 20074

CNN+CNN: Dual-path Convolutional Network



CNN+CNN: Dual-path Convolutional Neural Network



End-to-End Training: From Raw Input to the Final Objectives

Better Features

Are the pretext tasks good? No

Fast Inference Speed

RNN needs wait the former output.

Scalable to Large Datasets

We evaluate our methods on two large-scale datasets.

Experiment

Datasets

- Flickr30k:

31,783 images with 158,915 captions. The average sentence length is 19.6 words after we remove rare words.

- MSCOCO:

123,287 images with 616,767 captions. The average length of captions is 8.7 after rare word removal.

Convergence

Although we may face large class number, every class has limited samples.

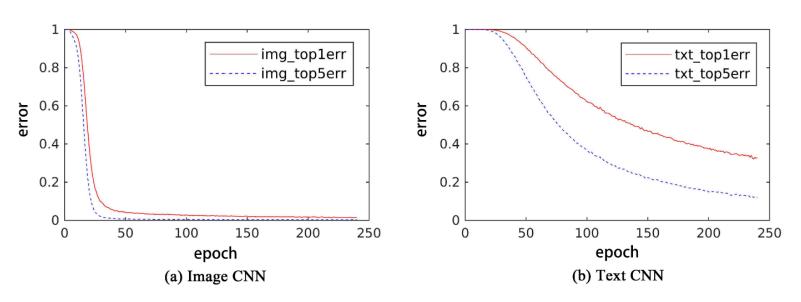


Fig. 8. Classification error curves when training on Flickr30k. The image CNN (a) and text CNN (b) converge well with 29,783 training classes (image / text groups).

Flickr30k

Mathad	Viewel	Tartuel Image Query			Text Query					
Method	Visual	Textual	R@1	R@5	R@10	Med	R@1	R@5	R@10	$\operatorname{Med} r$
DeVise [5]	ft AlexNet	ft skip-gram	4.5	18.1	29.2	26	6.7	21.9	32.7	25
Deep Fragment [6]	ft RCNN	fixed word vector from [58]	16.4	40.2	54.7	8	10.3	31.4	44.5	13
DCCA [59]	ft AlexNet	TF-IDF	16.7	39.3	52.9	8	12.6	31.0	43.0	15
DVSA [32]	ft RCNN (init. on Detection)	w2v + ft RNN	22.2	48.2	61.4	4.8	15.2	37.7	50.5	9.2
LRCN [60]	ft VGG-16	ft RNN	23.6	46.6	58.3	7	17.5	40.3	50.8	9
m-CNN [7]	ft VGG-19	$4 \times \text{ft CNN}$	33.6	64.1	74.9	3	26.2	56.3	69.6	4
VQA-A [18]	fixed VGG-19	ft RNN	33.9	62.5	74.5	-	24.9	52.6	64.8	-
GMM-FV [17]	fixed VGG-16	w2v + GMM + HGLMM	35.0	62.0	73.8	3	25.0	52.7	66.0	5
m-RNN [16]	fixed VGG-16	ft RNN	35.4	63.8	73.7	3	22.8	50.7	63.1	5
RNN-FV [19]	fixed VGG-19	feature from [17]	35.6	62.5	74.2	3	27.4	55.9	70.0	4
HM-LSTM [21]	fixed RCNN from [32]	w2v + ft RNN	38.1	-	76.5	3	27.7	-	68.8	4
SPE [8]	fixed VGG-19	w2v + HGLMM	40.3	68.9	79.9	-	29.7	60.1	72.1	-
sm-LSTM [20]	fixed VGG-19	ft RNN	42.5	71.9	81.5	2	30.2	60.4	72.3	3
RRF-Net [61]	fixed ResNet-152	w2v + HGLMM	47.6	77.4	87.1	-	35.4	68.3	79.9	-
2WayNet [49]	fixed VGG-16	feature from [17]	49.8	67.5	-	-	36.0	55.6	-	-
DAN (VGG-19) [9]	fixed VGG-19	ft RNN	41.4	73.5	82.5	2	31.8	61.7	72.5	3
DAN (ResNet-152) [9]	fixed ResNet-152	ft RNN	55.0	81.8	89.0	1	39.4	69.2	79.1	2
Ours (VGG-19) Stage I	fixed VGG-19	ft ResNet-50 [†] (w2v init.)	37.5	66.0	75.6	3	27.2	55.4	67.6	4
Ours (VGG-19) Stage II	ft VGG-19	ft ResNet-50 [†] (w2v init.)	47.6	77.3	87.1	2	35.3	66.6	78.2	3
Ours (ResNet-50) Stage I	fixed ResNet-50	ft ResNet-50 [†] (w2v init.)	41.2	69.7	78.9	2	28.6	56.2	67.8	4
Ours (ResNet-50) Stage II	ft ResNet-50	ft ResNet-50 [†] (w2v init.)	53.9	80.9	89.9	1	39.2	69.8	80.8	2
Ours (ResNet-152) Stage I	fixed ResNet-152	ft ResNet-152 [†] (w2v init.)	44.2	70.2	79.7	2	30.7	59.2	70.8	4
Ours (ResNet-152) Stage II	ft ResNet-152	ft ResNet-152 [†] (w2v init.)	55.6	81.9	89.5	1	39.1	69.2	80.9	2

MSCOCO

Madaad	X7: 1	Textual Image		Query		Text Query				
Method	Visual	Textual	R@1	R@5	R@10	Med	R@1	R@5	R@10	$\operatorname{Med} r$
1K test images										
DVSA [32]	ft RCNN	w2v + ft RNN	38.4	69.9	80.5	1	27.4	60.2	74.8	3
GMM-FV [17]	fixed VGG-16	w2v + GMM + HGLMM	39.4	67.9	80.9	2	25.1	59.8	76.6	4
m-RNN [16]	fixed VGG-16	ft RNN	41.0	73.0	83.5	2	29.0	42.2	77.0	3
RNN-FV [19]	fixed VGG-19	feature from [17]	41.5	72.0	82.9	2	29.2	64.7	80.4	3
m-CNN [7]	ft VGG-19	$4 \times \text{ft CNN}$	42.8	73.1	84.1	2	32.6	68.6	82.8	3
HM-LSTM [21]	fixed CNN from [32]	ft RNN	43.9	-	87.8	2	36.1	-	86.7	3
SPE [8]	fixed VGG-19	w2v + HGLMM	50.1	79.7	89.2	-	39.6	75.2	86.9	-
VQA-A [18]	fixed VGG-19	ft RNN	50.5	80.1	89.7	-	37.0	70.9	82.9	-
sm-LSTM [20]	fixed VGG-19	ft RNN	53.2	83.1	91.5	1	40.7	75.8	87.4	2
2WayNet [49]	fixed VGG-16	feature from [17]	55.8	75.2	-	-	39.7	63.3	-	-
RRF-Net [61]	fixed ResNet-152	w2v + HGLMM	56.4	85.3	91.5	-	43.9	78.1	88.6	-
Ours (VGG-19) Stage I	fixed VGG-19	ft ResNet-50 [†] (w2v init.)	46.0	75.6	85.3	2	34.4	66.6	78.7	3
Ours (VGG-19) Stage II	ft VGG-19	ft ResNet-50 [†] (w2v init.)	59.4	86.2	92.9	1	41.6	76.3	87.5	2
Ours (ResNet-50) Stage I	fixed ResNet-50	ft ResNet-50 [†] (w2v init.)	52.2	80.4	88.7	1	37.2	69.5	80.6	2
Ours (ResNet-50) Stage II	ft ResNet-50	ft ResNet-50 [†] (w2v init.)	65.6	89.8	95.5	1	47.1	79.9	90.0	2
5K test images										
GMM-FV [17]	fixed VGG-16	w2v + GMM + HGLMM	17.3	39.0	50.2	10	10.8	28.3	40.1	17
DVSA [32]	ft RCNN	w2v + ft RNN	16.5	39.2	52.0	9	10.7	29.6	42.2	14
VQA-A [18]	fixed VGG-19	ft RNN	23.5	50.7	63.6	-	16.7	40.5	53.8	-
Ours (VGG-19) Stage I	fixed VGG-19	ft ResNet-50 [†] (w2v init.)	24.5	50.1	62.1	5	16.5	39.1	51.8	10
Ours (VGG-19) Stage II	ft VGG-19	ft ResNet-50 [†] (w2v init.)	35.5	63.2	75.6	3	21.0	47.5	60.9	6
Ours (ResNet-50) Stage I	fixed ResNet-50	ft ResNet-50 [†] (w2v init.)	28.6	56.2	68.0	4	18.7	42.4	55.1	8
Ours (ResNet-50) Stage II	ft ResNet-50	ft ResNet-50 [†] (w2v init.)	41.2	70.5	81.1	2	25.3	53.4	66.4	5

Further Analysis and Discussion

Ablation Study: Ranking Loss + Instance Loss

Method	Stage	Image	Query	Text Query		
Wethod	Stage	R@1	R@10	R@1	R@10	
Only Ranking Loss	I	6.1	27.3	4.9	27.8	
Only Instance Loss	I	39.9	79.1	28.2	67.9	
Instance Loss + Ranking Loss	I	37.6	75.1	24.1	65.6	
Only Instance Loss	II	50.5	86.0	34.9	75.7	
Only Ranking Loss	II	47.5	85.4	29.0	68.7	
Full model	II	55.4	89.3	39.7	80.8	

Table 4. Ranking loss and instance loss retrieval results on Flickr30k validation set. Except for the different losses, we apply the entirely same network (ResNet-50). For a clear comparison, we also fixed the image CNN in Stage I and tune the entire network in Stage II to observe the overfitting.

Ablation Study: K-class Loss vs. Instance Loss

Methods	Image-Query R@1	Text-Query R@1				
3000 categories (StageI)	38.0	26.1				
10000 categories (StageI)	44.7	31.3				
Our (StageI)	52.2	37.2				

Table 5. K-class Loss vs. Instance Loss on MSCOCO. We use the K-means clustering result as pseudo categories. The experiment is based on Res50 + Res50 † as the model structure.

Explainable

The:-0.0023 man:0.057

dressed: 0.0085 (liked REMOVED)

an: 0.0025

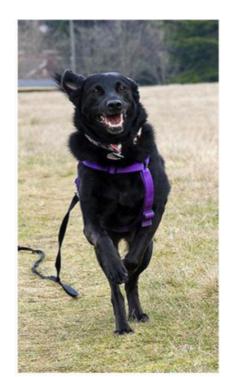
indian: -0.0420 wearing: 0.0207 feathers: -0.0354

is: 0.0133

standing: -0.0305

in:-0.0127 front: -0.0341 (of REMOVED) the:-0.0130

microphone: -0.0238



A: 0.0026

black: -0.1042 dog: -0.0219 with: -0.0000 purple: -0.0643

collar: -0.0046 black: -0.0096 leash: 0.0022 runs: 0.0044 in: -0.0021

the:-0.0013

grass: -0.0254

Future Works

Possible Approaches

- 1) Investigate the feasibility of high-fidelity **generated samples** for training. The generated samples could largely enrich the training set.
- 2) Mixture of **Unsupervised Learning/ Semi-supervised Learning**
- 3) Domain Adaptation

One last comment

Neural Networks are lazy

The models could easily overfit the datasets. Sometimes **adding constraints** and data augmentation are important to train a robust network.

Training Neural Networks sometime is tricky, and models will find the short way to overfit the objective. If it is difficult to optimise, the two-step learning policy could perform well. (**Curriculum learning**)

Questions?

The code is available at

