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Abstract
This paper studies compositional 3D-aware image synthesis for both single-object and multi-object scenes. We observe that
two challenges remain in this field: existing approaches (1) lack geometry constraints and thus compromise the multi-view
consistency of the single object, and (2) can not scale to multi-object scenes with complex backgrounds. To address these
challenges coherently, we propose multi-view consistent generative adversarial networks (MVCGAN) for compositional
3D-aware image synthesis. First, we build the geometry constraints on the single object by leveraging the underlying 3D
information. Specifically, we enforce the photometric consistency between pairs of views, encouraging the model to learn the
inherent 3D shape. Second, we adapt MVCGAN to multi-object scenarios. In particular, we formulate the multi-object scene
generation as a “decompose and compose” process. During training, we adopt the top-down strategy to decompose training
images into objects and backgrounds. When rendering, we deploy a reverse bottom-up manner by composing the generated
objects and background into the holistic scene. Extensive experiments on both single-object and multi-object datasets show
that the proposed method achieves competitive performance for 3D-aware image synthesis.
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1 Introduction

We study the problem of compositional 3D-aware image
synthesis, aiming at generating images with explicit control
over the camera pose and individual object. Different from
2D generative adversarial networks (Brock et al., 2018; Zhu
et al., 2017; Choi et al., 2018; Karras et al., 2018; Huang
& Belongie, 2017; Karras et al., 2019; Zheng et al., 2019;
Karras et al., 2020; Choi et al., 2020), 3D-aware image syn-
thesis models learn 3D scene representations from images,
such as voxels (Nguyen-Phuoc et al., 2019, 2020), interme-
diate 3D primitives (Liao et al., 2020), and neural radiance
fields (NeRF) (Schwarz et al., 2020; Chan et al., 2021;
Niemeyer & Geiger, 2021; DeVries et al., 2021). Among
these approaches, NeRF-based approaches (Schwarz et al.,
2020; Chan et al., 2021; Niemeyer & Geiger, 2021; DeVries
et al., 2021; Deng et al., 2022b; Gu et al., 2022) have gained
a surge of interest due to the superior performance of high-
fidelity view synthesis. However, two key challenges remain.
(1) Existing approaches (Schwarz et al., 2020; Chan et al.,
2021; Niemeyer & Geiger, 2021) do not guarantee geometry
constraints between views, hence usually failing to generate
multi-view consistent images in some views. (2) As pointed
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Fig. 1 Images synthesized byMVCGAN on the CELEBA-HQ (Karras
et al., 2018) dataset. We render multi-view images at resolution 5122

from different viewpoints

by Schwarz et al. (2020), current methods do not work well
on scenes that contain multiple objects with complex shapes
and diverse backgrounds.

In this paper, we address the first problem by proposing
MVCGAN, a multi-view consistent generative model with
geometry constraints (see Fig. 1).

Here we present typical failure cases of existing approach
(Niemeyer & Geiger, 2021) in Fig. 2. We identify the cause
of the inconsistent phenomenon between views: previous
methods optimize a single view of the generated image inde-
pendently while ignoring the geometry constraints between
views (see Sect. 3.2.1). To tackle this problem, the proposed
MVCGANtakes inspiration fromclassicalmulti-viewgeom-
etry methods (Zhou et al., 2017; Godard et al., 2019) to build
geometry constraints across views. Specifically, we perform
multi-view joint optimization by enforcing the photometric
consistency between pairs of views with re-projection loss
and integrating a stereo mixup mechanism into the training
process. Therefore, the generator not only learns the mani-
fold of 2D images but also ensures the geometric correctness
of the underlying 3D shape. Besides, we notice that NeRF-
based generative approaches (Schwarz et al., 2020; Chan et
al., 2021; Niemeyer & Geiger, 2021) typically struggle to
render high-resolution images with fine details due to the
huge computational complexity of NeRF model (Mildenhall
et al., 2020). Therefore, we adopt a hybrid MLP-CNN archi-
tecture, which contains one MLP-based NeRF model and
one CNN-based decoder. Specifically, the MLP-based NeRF
model (Mildenhall et al., 2020) renders the geometry of the
3D shape, and the subsequent CNN-based decoder produces
fine details for the 2D appearance. The structure can gen-

erate photorealistic high-resolution images while alleviating
the computation-intensive problem.

We further adoptMVCGANtomulti-object andbackground-
attached scenarios with a compositional framework, MVC-
GAN+. In specific, MVCGAN+ employs two MVCGAN
branches to model the foreground objects and backgrounds
separately. Besides, we propose a “decompose and compose”
scheme to perform the complex scene generation in a top-
down and bottom-up manner. During training, we explicitly
incorporate the object masks to decompose the objects and
backgrounds from the training images. The disentanglement
of objects and backgrounds allows us to impose geometry
constraints on the foreground object and the background sep-
arately. When rendering the whole scene, we compose the
objects and backgrounds via objectmasks and occlusion rela-
tions. In summary, our main contributions are summarized
as follows:

1. We identify the cause of the multi-view inconsistency in
3D-aware image synthesis, and propose to incorporate
geometry constraints into the generative radiance field for
the single-object scene generation.

2. To tackle complex multi-object scenes, we further scale
MVCGAN to a compositional framework with top-down
and bottom-upmanners. To our knowledge, we are among
the early attempts to incorporate instance masks into
generative radiance fields to tackle complex multi-object
scenarios.

3. We demonstrate the effectiveness and scalability of the
proposed approach by evaluating on both single-object
andmulti-object datasets. Extensive experiments substan-
tiate that our method achieves competitive performance
for 3D-aware image synthesis.

This paper is an extension of our previous conference
version (Zhang et al., 2022). Compared to the preliminary
version, this work includes the following new contents. (1)
Owing to the inadequate exploration of complexmulti-object
scenes in current works, we scale MVCGAN (Zhang et
al., 2022) to a compositional framework, MVCGAN+, for
multi-object 3D-aware image generation. In particular, we
model the foreground objects and backgrounds with two sep-
arate branches. (2) By incorporating the easily-obtained 2D
annotations, i.e., instancemasks and bounding boxes, we for-
mulate the multi-object image generation as a “decompose
and compose” process. To our knowledge, we are among the
first attempts to incorporate instance masks into generative
radiance fields to tackle the multi-object generation prob-
lems. (3) To further validate the competence of our method,
we addmore experiments and discussions for ablation studies
and visualization results.
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Fig. 2 Typical failure cases. Taking a representative method
GIRAFFE (Niemeyer & Geiger, 2021) as an example, the generated
images in the first row have obvious inconsistent appearance artifacts
between views, such as the direction of hair (blue box) and the opening
mouth (green box). Besides, we notice that GIRAFFE (Niemeyer &

Geiger, 2021) suffers collapsed results under large pose variations (see
the leftmost and rightmost pictures in the first row), which indicates
that the model does not learn an appropriate 3D shape. In contrast, our
method generates high-quality images withmulti-view consistency (see
the second row) (Color figure online)

2 RelatedWork

2.1 Multi-view Geometry

A large number of approaches reconstruct 3D structures
with multi-view geometry constraints as supervision signals,
such as COLMAP (Schonberger & Frahm, 2016) and ORB-
SLAM (Mur-Artal et al., 2015). In recent years, some deep
learning techniques (Zhou et al., 2017; Godard et al., 2019;
Yao et al., 2018) also combine traditional approaches (Chen
&Williams , 1993; Collins, 1996; Szeliski & Golland, 1999)
to address 3D vision problems. Inspired by the classical
multi-view geometry methods (Chen & Williams , 1993;
Debevec et al., 1996; Andrew, 2001; Seitz & Dyer, 1996;
Zhou et al., 2017; Godard et al., 2019), we explicitly involve
the geometry constraints in the training process for learning
a reasonable 3D shape.

2.2 Neural Radiance Fields

Recently, using volumetric rendering and implicit function
to synthesize novel views of a scene has gained a surge of
interest. Mildenhall et al. (2020) represent complex scenes
as Neural Radiance Fields (NeRF) for novel view synthesis
by optimizing an implicit continuous volumetric scene func-
tion. Due to the simplicity and extraordinary performance,
NeRF (Mildenhall et al., 2020) has been extended to plenty of
variants, e.g., faster training (Yu et al., 2022a), faster infer-
ence (Yu et al., 2021a; Reiser et al., 2021; Garbin et al.,
2021; Rebain et al., 2021; Lindell et al., 2021), pose esti-
mation (Yen-Chen et al., 2021; Lin et al., 2021; Jeong et
al., 2021; Meng et al., 2021; Wang et al., 2021), generaliza-
tion (Chibane et al., 2021; Chen et al., 2021; Yu et al., 2021b;
Trevithick & Yang, 2021; Liu et al., 2022), video (Xian et

al., 2021; Dynamic view synthesis , 2021; Li et al., 2021, a;
Peng et al., 2021), and depth estimation (Wei et al., 2021).

2.3 3D-Aware Image Synthesis

Generating photorealistic and editable image content is
a long-standing problem in computer vision and graph-
ics. In the past years, generative adversarial networks
(GAN) (Goodfellow et al., 2020) have demonstrated impres-
sive results in synthesizing high-resolution images of high
quality from unstructured image collections (Zhu et al.,
2017; Brock et al., 2018; Choi et al., 2018; Karras et
al., 2018; Huang & Belongie, 2017; Karras et al., 2019;
Zheng et al., 2019; Karras et al., 2020; Choi et al., 2020).
Despite the tremendous success, most of the methods typi-
cally only learn the manifold of 2D images while ignoring
the 3D representation of the scene. In recent years, sev-
eral recent works have investigated how to incorporate 3D
representation into generative models (Alhaija et al., 2018;
Nguyen-Phuoc et al., 2019; Zhu et al., 2018; Liao et al.,
2020; Nguyen-Phuoc et al., 2020; Henderson et al., 2020;
DeVries et al., 2021). Nguyen-Phuoc et al. (2019) combine
a strong inductive bias about the 3D world with deep gen-
erative models to learn disentangled representations of 3D
objects.Nguyen-Phuoc et al. (2019) provides control over the
pose of generated objects through rigid-body transformations
of the learned 3D features. Schwarz et al. (2020) propose
GRAF, generative radiance fields for 3D-aware image syn-
thesis from unposed 2D images. pi-GAN (Chan et al., 2021)
adopts a SIREN-based neural implicit representation with
periodic activation functions as the backbone of the gen-
erator. GIRAFFE (Niemeyer & Geiger, 2021) represents
scenes as compositional generative neural feature fields.
ShadeGAN (Pan et al., 2021) models the illumination to
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regularize the training process. Combining the occupancy
representationwith radiance fields, Xu et al. (2021) introduce
Generative Occupancy Fields (GOF) to shrink the sample
region of the volume rendering process. StyleNeRF (Gu
et al., 2022) integrates NeRF (Mildenhall et al., 2020) to
the StyleGAN-like generator (Karras et al., 2019, 2020)
to close the gap between 2D and 3D GANs. Zhou et al.
(2021) extend CIPS (Anokhin et al., 2021) to CIPS-3D, a
3D-aware generator that composes of NeRF and implicit
neural representation network. StyleSDF (Or-El et al., 2022)
achieves high-resolution image genearation and 3D surface
modeling by integrating the SDF-based 3D representation
into the 2D style-based generativemodel (Karras et al., 2019,
2020). Recently, Chan et al. (2022) introduce a novel tri-
plane representation with 3D inductive bias, resulting in a
more efficient and expressive 3D GAN framework, EG3D.
VolumeGAN (Xu et al., 2022) learns a structural and tex-
tural representation with a 3D feature volume and neural
renderer respectively. Deng et al. (2022b) reduce the num-
ber of sampling points by learning generative 2D manifolds
(GRAM), while GRAM-HD (Xiang et al., 2022) achieves
better results by performing super-resolution in the 3D space.
VoxGRAF (Schwarz et al., 2022) explores sparse voxel grid
representations to accelerate training. Skorokhodov et al.
(2022) redesign the patch-based discriminator to improve the
optimization scheme of 3D generative adversarial networks.
However, these methods typically optimize a single view of
the generated scene independently and ignore the underlying
geometry constraints across views.

3 Methodology

Our goal is to generate photorealistic high-resolution images
with explicit control over the camera pose while maintaining
multi-view consistency. We now present the main com-
ponents of the proposed method. First, we briefly review
the background of NeRF-based generative adversarial net-
works (Schwarz et al., 2020; Niemeyer & Geiger, 2021;
Chan et al., 2021) and identify the limitations of previous
methods (see Sect. 3.1). Second, we analyze the cause of the
multi-view inconsistency problem and present Multi-View
Consistent Generative Adversarial Networks (MVCGAN)
for single object generation (see Fig. 5 for an overview).
At last, based on MVCGAN, we further introduce a com-
positional framework (MVCGAN+) for multi-object image
generation in Sect. 3.3.

3.1 Preliminaries

Neural Radiance Fields. Neural radiance field (NeRF)
synthesizes novel views of the scene by optimizing a fully-
connected network using a set of input views. The MLP

Fig. 3 Visualization of shape-radiance ambiguity. For illustration, we
assume p (the red dot) is the location of correct geometry, p1 (the violet
dot) and p2 (the blue dot) are incorrect geometries. In the absence of
geometry constraints, the model can fit incorrect geometry p1 in view
1 and p2 in view 2 independently to simulate the effect of the correct
geometry p (Color figure online)

network maps a continuous 5D coordinate (3D location x
and 2D viewing direction d) to an emitted color c and vol-
ume density σ (Mildenhall et al., 2020):

(γ (x), γ (d)) −→ (c, σ ), (1)

where γ indicates the positional encoding mapping function.
To render the neural radiance field from a viewpoint,Milden-
hall et al. (2020) use classic volume rendering to accumulate
the output colors c and densities σ into an image.
Generative Radiance Fields. Generative neural radiance
fields aim to learn a model for synthesizing novel scenes
by training on unposed 2D images. Schwarz et al. (2020)
adopt an adversarial framework to train a generative model
for radiance fields (GRAF). The generative radiance field is
conditioned on a shape code zs and an appearance code za :

(γ (x), γ (d), zs, za)) −→ (c, σ ). (2)

Following GRAF (Schwarz et al., 2020), Niemeyer and
Geiger (2021) introduce a compositional generative neural
feature field (GIRAFFE). Inspired by StyleGAN (Karras
et al., 2019), Chan et al. (2021) instead propose peri-
odic implicit generative adversarial networks (pi-GAN) with
feature-wise linear modulation (FiLM) conditioning.
Limitations.Wenotice two limitations of existing approaches
(Schwarz et al., 2020; Niemeyer & Geiger, 2021; Chan et
al., 2021). First, they do not guarantee geometry constraints
between different views. Consequently, they usually suffer
from collapsed results under large pose variations or have
obvious inconsistent artifacts across views. Second, these
approaches mostly cannot tackle the scene that contains mul-
tiple objects and complex backgrounds.
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Fig. 4 Illustration of the warping process. For each pixel vpri in the
primary image Ipri , we first calculate the location of vaux (the corre-
sponding pixel of vpri in the auxiliary image Iaux ) based on the depth
value D(vpri ) and camera transformation matrix [R, t]. Then we can
reconstruct the pixel v′

pri of the warped image Iwarp from the primary
view using the value of pixel vaux . We observe that the warped image
has a wrong appearance, which verifies the incorrect geometry shape
learned by the model

3.2 MVCGAN for Single-Object Image Generation

3.2.1 Image-Level Multi-view Joint Optimization

Shape-radiance Ambiguity. In this part, we analyze the
cause of the multi-view inconsistency problem in NeRF-
based generative models. We observe that optimizing the
radiance fields froma set of 2D training images can encounter
critical degenerate solutions in the absence of geometry con-
straints. This phenomenon is referred to as shape-radiance
ambiguity (Zhang et al., 2020), in which the model can fit
the training images with inaccurate 3D shape by a suitable
choice of radiance field at each surface point (see Fig. 3). To
better illustrate the shape-radiance ambiguity, we warp the
rendered images from view 1 to view 2 based on the under-
lying depth and camera transformation matrix [R, t] (see the
details of warping process in Fig. 4 and Eq. 4). We find the
warped image shows a wrong appearance, which verifies the
assumption of degenerate solutions to the learned 3D shape.
To avoid the shape-radiance ambiguity, NeRF (Mildenhall et
al., 2020) requires a large number of posed training images
from different input views for the scene. However, genera-
tive radiance fields have neither annotated camera poses nor
sufficient multi-view images in the training dataset. Con-
sequently, the generative model can synthesize reasonable
images in some views but produce poor renderings in other
views (see Fig. 2).
Warping Process. To alleviate the shape-radiance ambigu-
ity (Zhang et al., 2020), we propose to establish multi-view
geometry constraints (Chen & Williams , 1993; Debevec et
al., 1996; Andrew, 2001; Seitz & Dyer, 1996; Zhou et al.,
2017; Godard et al., 2019) via the warping process between
views. First, following pi-GAN (Chan et al., 2021), we adopt
a style-based generator that contains a synthesis network
Gs (a SIREN-based (Sitzmann et al., 2020; Chan et al., 2021)
generative radiance field) and amapping networkGm (a sim-
pleMLPnetworkwithReLU) (seeFig. 5).Given a latent code

z ∈ R
256 in the input latent space Z , the mapping network

Gm :Z −→ W can produce the intermidiate latent w ∈ R
256,

which controls the synthesis network Gs at each layer. Sec-
ond, instead of only optimizing a single view independently,
we aim to optimize multiple views jointly to maintain the 3D
consistency across views. As shown in the left of Fig. 5, we
randomly sample two camera poses, i.e., the primary pose
ξpri and the auxiliary pose ξaux , from the pose distribution
pξ . Taking ξpri and ξaux as input, the generative model Gs

synthesizes two views of the generated images separately:
the primary image Ipri and the auxiliary image Iaux . Then
we can build geometry constraints between ξpri and ξaux via
imagewarping, which reconstructs the primary view by sam-
pling pixels from the auxiliary image Iaux . Specifically, for
each point vpri in the primary image Ipri , we first find the
corresponding pixel vaux in the auxiliary image Iaux through
the stereo correspondence, and then reconstruct the pixel v′

pri
of thewarped imageIwarp fromprimary viewusing the value
of vaux (see Fig. 4). Next, we present a detailed calculation
procedure of thewarping process. The stereo correspondence
is calculated based on the depth mapD of the primary image
and camera transformation matrix from ξpri to ξaux . The
depth can be rendered in a similar way as rendering the color
image (Mildenhall et al., 2020; Deng et al., 2022a). Given
the pixel vpri from the primary view, the depth valueD(vpri )

is formulated as:

D(vpri ) =
N∑

i=1

Ti (1 − exp(−σiδi ))di ,

Ti = exp(−
i−1∑

j=1

σ jδ j ),

(3)

where N is the number of samples in the camera ray, δi =
di+1 −di is the distance between adjacent sample points and
σi is the volume density of sample i (refer to Mildenhall et
al. (2020); Deng et al. (2022a) to see more details). With the
depth value D(vpri ), we can obtain the homogeneous coor-
dinates h pri of pixel vpri in the primary camera coordinate
system through perspective projection. Then the projected
coordinates haux in the auxiliary view can be calculated as:

haux = K [R, t]D(vpri )K
−1h pri , (4)

where the camera intrinsics K are known parameters and the
camera transformation matrix [R, t] can be calculated from
the primary pose ξpri and the auxiliary pose ξaux . Finally,
we can reconstruct the pixel v′

pri in the warped image Iwarp

from the primary view using the value of pixel vaux (located
in haux of Iaux ).
Image-level JointOptimization.After obtaining thewarped
image Iwarp, we perform image-level multi-view joint opti-
mization by enforcing the photometric consistency and
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Fig. 5 The generator of MVCGAN. During training, the generative
radiance field network Gs takes primary pose ξpri and auxiliary pose
ξaux as input. The mapping networkGm maps the input latent z to inter-
mediate latent w, which conditions both the generative radiance field
network Gs and the progressive 2D decoder Gd . In Stage I, we directly
render primary image Ipri and auxiliary image Iaux with the color and
density output from Gs . Then we perform image-level multi-view joint

optimization and output a low-resolution RGB image (642). In Stage II,
we instead use volume rendering to accumulate 2D feature maps at
low resolution (642), and then perform multi-view optimization at the
feature level. The progressive 2D decoder Gd upsamples 2D feature
map Fmix to a high-resolution RGB image (1282, 2562, 5122) for fine
2D details. During inference, only the primary pose is required without
auxiliary pose (the dotted lines do not participate in inference)

employing a stereo mixup module (see Fig. 6). To satisfy
the geometry constraints between views, we enforce the
photometric consistency across views by minimizing the
re-projection loss between the primary image Ipri and the
warped image Iwarp. Following the common practice in
image reconstruction (Wang et al., 2004; Zhao et al., 2016;
Pillai et al., 2019; Zhou et al., 2017; Godard et al., 2019; Lyu
et al., 2021), we formulate the image-level re-projection loss
as the combination of L1 (Zhao et al., 2016) and SSIM (Wang
et al., 2004):

Lir = (1 − μ)||Ipri − Iwarp||1+
μ

2
(1 − SSI M(Ipri , Iwarp)),

(5)

where SSIM is a perceptual metric of image structural simi-
larity and μ = 0.85 empirically. In addition to being similar
to the primary image, the warped image should also look
like a real image. A straightforward method is introducing
two discriminators. One is to compare the warped image
Iwarp with an arbitrary real image sampled from the training
dataset, and the other one compares the primary image Ipri .
However, introducing extra modules can increase the com-
putation complexity. Inspired by the mixup strategy (Zhang
et al., 2018), we instead propose a stereo mixup module to
optimize both Ipri and Iwarp by constructing a virtual mixed
image:

Imix = ηIpri + (1 − η)Iwarp, (6)

Fig. 6 Image-level multi-view joint optimization. We enforce the pho-
tometric consistency between the primary image Ipri and the warped
image Iwarp by minimizing the image-level re-projection loss Lir .
Besides, we integrate a stereo mixup module to encourage the warped
image to be similar to a real image. The dotted line does not participate
in the inference stage

where η is a dynamic number randomly sampled from the
range of [0, 1] in every training iteration, and Imix is the
input of the discriminator. It is worth noting that the auxiliary
pose is introduced to construct the geometry constraints, and
is thus only required in the training process. In the inference
stage, the generative model only takes the primary pose ξpri
and latent code z as input to generate the primary image
directly.
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3.2.2 Feature-Level Multi-view Joint Optimization

In practice,we also encounter one practical challenge:NeRF-
based generative models (Schwarz et al., 2020; Niemeyer &
Geiger, 2021; Chan et al., 2021) typically struggle to ren-
der high-resolution images with fine details due to the huge
computational of NeRF (Mildenhall et al., 2020) model. To
render imageswith both fine 2Ddetails and correct 3D shape,
we design a two-stage training strategy and extend multi-
view optimization to the feature level. We begin training
at a low resolution (642) in Stage I, and then increase to
high resolutions (1282, 2562, 5122) in Stage II (see Fig. 5).
In Stage I, we directly render primary and auxiliary images
with the color and density output from the generative radi-
ance field network Gs . With the guidance of geometry
constraints, we perform image-level multi-view joint opti-
mization to enhance the geometric reasoning ability of the
model. In Stage II, to alleviate the computation-intensive
problem of rendering high-resolution images, we instead
train the model via feature-level multi-view optimization for
better visual quality. First, we adopt a hybrid MLP-CNN
architecture to disentangle the geometry of the 3D shape from
fine details of 2D appearance. Then we generalize volume
rendering (Niemeyer & Geiger, 2021) to the feature level
by rendering 2D primary feature map Fmix at low resolu-
tion (642):

Fpri =
N∑

i=1

Ti (1 − exp(−σiδi )) fi , (7)

where fi ∈ R
256 is the feature before the final layer of Gs ,

and other symbols are defined in Eq. 3. The auxiliary fea-
ture map Faux is rendered in the same way as Fpri , and the
warped featuremapFwarp can be obtained through thewarp-
ing process. Second, we perform multi-view feature-level
joint optimization on low-resolution feature maps (642). To
enforce the geometry consistency in the feature space, we
take the implicit diversified Markov Random Fields (MRF)
loss (Wang et al., 2018) as the feature-level re-projection loss:

L f r = Lmr f (Fpri ,Fwarp), (8)

which can encourage the model to capture high-frequency
geometry details (Feng et al., 2021). Then the stereo mixup
mechanism is also applied to the 2D feature maps: Fmix =
ηFpri +(1−η)Fwarp. Third, we increase the resolution with
a style-based 2D decoder (Karras et al., 2019) Gd , which
takes Fmix as input and then upsamples to high-resolution
RGB image (see Fig. 7). The 2D decoder Gd is conditioned
by the mapping network Gm through adaptive instance nor-
malization (AdaIN) (Huang & Belongie, 2017; Dumoulin et
al., 2020; Karras et al., 2019). As training progresses, we

Fig. 7 Progressive 2D decoder Gd . During training, the decoder takes
the stereo mixup feature Fmix (produced by Fpri and Fwarp) as input
at low resolution (642). Then the intermediate latent w conditions the
decoder at each layer. Here tRGB denotes the 1x1 convolutions which

convert the high-dimensional features toRGB images, and Up denotes

the bilinear upsampling operation

adopt the progressive growing strategy to grow the generator
for higher resolution (Karras et al., 2018). When new layers
are added toGd , we use skip connections to fade the inserted
layers in smoothly to stabilize and speed up the training pro-
cess (Karras et al., 2018, 2020).

3.3 MVCGAN+: Towards Multi-Object Generation

While remarkable results have been achieved on 3D-aware
image generation, existing methods (Schwarz et al., 2020;
Chan et al., 2021; Deng et al., 2022b; Gu et al., 2022; Xu
et al., 2021; Pan et al., 2021; Chan et al., 2022) mostly
focus on the scene with a single object in the center, and
do not work well on multi-object scenes. At present, only
GIRAFFE (Niemeyer & Geiger, 2021) considers the com-
positional properties of scenes and allows for multi-object
image generation. However, GIRAFFE (Niemeyer&Geiger,
2021) learns the compositional generative feature fields in an
unsupervised manner, which is infeasible to decompose the
scene into individual objects precisely. The lack of appro-
priate supervision makes GIRAFFE (Niemeyer & Geiger,
2021) can only be verified on simple synthetic data, i.e.,
CLEVR (Johnson et al., 2017), while more realistic scenes
with complex geometry shapes and diverse textures still
remain unexplored.

To extend to scenarios with multiple objects and back-
grounds, we further propose MVCGAN+, a two-branch
frameworkwith extra supervision (seeFig. 8 for anoverview).
We formulate themulti-object scene generation as a “decom-
pose and compose” process. During training, MVCGAN+
learns the whole scene via a top-down decomposition man-
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Fig. 8 An overview ofMVCGAN+. I. Decomposition Phase.We adopt
a “top-down” strategy to train the object branch and the background
branch. Specifically, we decompose the real images into foreground
objects and backgrounds via masks and bounding boxes. Then we
impose multi-view constraints to optimize the object generator Gobj
and the background generator Gbg individually. Two discriminators,

i.e., Dobj and Dbg , are employed to perform adversarial training on
generated images and real images. II. Composition Phase. We deploy
a reverse “bottom-up” manner for rendering. We first generate fore-
ground objects images and background images with the object branch
and the background branch respectively. Then the whole image can be
composed with object masks and occlusion relations

ner. Specifically, we incorporate easily-accessed 2D anno-
tations, i.e., object bounding boxes and instance masks,
into training to disentangle objects and backgrounds. MVC-
GAN+ contains one object branch with Gobj and Dobj , one
background branch withGbg and Dbg . For the object branch,
we randomly select a single object from the whole scene and
crop the corresponding patch with the masked backgrounds
as the real object image (see Fig. 8). We encourage the object
generatorGobj tomodel the foregroundobjectwhile leave the
background region with empty space. One problem remains
that the content of unbounded and occluded scenes, e.g.,
masked backgrounds, can locate at any distance of the ray.
Due to the inherent ambiguity of 2D-to-3D correspondence,
the object generator can generate arbitrary geometry outside
the target object regions. Consequently, theremay exist some
semi-transparent materials floating in the space and cause
cloudy and foggy artifacts when viewed from another angle.

Therefore, we add the sum of the color weights along the
ray on the accumulated color to suppress the low-density
areas:

ĉ(r) = c(r) +
(
1 −

N∑

i=1

Ti (1 − exp(−σiδi ))

)
∗ cwhite,

(9)

where c(r) is the accumulated color of ray r by volume ren-
dering, cwhite = 1 is the color of the white background
(the value of white color equals to 1 in the normalized color

space),
N∑
i=1

Ti (1−exp(−σiδi )) is the sum of weights of sam-

pled color along the ray r (see more details in Eq. 3 and Eq.
5 of the original NeRF paper (Mildenhall et al., 2020)), and
other symbols are defined in Eq. 3.

For the background branch, we follow NeRF++ (Zhang
et al., 2020) to use an additional network Gbg to model the
complex backgrounds. As shown in Fig. 8, we remove all
the foreground objects and fill the holes with the image
inpainting methods (Telea, 2004). Considering the layout
and geometries of the background environment are rela-
tively simple, we can easily inpaint the occluded areas by
searching the patches with similar textures from surround-
ing regions. In this way, MVCGAN+ models the objects and
backgrounds individually by leveraging the information of
object bounding boxes and instance masks. The disentan-
glement of the objects and backgrounds allow us to impose
the multi-view geometry constraints on the object and the
background branch separately.

In the composition phase, to compose the generated
objects and backgrounds into a coherent scene, we first per-
formobject arrangements and then reason about the geometry
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Table 1 Quantitative comparison

CELEBA-HQ FFHQ AFHQv2 M-Plants M-Food Room-chairs
2562 5122 2562 5122 2562 2562 2562 2562

GRAF (Schwarz et al., 2020) 47.5 57.7 67.2 71.2 75.8 129.3 138.0 Fail

pi-GAN (Chan et al., 2021) 39.7 41.8 38.1 39.9 42.0 76.7 85.3 Fail

GOF (Xu et al., 2021) 51.6 57.8 60.9 64.7 49.6 83.6 87.2 Fail

ShadeGAN (Pan et al., 2021) 52.6 53.1 54.5 58.3 52.4 84.9 93.4 Fail

GIRAFFE (Niemeyer & Geiger, 2021) 36.0 36.2 34.6 37.7 29.2 52.2 84.3 162.9

GRAM (Deng et al., 2022b) 23.6 OOM 29.8 OOM 18.5 188.6 178.9 Fail

Ours 11.8 12.9 13.7 13.4 17.1 32.9 30.2 69.7

Quantitative comparisons with best results are given in bold
We calculate FID between 20,000 generated and real images. “OOM” represents the out-of-memory error, and “Fail” denotes the model fail to
converge

relations between foreground objects and the backgrounds.
For the object placement, we follow GIRAFFE (Niemeyer
& Geiger, 2021) to transform the coordinate of the object-
centric space to the scene space with the rotation matrix Robj

and the translation vector tobj :

k(x) = Robjx + tobj , (10)

where k(x) is the transformed coordinate, tobj is the object
location in the scene space. We generate the holistic image
by performing alpha composition:

I f inal = I f g · M + (1 − M) · Ibg, (11)

whereI f g is the rendered foreground object image, andIbg is
the rendered background image. The foreground object mask

M =
N∑
i=1

Ti (1 − exp(−σiδi ) is generated by Gobj accord-

ing to the accumulated density. For the overlapping areas
between objects, we reason about the occlusion relations by
combing 3D spatial locations of objects and depth values.
Specifically, for every pixel in the render image, the object
closest to the camera location will occlude other objects as
well as the backgrounds.

4 Experiments

4.1 Datasets

We conduct experiments on both single-object and multi-
object datasets.
Single-object Datasets. For the single-object datasets, we
report results on five high-resolution image datasets:
CELEBA-HQ (Karras et al., 2018), FFHQ (Karras et al.,
2019), AFHQv2 (Choi et al., 2020), M-Plants (Sko-
rokhodov et al., 2022), and M-Food (Skorokhodov et al.,
2022). CELEBA-HQ (Karras et al., 2018) consists of

30,000 high-quality images of human face. Flickr-Faces-
HQ (FFHQ) (Karras et al., 2019) is a widely-used human
face dataset that contains 70,000 high-quality images. Ani-
mal Faces-HQ (AFHQv2) (Choi et al., 2020) contains 15,000
high-quality animal face images. Here we choose the cat face
images in the AFHQv2 (Choi et al., 2020) dataset to conduct
experiments. Megascans Plants (M-Plants) (Skorokhodov et
al., 2022) dataset consists of 141,824 plant images, while
Megascans Food (M-Food) (Skorokhodov et al., 2022) con-
tains 25,472 food images.
Multi-object Datasets.

For multi-object scenes, existing datasets, e.g., CLEVR
(Johnson et al., 2017), multi-dSprites (Matthey et al., 2017),
Object Room (Burgess&Kim, 2018), Tetrominoes (Kabra et
al., 2019), andCATER(Girdhar&Ramanan, 2019), typically
contain objects with the simplest geometric shapes and plain
backgrounds. Take a representative dataset CLEVR (John-
son et al., 2017) as an example, the scene contains 3 kinds
of objects, i.e., cube, sphere, and cylinder, all of which
are geometric primitives that have standard and symmetri-
cal geometries. In this paper, we conduct experiments on a
more complex and realistic dataset Room-chair (Yu et al.,
2022b), which contains indoor scenes with chairs, walls, and
floors. Specifically, we adopt the script (Yu et al., 2022b)
to render 32,000 images at a resolution of 2562. To render
chairs with diverse shapes, we choose 649 chair models from
ShapeNet (Chang et al., 2015) library. For the backgrounds,
weuse 50 types of floorswith different textures andmaterials,
e.g., wooden floors. Each image contains a random number
of chairs with a maximum number of 4. Besides, we also
render the instance masks and obtain the object bounding
boxes as the annotations. It is worth noting that the geome-
try of the chair is much more complex than other objects in
ShapeNet (Chang et al., 2015) like cars and bowls, because
chairs have many thin and fine structures such as backrests
and legs. To our knowledge, Room-chair is the most chal-
lenging multi-object dataset we can find.
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Fig. 9 The face identity preservation score (Face-IDS) of images

4.2 Training Details

We use a progressive growing convolutional discrimina-
tor Dφ to compare the fake image produced by generator
Gθ and real image I sampled from the training data with
distribution pD. For single-object generation,we trainMVC-
GANusing a non-saturatingGANobjective with R1 gradient
penalty (Mescheder et al., 2018) and the proposed geometry-
constrained objective Lre as the total loss:

V(θ, φ) = Ez∼Z,ξpri∼pξ ,ξaux∼pξ
[ f (Dφ(Gθ (z, ξpri , ξaux ))]

+ EI∼pD [ f (−Dφ(I)) − λ||∇Dφ(I)||2] + Lre,

(12)

where f (t) = −log(1+exp(−t)),Lre = Lir for Stage I (see
Eq. 5), Lre = L f r for Stage II (see Eq. 8), and λ = 10. We
employ Adam optimizer (Kingma & Ba, 2015) with β1 = 0,
β2 = 0.9, and the batch size of 56 for optimization. The
initial learning rate is set to 6.0× 10−5 for the generator and
2.0 × 10−4 for the discriminator, and decay over training to
1.5 × 10−5 and 5.0 × 5−5 respectively.

For the multi-object generation, we train the object gen-
erator Gobj and the background generator Gbg using the
same Adam optimizer, the learning rate, and the batch size
as the single-object generation. Themain difference between
the multi-object and the single-object generation is that we
sample camera pose from different distributions due to the
different scenes of training datasets (please refer to Sect. 1 of
Appendix for the specific camera pose distribution of each
dataset).

4.3 Comparison with SOTA

For quantitative comparison, we report Frechet Inception
Distance (FID) (Heusel et al., 2017) to evaluate image qual-
ity. We compare our approach against five state-of-the-art
3D-aware image synthesis methods: GRAF (Schwarz et
al., 2020), pi-GAN (Chan et al., 2021), GOF (Xu et al.,
2021), ShadeGAN (Pan et al., 2021), GIRAFFE (Niemeyer
&Geiger, 2021), and GRAM (Deng et al., 2022b). As shown
in Table 1, our method consistently outperforms other meth-
ods (Schwarz et al., 2020; Niemeyer & Geiger, 2021; Chan
et al., 2021; Xu et al., 2021; Pan et al., 2021) on both

single-object and multi-object datasets (Karras et al., 2018,
2019; Choi et al., 2020; Skorokhodov et al., 2022) by a
large margin. Especially, on the Room-Chair dataset (Yu
et al., 2022b), we observe most methods cannot handle
the multi-object scenarios and fail to learn an appropriate
generative model for the scene. In contrast, the extension
MVCGAN+ can effectively render the compositional scenes
with disentangled objects and backgrounds, outperforming
GIRAFFE by a clear margin. To further demonstrate the
effectiveness of the proposed method, we also visualize the
generated images on single-object and multi-object datasets
for qualitative comparison. As illustrated in Figs. 10 and 11,
we render images from a wide range of viewpoints. On
single-object datasets, we observe that GRAF (Schwarz et
al., 2020), GIRAFFE (Niemeyer & Geiger, 2021) and pi-
GAN (Chan et al., 2021) either fail to synthesize reasonable
results under large view variations or have obvious multi-
view inconsistent artifacts. For multi-object scenarios, we
note that GIRAFFE (Niemeyer &Geiger, 2021) suffers from
collapsed results when the viewpoint changes. By compar-
ison, our method achieves the best performance both in
visual quality and multi-view consistency. Please refer to the
appendix and the supplementary material1 for more visual-
ization results.

4.4 Ablation Studies

Image-level and Feature-level Optimization. We conduct
ablation studies to help understand the individual contri-
butions of image-level and feature-level multi-view joint
optimization. From Fig. 12a, we observe that the generated
images maintain the multi-view consistency under pose vari-
ations (FID = 22.5), indicating that image-level optimization
can guide the model to learn a reasonable 3D shape. With
feature-level optimization (see Fig. 12b), our approach can
further improve the visual quality of generated images (FID
= 13.7). As shown in Fig. 12, we note that the images gener-
ated by feature-level optimization havemore delicate details,
such as clear wrinkles, the highlight on the forehead, and the
shadow of the cheeks.
Multi-view Consistency. On the human face dataset (Kar-
ras et al., 2019), we take inspiration from Lin et al. (2022) to
adopt the face identity preservation score (Face-IDS) to eval-
uate the multi-view consistency of generated images. For the
portrait image animation and attribute-editing task (Lin et al.,
2022; Wu et al., 2022; Deng et al., 2020), the face identity
preservation score (Face-IDS) can reflect how well the iden-
tity is preserved for the target image compared to the source
image. Herewe use Face-IDS to evaluate themulti-view con-
sistency bymeasuring the similarity between different views.
We first generate 1000 faces and render each face from two

1 https://youtu.be/k207rGznpEk.
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Fig. 10 Qualitative comparison at 5122 resolution on single-object datasets
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Fig. 11 Qualitative comparison at 2562 resolution under the multi-object setting on Room-Chair (Yu et al., 2022b). We render the scenes from
different camera view points

Fig. 12 Ablation study on FFHQ (Karras et al., 2019) at 2562 resolution

Fig. 13 Without the decomposition phase, the generated images will
have poor object qualities and cannot disentangle objects and back-
grounds

random camera poses. Then, for each image pair of the same
generated face, we calculate the cosine similarity of the pre-
dicted embeddings with a pertrainedArcFace network (Deng
et al., 2019). TheArcFace similarity score has values between
–1 and 1 (greater value means more similar, see Fig. 9 for
examples). Finally, we compute themean score of 1000 faces
as the face identity preservation score (Face-IDS).

As shown in Table 2, our method achieves the best face
identity preservation score (multi-view consistency).We fur-
ther conduct experiments to study whether increasing the
number of auxiliary poses can improve the multi-view con-
sistency or not. From Table 2, we observe that using more
auxiliary poses leads to degenerated performance: the face
identity preservation score (Face-IDS) decreases to 0.58 and
0.51 for 2 and 3 auxiliary poses respectively. We suspect the
performance drop is caused by two reasons. First, since both
the primary and auxiliary poses are randomly sampled from
the camera pose distribution, sampling more poses cannot
bring performance gain. Second, increasing the number of
auxiliary poses brings much more GPU memory consump-
tion, because the model has to perform volume rendering
many times for one iteration. Consequently, we need to
reduce the batch size to 8 and adjust the weight of the R1

gradient penalty (Mescheder et al., 2018) (λ in Eq. 12). How-
ever, the decreased batch size affects the training stability and
makes the model hard to converge, while the increased R1

123



International Journal of Computer Vision

Fig. 14 Scene Decomposition. The generated images can be decomposed into individual objects and backgrounds

Fig. 15 Visualization of extracted 3D meshes with single-view 3D reconstruction (Lorensen & Cline, 1987)

Table 2 Quantitative evaluation of multi-view consistency

Method Face-IDS

GRAF (Schwarz et al., 2020) 0.41

pi-GAN (Chan et al., 2021) 0.50

GOF (Deng et al., 2022b) 0.48

ShadeGAN (Pan et al., 2021) 0.45

GIRAFFE (Niemeyer & Geiger, 2021) 0.55

Ours (1 auxiliary poses) 0.62

Ours (2 auxiliary poses) 0.57

Ours (3 auxiliary poses) 0.51

On FFHQ, we calculate the average face identity preservation score
(ID) of generated images at 2562 resolution

regularization weight can hurt the overall performance (Kar-
ras et al., 2021; Mescheder et al., 2018).
Markov Random Fields Loss.

Previous papers (Feng et al., 2021) found ID-MRF loss can
better capture high-frequency details than L1 loss in the 3D
face reconstruction (Feng et al., 2021) and image reconstruc-
tion task (Wang et al., 2018). Therefore, we adopt Implicit
Diversified Markov Random Field (ID-MRF) loss (Wang
et al., 2018) to enforce the geometry consistency between

views. We also conduct experiments to compare the effect
of ID-MRF and L1 loss on multi-view consistency. Since
there is no ground truth for the generated image, we adopt
the face identity preservation score (Face-IDS) as the quan-
titative metric of multi-view consistency.

When using the vanilla L1 loss, we observe that the model
still achieves similar multi-view consistency (face identity
preservation score = 0.61) as the ID-MRF loss (face iden-
tity preservation score = 0.62). It seems that ID-MRF loss
has no obvious advantages over L1 loss. We suspect that the
problem is in the quantitative metric of multi-view consis-
tency, because the face identity preservation score may not
be able to capture these high-frequency details such as the
wrinkles visualized in the Fig. 9 of Feng et al. (2021). As
mentioned in the last paragraph (Multi-view Consistency),
we compute the face identity preservation score (Face-IDS)
with the Arcface cosine similarity (Deng et al., 2019). But
the extracted embedding may lose the high-frequency and
fine-grained details due to the pooling operation of the Arc-
Face network (Deng et al., 2019). Therefore, the simple L1
loss can obtain a similar face identity preservation score as
ID-MRF loss.

Decompose and Compose.
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Fig. 16 Visualization of the COLMAP reconstruction (Schonberger & Frahm, 2016) from synthesized multi-view images

Fig. 17 Style interpolation. We perform linear interpolation simultaneously in both the intermediate latent and camera pose space. We can observe
that the transition results are smooth and consistent

The “decompose and compose” paradigm is essential in
compositional image generation. If we directly generatemul-
tiple objects using the single objectmethod and then compose
them into a whole scene without the decomposition phase,
the generated image will have poor object qualities and can-
not disentangle objects and backgrounds (see the Fig. 13).
This problem mainly comes from the discriminator, which
plays a critical role in the training process of GANs. If there
is no decomposition phase, we need to perform adversarial
training with a scene-level discriminator between the ren-
dered scenes and real images. In this case, the model will pay
more attention to the global coherence of the whole scene,
and neglect the supervision of individual objects. For a single
object in the scene, the scene-level discriminator can provide
weak learning signals on theobject radiancefield, because the
object region only occupies a small proportion of the whole
image. The inadequate training of the single object can lead to
degenerated object quality.More importantly, the scene-level
discriminator can not disentangle objects and backgrounds,
making the background generator easily overfit the whole
scene. In contrast, we deploy the decomposition phase to
train the object branch and background branch individually.
On the one hand, using two discriminators (the object dis-
criminator Dobj and the background discriminator Dbg) can
provide sufficient supervision for objects, leading to a better

quality of the generated objects. On the other hand, the disen-
tanglement of objects and backgrounds allows us to control
them separately, such as moving and rotating each object or
the background.
Scene Decomposition. We also investigate the disentan-
glement of foregrounds and backgrounds of MVCGAN+.
As shown in Fig. 14, our method can decompose fore-
ground objects and backgrounds from the holistic scene.
The disentanglement allows us to control each object and the
background individually. We can perform scene editing such
as adding, moving, deleting, rotating, and changing individ-
ual objects or backgrounds. Please refer to the supplementary
video for more visualization results.
3D Representation. To better illustrate the learned 3D rep-
resentation, we visualize the underlying 3D shape from
generated images with 3D reconstruction methods (Schon-
berger & Frahm, 2016; Lorensen & Cline, 1987). For the
single-view 3D reconstruction, we adopt the marching cubes
algorithm (Lorensen & Cline, 1987) to extract the underly-
ing geometry of the generated image (see Fig. 15 for the
visualized 3D meshes). To further demonstrate the multi-
view consistency of our method, we also performmulti-view
3D reconstruction (Schonberger & Frahm, 2016) to recover
the 3D shape from generated multi-view images. Specifi-
cally, we first render images of a single instance from 35

123

https://youtu.be/k207rGznpEk


International Journal of Computer Vision

Fig. 18 Style mixing. The source A and B images are generated from
input latent codes zA and zB . The images in the red box are generated
by applying the wB (the intermediate latent corresponding to zB ) to Gs
and wA (corresponding to zA) to Gd . The images in the green box are
generated by applying thewA toGs andwB toGd (Color figure online)

views, and then perform dense 3D reconstruction by running
COLMAP(Schonberger&Frahm, 2016)with default param-
eters and no known camera poses. The results in Figs. 15
and 16 validate the correctness of the 3D shape learned by
our model.
Style Interpolation. We also conduct style interpolation
experiments to investigate the intermediate latent w learned
by the mapping network Gm . Given two generated images,
we perform linear interpolation both in the intermediate
latent space W and the camera pose space. As illustrated
in Fig. 17, the smooth transition of both pose and appearance
demonstrates that our model learns semantically meaningful
intermediate latent space W .
Shape-detail Disentanglement. Besides, we design a style
mixing experiment to studywhat kinds of representations the
generative radiance field Gs and progressive 2D decoder Gd

learned respectively. Specifically, we input two latent codes
zA and zB into the mapping network Gm , and obtain the cor-
responding intermediate latentwA,wB inW space. Then we
can generate style mixing images by applying wA and wB to
control the different parts of the generator (Gs and Gd ). As
shown in Fig. 18, we observe that controllingGs changes the
3D shape (identity and pose) while controlling Gd changes
2D appearance details (colors of skins, hair, and beard). The
results verify that the hybridMLP-CNN architecture can dis-
entangle the geometry of the 3D shape from fine details of
the 2D appearance.

5 Conclusion

We present a multi-view consistent generative model (MVC-
GAN) for compositional 3D-aware image synthesis. The key
idea underpinning the proposed method is to enhance the
geometric reasoning ability of the generative model by intro-

ducing geometry constraints. Besides, we adapt MVCGAN
to more complex and multi-object scenes. Extensive experi-
ments on single-object andmulti-object datasets demonstrate
that the proposed method achieves state-of-the-art perfor-
mance for 3D-aware image synthesis.
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Appendix

A Implementation Details

A.1 Network Architectures

Generative Radiance Field. The generative radiance field
network Gs is a 8-layer SIREN-based MLP with periodic
activation functions (Sitzmann et al., 2020). The dimension
of the hidden layers is 256.
Mapping Network. The mapping network Gm is a 4-layer
MLP network with leakyReLU as the activation function.
The dimension of the hidden layers is 256. We sample the
input latent code z from a 256-dimensional standard Gaus-
sian distribution.
Progressive 2D Decoder. The progressive 2D decoder Gd

is a fully-convolution neural network, which decreases the
feature dimension from 256 (at 642) to 32 (at 5122).
Discriminator. The discriminator Dφ is a progressive grow-
ing convolutional network, which uses eight layers for 642

and fourteen layers for 5122.

A.2 Datasets

We conduct experiments on both single-object and multi-
object high-resolution image datasets: CELEBA-HQ (Karras
et al., 2018), FFHQ (Karras et al., 2019), AFHQv2 (Choi
et al., 2020), M-Food (Skorokhodov et al., 2022), M-
Plants (Skorokhodov et al., 2022), and Room-Chair (Yu et
al., 2022b).
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Fig. 19 The images are rendered from 35 camera poses at resolution 2562

CELEBA-HQ. CELEBA-HQ2 (Karras et al., 2018) consists
of 30,000 high-quality images of human face at 10242 reso-
lution. During training, we sample the pitch and yaw of the
camera pose from a Gaussian distribution with the horizon-
tal standard deviation of 0.3 radians and the vertical standard
deviation of 0.155 radians.
FFHQ. Flickr-Faces-HQ (FFHQ)3 Karras et al. (2019) is
a large scale human face dataset which contains 70,000
high-quality images at 10242 resolution. The images contain
various styles with different ages, ethnicity, and background.
Besides, the humans in the images wear different accessories
such as earrings, sunglasses, hats, and eyeglasses. In the train-
ing stage, we sample the pitch and yaw of the camera pose
from a Gaussian distribution with the horizontal standard
deviation of 0.3 radians and the vertical standard deviation
of 0.155 radians.

2 https://github.com/tkarras/progressive_growing_of_gans.
3 https://github.com/NVlabs/ffhq-dataset.

AFHQv2. Animal Faces-HQ (AFHQv2)4 Choi et al. (2020)
contains 15,000 high-quality animal face images at 5122

resolution. The dataset has three categories: cat, dog, and
wildlife, with each category providing 5,000 images. Fol-
lowing previous works (Schwarz et al., 2020; Niemeyer &
Geiger, 2021; Chan et al., 2021), we conduct experiments on
the cat face images to make a fair comparison. During train-
ing, we sample the pitch and yaw of the camera pose from a
uniformdistributionwith the horizontal standard deviation of
0.4 radians and the vertical standard deviation of 0.2 radians.
M-Plants. Megascans Plants (M-Plants) dateset5 (Sko-
rokhodov et al., 2022) consists of 141,824 plant images
rendered from 1,108models at 2562 resolution. During train-
ing, we sample the pitch and yaw of the camera pose from a
uniformdistributionwith the horizontal standard deviation of
2π radians and the vertical standard deviation of π radians.

4 https://github.com/clovaai/stargan-v2.
5 https://rethinking-3d-gans.github.io/.

123

https://github.com/tkarras/progressive_growing_of_gans
https://github.com/NVlabs/ffhq-dataset
https://github.com/clovaai/stargan-v2
https://rethinking-3d-gans.github.io/


International Journal of Computer Vision

Fig. 20 Images synthesized by MVCGAN on CELEBA-HQ (Karras et al., 2018) at resolution 5122

M-Food. Megascans Food (M-Food)6 (Skorokhodov et al.,
2022) contains 24,472 food images at 2562 resolution. There
are a variety of of food items in the dataset, such as apples,

6 https://rethinking-3d-gans.github.io/.

oranges, mushrooms, and biscuits. In the training process,
we sample the pitch and yaw of the camera pose from a
uniform distribution with the horizontal standard deviation
of 2π radians and the vertical standard deviation ofπ radians.
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Fig. 21 Images synthesized by MVCGAN on FFHQ (Karras et al., 2019) at resolution 5122

Room-Chair.Room-Chair (Yuet al., 2022b) is amulti-object
indoor scene dataset with random number of chairs and vari-
ous of backgrounds.We follow the script7 (Yuet al., 2022b) to

7 https://github.com/KovenYu/uORF.

render 32,000 images at 2562 and the corresponding instance
masks. In the trainingprocess,we sample the pitch andyawof
the camera pose fromauniformdistributionwith the horizon-
tal standard deviation of 2π radians and the vertical standard
deviation of 0.3 radians.
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Fig. 22 Images synthesized by MVCGAN on M-Plants (Skorokhodov et al., 2022) at resolution 2562

B Additional Results

We provide additional results to show the multi-view consis-

tency and the quality of the generated images.
As shown in Fig. 19, we render images of a single instance

from 35 views images. We also provide more generated
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Fig. 23 Images synthesized by MVCGAN on M-Food (Skorokhodov et al., 2022) at resolution 2562

images in Figs. 20, 21, 22, 23, and 24. Please also refer to
the supplementary video8 for more results.

8 https://youtu.be/k207rGznpEk.

C Discussion

C.1 Comparison to StyleGAN3

StyleGAN3 (Karras et al., 2021) can also produce multi-
view images with random latent walk. Here we compare the
proposed method and StyleGAN3 as follows.
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Fig. 24 Images synthesized by MVCGAN+ on Room-Chair (Yu et al., 2022b) at resolution 2562

1. The fundamental difference is that our method represents
the scene in 3D space, while StyleGAN3 (Karras et al.,
2021) operates in the 2D domain. To generate an image,
we first query the 3D represention of the scene (neu-
ral radiance fields), and then use volume rendering to

systhesis image from a specific viewpoint. Every image
generated by the proposed model has a underlying 3D
represetnion. Therefore, we can extract the underlying
geometry of the generated image and export as meshes
or pointclouds (see Figs. 15 and 16.
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2. Our method is more controllable. Our method explic-
itly disentangles the camera pose from the latent code,
while StyleGAN3 encodes both the camera pose and the
identity into the latent code. Therefore, we can gener-
ate images from the same identity from different views,
or generate different identity from the same viewpoint.
Besides, the proposed method also support other camera
operations, e.g., rotate, translate, zoom-in, and zoom-out
(see the supplementary video). In contrast, the random
latent walk process of StyleGAN3 (Karras et al., 2021)
is arbitrary and uncontrollable. Since the identity and the
camera pose are coupled in the the latent code, chang-
ing the latent code can change both the camera pose
and the identity. As shown in Video 1a and Video 1b
on the project page9 of StyleGAN3 Karras et al. (2021),
we observe the mouth and expression also change in dif-
ferent views.
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