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Abstract

Current anomaly detection paradigms face inherent limitations in
simultaneously addressing structural anomalies (e.g., geometric dis-
tortions) and logical anomalies (e.g., semantic inconsistencies), due
to conflicting feature representation requirements between these
two anomaly categories. We propose UniAD, a novel dual-branch
teacher-student framework that achieves unified anomaly detection
through synergistic integration of complementary expertise from
heterogeneous vision models without requirements of extra manual
annotations. In particular, our framework integrates two frozen
expert models as teachers: (1) a structural teacher specializing in
geometric-sensitive patterns, and (2) a logical teacher focusing on
semantic-aware representations via component relationship mod-
eling. To resolve feature conflicts while preserving complementary
information, the student network is equipped with one shared
backbone and two independent branches. One branch employs
multi-scale feature alignment with the structural teacher while an-
other branch establishing semantic correspondence with the logical
teacher through component-aware attention mechanisms. Further-
more, we introduce the text-guided semantic enhancement module
as a kind of logical guidance to facilitate the anomaly indicator. Ex-
tensive experiments on the challenging MVTec LOCO benchmark
validate that the scalability of our model to localize both geometric
distortions and semantic inconsistencies. The proposed method out-
performs existing single-purpose detectors, yielding 93.7% AUROC
for logical anomalies and 93.2% AUROC for structural anomalies.
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1 Introduction

Image anomaly detection stands as a pivotal technology and tool in
the field of automation control. Moreover, this technique has wide-
ranging applications across various fields, including medical image
analysis [18, 47] and industrial inspection [6, 27]. Particularly in the
industrial anomaly detection, this technique is of paramount im-
portance. In this context, anomaly detection, also known as defect
detection, aims to identify samples that are defective or erroneous.
Common defects in samples include scratches, cracks, notches, etc.,
which are referred to as structural anomalies. Structural anomalies
usually involve the physical or architectural structure of system
components, indicating an abnormality in the whole structure of
object. Effective image anomaly detection techniques can signifi-
cantly enhance product quality and efficiency, reducing economic
losses and waste caused by defective products.

In industrial detection, unsupervised methods do not require
labeled data, which is often costly and time-consuming to obtain.
This makes unsupervised methods more practical for large-scale
applications, especially when labeled data are scarce or unavail-
able. Most existing anomaly detection models employ unsupervised
learning methods to address structural anomaly tasks, with main-
stream approaches including image reconstruction-based meth-
ods [15, 28] and feature embedding-based methods [7, 25, 37],
among others. Through these methods, a variety of models have
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Figure 1: Here we show both normal and anomalous samples
in the MVTec LOCO AD dataset. It include logical anomalies,
structural anomalies, and normal images from top to bottom
(anomalous regions highlighted in red). In this work, we
also harness the textual component description to explicitly
modeling semantic cues.

Component
Description

achieved high detection performance in handling structural anom-
aly tasks [30, 31, 36]. However, these models are all built for struc-
tural anomalies and do not perform satisfactorily when it comes to
another type of anomaly detection task—logical anomaly detection.

Unlike structural anomalies, logical anomalies do not manifest
as obvious notches or defects that are easily identifiable, but rather
as logical errors, violating the inherent constraints of normal im-
ages. For instance, permissible objects appear in invalid positions,
or required objects are entirely absent, as shown in the first row
in Fig. 1. Current structural anomaly detection models, which ex-
cel in detecting visual irregularities, are less effective in logical
anomaly detection. This is because logical anomalies often involve
minimal changes in item composition or position that do not alter
the appearance of image significantly but break its logical rules.
Compared with the structural anomaly detection models, logical
anomaly detection models achieve impressive results by paying
more attention to the relationships among objects within the im-
age and their logical consistency with the environment, including
the existence of objects and their relative positions [17, 29]. Yet,
these logical anomaly detection models overly focus on the rela-
tionships between components and overlook potential structural
defects within the components themselves, resulting in a decline
in structural anomaly detection capability.

Anomaly detection in industrial scenarios requires distinguish-
ing structural anomalies (e.g., cracks) from logical anomalies (e.g.,
misplaced components). While structural anomalies demand fine-
grained geometric analysis, logical anomalies rely on semantic
understanding of component relationships. Existing methods focus
on either geometric or semantic features, leading to fragmented
solutions. UniAD bridges this gap by integrating geometric cues
(e.g., texture, shape distortions) and semantic cues (e.g., object re-
lationships, contextual validity). The structural branch employs a
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structural teacher to encode multi-level local features, while the
logical branch leverages a logical teacher to model global compo-
nent interactions. A student network integrates both perspectives
through dual-branch distillation, aligning geometric patterns and
semantic constraints. Additionally, the text guidance enhances se-
mantic consistency via textual descriptions. Our contributions are
as follows:

e We design a dual-branch teacher-student architecture that in-
tegrates geometric and semantic cues through heterogeneous
knowledge distillation. It resolves feature conflicts while preserv-
ing complementary information, facilitating a unified framework
to simultaneously detect structural and logical anomalies.

o To resolve ambiguities in complex logical scenarios, we introduce
a text-guided semantic enhancement module. By leveraging a pre-
trained vision-language model, we generate textual descriptions
of component layouts and encode them into semantic features.
During testing, text similarity metrics quantify deviations from
language-defined logical rules, providing complementary seman-
tic signals beyond visual features.

e On the challenging MVTec LOCO benchmark, our framework
achieves 93.7% AUROC for logical anomalies and 93.2% for struc-
tural anomalies, surpassing the single-cue models by a clear
margin. Ablation studies confirm that integrating both cues is
critical to unified anomaly detection.

2 Related Works

Structural Anomaly Detection. Structural anomaly detection pri-
marily focuses on the physical structure of objects or regions in im-
ages. One of the commonly used approaches focuses on the feature
embedding utilization. These feature embedding-based methods
transform raw data into a low-dimensional feature space, where
anomaly detection is performed. Among them, multi-dimensional
feature extraction with ResNet [16] stands out as a notable example.
For instance, in RD [10], the student model learns multi-dimensional
features from the teacher model to encode normal features. Sim-
pleNet [31] trains a discriminator capable of distinguishing between
normal and pseudo-anomalous features generated through local
feature transformations by learning the differences between local
features of normal images and those after transformation, ultimately
achieving anomaly detection. In these methods, generating suitable
feature representations is critical. Improper feature extraction may
lead to image information loss and reduced detection accuracy.
Another type of approach, termed image reconstruction-based
method, focuses on reconstructing the input image and detect-
ing anomalies by comparing it with the original. Recently, nu-
merous outstanding models have emerged using VAE (Variational
Autoencoders) [4, 8, 32, 38] and GAN (Generative Adversarial Net-
works) [1, 13] to detect anomalies. However, one major drawback
of these methods is that they may misclassify anomalies similar to
normal cases in structure, increasing false negatives.
Logical Anomaly Detection. Logical anomaly detection mainly
focuses on the logical relationships between objects and their sur-
rounding environment within an image. Recently, segmentation-
based methods have become a prominent choice for logical anomaly
detection as they can effectively reflect the logical relationships
between normal samples. Typically, segmentation-based methods
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begin by dividing training samples into multiple representative com-
ponents, followed by conducting comparative analyses on each seg-
mented component. Models such as ComAD [29], PCComAD ([36],
and PSAD [20] fall into this category. ComAD [29] clusters feature
maps generated by the pretrained DINO [9] network to extract
representative component features, which are then match against
the corresponding features of test samples during the test phase to
derive anomaly scores. These methods achieve satisfactory perfor-
mance in detecting obvious missing or replaced items and positions
but are less effective in identifying subtler defects in objects.
Text-guided Anomaly Detection In recent years, there has been
a growing emergence of anomaly detection methods [14, 19, 22,
26, 41] guided by textual information. Specifically, text-guided in-
dustrial image anomaly detection represents an approach that in-
tegrates natural language processing (NLP) with computer vision
techniques, aiming to leverage textual descriptions to guide or en-
hance the identification of anomalies in industrial images. For exam-
ple, LogicAD [19] uses autoregressive multimodal vision-language
models (AVLMs) [23, 24, 35] for logical anomaly detection. More
specifically, LogicAD integrates AVLMs with format embeddings
and a logical reasoning module, enabling it to detect logical anom-
alies in images using only textual prompts, without requiring addi-
tional visual annotations. Furthermore, it provides explanations for
the detected anomalies. However, this approach heavily relies on
high-quality textual input; if the textual descriptions are inadequate,
the performance of the model may be compromised.

3 Method

Our method, UniAD, a dual-branch teacher-student framework that
synergizes geometric cues from structural branch and semantic
cues from logical branch. As shown in Fig. 2, UniAD comprises four
key components: one structural teacher, one logical teacher, one
student model, and one text-guided semantic enhancement module.
The student model is equipped with two independent branches to
distill the geometric and semantic priors from two teachers. We
also introduce the text guidance to store component descriptions
for semantic verification. During the test phase, we only keep the
student model to extract both structural anomaly score and logical
error heatmap with the help of the reference text.

3.1 Heterogeneous Feature Distillation

Most existing feature-distillation-based anomaly detection meth-
ods tend to rely on a single perspective, either structural or logical,
limiting their ability to detect both types of anomalies. This paper
aims to design a model capable of handling structural and logi-
cal anomalies simultaneously. Traditional single-teacher-student
models have limitations in the amount of knowledge that a single
teacher model can impart to the student model. Concretely, we
design the dual-teacher-single-student architecture that the stu-
dent model can aggregate knowledge from multiple sources. Our
method allows the student model to learn essential cues from the
teacher models, each cue tailored to different anomaly detection
tasks. Therefore, the key lies in selecting suitable teacher models
and integrating them with the student model to efficiently learn
their knowledge about geometric and semantic cues.
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Selection of the Teacher Models. To comprehensively detect
both structural and logical anomalies, we select two distinct teacher
models with complementary strengths, driven by the specific na-
ture of these two anomaly types. Specifically, the structural teacher
model, dedicated to handling structural anomalies, is structured
to produce feature maps containing information at different levels.
By integrating these multi-level features, the model can develop
detailed and fine-grained local representations as ours geometric
cues, similar to models like [31, 36] that use local features to identify
structural anomalies. On the other hand, for the logical anomaly
detection, we deliberately choose a logical teacher model, capable of
capturing holistic global information and emphasizing relationships
between components within an image, which represent semantic
cues. This choice is inspired by recent studies [29], which under-
score the importance of component-level features for identifying
logical anomalies. The complementary strengths of these two types
of teacher models provide comprehensive learning resources for the
student model, then the complementary strengths of dual-teacher
is demonstrated by the ablation experiment in Table 6.

Design of the Student Model. After selecting the teacher mod-
els, the next step is to design the student model. This necessitates
taking into account the heterogeneity between teacher and student
models, which can include differences in semantics, dimensions, and
feature representations. To bridge these gaps, the student model
must be designed with strong feature extraction capability and
adaptability. In this paper, we incorporate a dual-branch architec-
ture to enhance the student model’s ability to process and integrate
heterogeneous knowledge from the teacher models. Concretely, the
dual-branch are 1) Structural Branch: the student model extracts
multi-scale features to capture local information via learning from
the structural teacher. 2) Logical Branch: the student model ex-
tracts component-level feature via learning from the logical teacher
and generates segmentation maps. We use a shared student model
and two separate teachers in two aspects: 1) Decouple structural
and logical cues. Task-specific branches ensure that structural and
logical cues are effectively decoupled. 2) Computation cost. This
shared structure effectively halves the number of parameters and
cuts down the inference time. Besides, considering the importance
of fine-grained feature encoding and multi-level feature consistency
between the student and teacher models, the student model em-
ploys an identical backbone as the structural teacher. Table 4 shows
how different backbone networks affect performance.

3.2 Structural Branch for Geometric Cue

Structural Feature Distillation. To effectively extract geometric
cues through the structural branch, we design a multi-scale feature
alignment strategy inspired by the knowledge distillation meth-
ods [39]. Specifically, we select multi-level features generated by the
structural teacher model, including the low-level multi-dimensional
features gres, high-level features gs;, for the student model to learn,
as shown in Fig. 2. The goal is to align the output of student model
more closely with that of the structural teacher model by learning
and integrating multi-level features, enhancing its ability to obtain
fine-grained geometric cues and detect structural anomalies. This
choice avoids learning biases that can result from relying on a sin-
gle type of feature. The experimental results of selecting different
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Figure 2: Overview of the training and test phases of our method.
cues from the structural teacher via multi-level alignment (Lp;y,
from the logical teacher and text-guided semantic enhancement

scores from both branches are fused to achieve unified detection.

features for distillation are shown in the ablation study in Sec. 4.3.
The generation process of features gres and gg;r is outlined below.

For a given image x;, we select m outputs of different layers as
the multi-dimensional features. For the teacher model and student
model, suppose the Ith output is gL, (x;) or fL(x;) € RFEXWixCi
(I=1, 2, ..., m), where H;, W}, and Cj are the height, width, and
channel size of the output. To learn knowledge from the structural
teacher, the student undergoes the steps in Fig. 2 as follows:

1) Feature Patchifying and Pooling: For each entry gi’és (x;) W) ¢

h,w)

RC! at location (h, w), its patchified feature set NV, ;S *" with a patch-
size p is constructed as
h,
N = K € = Lpf2) e pf2l),
"elw-lp/2)....w+Lp/2]]}.

An adaptive average pooling aggregation function Fggq is applied to

the patchified features in N}, to obtain aggregated features zi’i for

each layer, i.eA,Zi’i = Fagg ({(glrés (xi))(hl’y,) | (W.y') € ngh’w) }) .

2) Bilinear Interpolation: As different aggregated feature zi’i

above may have diverse dimensions, this can pose challenges to
their integration. For better feature alignments, we adopt a bilinear
interpolation BI(-) to transform these features to a uniform size
(Hp, Wp). Then, we concatenate them along the channel dimension
to form the final high-level feature gitr.

v = Fear (BI(ZM, (Ho, Wo))ll € {1,..., m}). )

After obtaining g, for the teacher model, we generate the cor-
responding feature f5; for the student model using the same fea-
ture processing approach. Then, we define two feature distillation
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structural student network is trained with MSE loss.

Liow = Z Z (gres (xi) — f;'es(xl))z ®3)
lE{l m} X;i € Xtrain
Lhigh =5 Z (gitr - f;itr)2> (4)

x; € Xtrain
where gres and fres are the multi-dimensional features of the struc-
tural teacher model and the student model, gé,r and fsi,r represent
the high-level features of the ith input image of the structural
teacher model and the student model. N denotes the total number
of samples in the training set.
The total loss for structural feature distillation is given by

®)

After obtaining the high-level structural features f;,, inspired
by [31], we utilize a feature adapter-a fully connected layer-to
transform f5;, into the target domain feature fs;r, thereby reduc-
ing domain bias. Subsequently, we construct pseudo-anomalous
counterparts f by applying Gaussian noise to fs;r. To further en-
hance the structural anomaly detection capability in distinguishing
structural anomalies, especially those with complex structures, we
integrate a structural anomaly discriminator D based on a 2-layer
MLP, estimating normality as D(fss+) € R. This discriminator takes
both the target domain features f;; and their pseudo-anomalous
counterparts f as its inputs, trained with a truncated /1 loss as

7)),

Lser = Lhigh +Liow-

lhw = max(0, tht — D(f

)) + max (0, —th™ +D(f (6)
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where th" and th™ are truncation terms preventing overfitting.
They are set to 0.5 and -0.5 by default. The training objective is Lgjm,
aiming to boost the sensitivity of model in detecting anomalies.

h,w
li

Lsim = min Z Z m (7)

xt€Xtrain Bow

In the inference stage, the discriminator directly outputs the struc-
tural anomaly score.

3.3 Logical Branch for Semantic Cue

Logical Feature Distillation. To capture semantic cues through
the logical branch, we propose a component-aware feature align-
ment strategy via multi-scale feature fusion. With structural feature
distillation above, the student model can accurately capture fine-
grained structural anomalies. However, they may sometimes lack
the necessary semantic depth. The logical models, on the other
hand, excel in producing features that are semantically rich, espe-
cially in their logical components. Given this contrast, it becomes
imperative for the student model to acquire the component-level
features from the logical teacher. Nevertheless, due to differences
in network design, the features generated by the student model
may not match the dimensions of the component-level features ex-
tracted by the logical teacher model. To address this issue, inspired
by [12], we impose the multi-scale feature fusion techniques for
dimension matching. Concretely, for the multi-dimensional feature
outputs frles e RHXWixCi(1 = 1, ... m) of the student model, we
employ a transformation function to synchronize these various
features with the corresponding features of the logical teacher.

Downsample(frles) if Dé > Di
#(fles) = {Upsample(fies) iDL <Dy, (8)
f;'les ifDé = Di

where Di and Di denote the feature dimensions of layer [ in the
student model and the teacher model, respectively.

Finally, we obtain m dimensionally consistent features, concate-
nated to form a new feature fj,  as

fiog = Feat (3 (£les): $(fies)s - $(f12))- ©)

After feature alignments, we define the following logical distilla-
tion loss Lj,4 using MSE to train the student network.

Log=1 O (og0) ~ fiagG)®  (10)
Xi € Xtrain

Through logical feature distillation, the student model learns
semantic cues from the teacher while bridging structural differences.
To facilitate the performance of model in detecting logical anomaly,
representative component-level features are further extracted from
the learned features of student model. Specifically, for all channels
of flog, KMeans clustering is applied to fjo 4 to obtain K clusters,
as shown in Fig. 2. The cosine similarity between each cluster
and fjo, is then calculated to generate an initial segmentation map.
Subsequently, the segmentation map is resized to the original image
dimension via interpolation and refined with a fully connected
Gaussian Conditional Random Field (CRF) [21] for post-processing
and is stored in a memory bank for future testing.
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Text-guided Semantic Enhancement Module. In the field
of industrial image anomaly detection, traditional methods have
predominantly relied on pure vision-based models. The introduc-
tion of a text generator enables multimodal information fusion,
which involves joint modeling of images and text. By employing a
text generator to produce semantic descriptions of image content,
additional contextual information beyond visual features can be in-
corporated, thereby enhancing the accuracy of anomaly detection.

Text-guided Semantic Enhancement Module consists of two com-
ponents: text generation and the calculation of anomaly scores
based on text features. The detailed steps for calculating anomaly
scores from textual features will be described in Sec. 3.4. Following
this, we will delve into the specifics of the text generation process.

To encode semantic relationships beyond visual features, we
leverage textual descriptions generated by VLLM (visual-language
large model). These descriptions explicitly capture component-
level semantics, enabling the model to compare test images against
language-defined logical rules. Concretely, for all images x; from
the training set X;r4in and the test set X;ess, inputting x; into the
pre-trained model, along with prompts that guide the description of
components and their positions, enables the generation of a textual
description. This process can be represented as

text; = VLLM((x;, Prompt)|x; € Xtrain U Xrest), (11)

where VLLM(-) denotes visual-language large model. In practice,
we deploy Qwen-VL [2] pre-trained model. Then the generated
texts are stored in the memory bank for future testing.

3.4 Synergistic Anomaly Score

Computing Anomaly Score. After training, the student model
can generate multi-level features and component-level features for
structural anomaly and logical anomaly respectively. Leveraging
these distinct features, we can generate corresponding anomaly
scores: structural anomaly score Sg¢r and logical anomaly score Sy
The S¢,, and S3,, are directly derived from the teachers’ and stu-
dents’ output of the structural anomaly discriminator respectively.
The Sltog and Slsog’ on the other hand, are computed by comparing
the component feature segmentation maps of the training images
and testing images following [29]. Concretely, we first convert the
component-level segmentation maps into three types of features:
1) Area features are calculated by summing pixels counts within
segmented regions. 2) Color features are extracted by converting
RGB images to CILAB space, which includes three components: L
(lightness), a (green-red), and b (blue-yellow). For each pixel, the
lightness component is ignored, and the ratio b/a is calculated,
with the final color feature being the average value across the re-
gion. 3) Quantity features are derived by grouping regions using
DBSCAN [11] and calculating their density. Then, by combining
the above three features, the logical anomaly score is derived from
the average L, distance between the test image and its 5-nearest
neighbors Ny (k =5).

Meanwhile, the text feature anomaly score is calculated. To
bridge the gap between language descriptions and anomaly quan-
tification, we employ a pretrained text encoder. Textual descriptions
generated by Qwen-VL contain rich logical rules. The text encoder
maps these descriptions into dense vectors in a shared semantic
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Table 1: Comparison of our model and existing methods on MVTec LOCO AD. Results are given as logical anomalies/structural
anomalies. The highest and second-highest scores are highlighted in bold and underlined, respectively.

Metric Category LogicAD [19]  SLSG [40] PatchCore[36] GCAD [5] SAM-LAD [34] EfficientAD-S [3] DSKD [46] Ours
Breakfast Box 93.1/- - 80.0/75.2 87.0/80.9 96.7/85.2 - 86.4/82.3 95.1/86.3
Juice Bottle 81.6/- - 92.3/97.8 100/98.9 98.7/96.5 - 99.1/98.9 99.5/98.5
AUROC Pushpins 98.1/- - 73.8/81.9 97.5/74.9 97.2/79.2 - 75.8/89.2 96.0/97.6
Screw Bag 83.8/- - 55.7/88.6 56.0/70.5 95.2/77.9 - 63.1/88.7 83.4/88.1
Splicing Connectors 73.4/- - 75.6/94.9 89.7/78.3 91.4/88.6 - 91.2/92.5  94.4/95.4
Average 86.0/81.5 89.6/91.4 75.5/87.7 86.0/80.7 95.8/85.5 90.0 83.1/90.3 93.7/93.2
verag 83.8 90.3 81.6 83.4 90.7 ' 86.7 93.4
Breakfast Box - - - 50.2 81.9/79.1 - 56.8 80.5/82.1
Juice Bottle - - - 91.0 94.4/93.5 - 86.5 94.6/95.2
sPRO Pushpins - - - 73.9 76.2/74.2 - 82.5 75.1/85.6
Screw Bag - - - 55.8 86.3/71.6 - 62.7 72.3/78.6
Splicing Connectors - - - 79.8 89.1/85.2 - 76.7 92.0/90.3
85.6/80.7 82.9/86.4
Average - - - 70.1 83.2 71.8 73.0 346

space, enabling quantitative comparison between test images and
normal reference images. Specifically, for the text text; correspond-
ing to a test image x; € X;est, extracting the text feature f[te’it and
then the text features of the nearest five neighbors based on the
segmentation map are calculated as reference features ftre’ﬁt € N.

i k
ftte’;t = Frext ((text;)), ftréxt = Frext ((texty)|texty € Ni), (12)

where Frext () uses the Long-CLIP [45] pre-trained model. The text
feature anomaly score Sty is defined as

k
Stext =1 - %Zsim( tté;ct’ﬁrél;t ) (13)
j=1
where sim(-, -) represents cosine similarity. The more similar the
text features of the test image are to the reference text features, the
lower the anomaly score.

Anomaly Score Fusion. The above-mentioned scores are then
combined to obtain final anomaly detection results. Concretely, the
structural anomaly score S is derived by summing the scores
from the teacher S’, and student model S%, . The same approach

str str
is applied to obtain the logical anomaly score S,

+53

t t
Sstr = Sgpr + Sgtw Slog =S log'

log (14)

However, since Sstr, Siog, and Syex; are derived from different
feature spaces and distinct methodologies, directly summing them
may compromise the anomaly detection performance. To ensure
balanced and meaningful fusion, normalization of these scores is
necessary. The normalized anomaly score S is calculated as S =
(S — p) /o, where S represents the original anomaly score, p and o
denote the mean and standard deviation, respectively. The final total
anomaly score Sy, is then obtained by summing the normalized
anomaly score Sstrs 5109, and Srext.

gtotal = S~Str + glog + §text~ (15)

4 Experiment

4.1 Implementation Details

Following the analysis in Sec. 3.1, we adopt WideResNet50 [16] as
backbone for structural teacher and student while selecting DINO

Table 2: Comparison of our model and existing methods on
VisA and MVTec-AD with AUROC.

Method VisA  MVTec-AD (Texture) MVTec-AD (Object)
DSR [44] 918 99.2 97.1
PromptAD [26]  89.1 96.6 96.6
HGAD [43] 93.5 99.8 97.7
MoEAD [33] - 99.4 96.9
PatchCore [36] - 99.0 99.2
Ours 96.9 99.6 99.3

Table 3: Efficiency comparison of different methods on
MVTec LOCO AD.

Method Params FLOPs Latency(ms) AUROC
PatchCore [36] - - 47.1 81.6
DADF [42] 2985 M 1493 G - 83.7
SAM-LAD [34] - 94.2 G - 91.8
Ours 225.6 M 899G 19.6 93.4

ViT-S/8 [9] as backbone for logical teacher. In the feature distillation,
the dimension of the feature m is set to 3. We train our student
model using the Adam optimizer with a learning rate of 0.05 for 500
iterations. For the structural branch, the structural teacher model
employs a widely used feature extractor [36] to generate high-level
features and the feature dimension from the feature extractor is set
to 1536. The dimensions of the input and output features for the
FC layer are the same. The f is obtained by adding i.i.d. Gaussian
noise N (0, 62) to each entry of normal features. o is set to 0.015 by
default. The subsequent discriminator composes of a linear layer,
a batch normalization layer, a leaky relu (0.2 slope), and a linear
layer. The Adam optimizer is used, setting the learning rate for
discriminator to 2e-4, and weight decay to 1le-5. Training epochs is
set to 160 for each dataset and batchsize is 4. For the logical branch,
we resize all the images into 224 x 224 and the cluster number
K is set to 5. For the text-guided semantic enhancement module,
we used a text prompt-"Describe all components and their spatial
relationships in the image" and the size of Qwen-VL is 32B.

We compare our model with LogicAD [19], SLSG [40], Patch-
Core [36], GCAD [5], SAM-LAD [34], EfficientAD-S [3], DSKD [46],
DSR [44], PromptAD [26], HGAD [43], and MoEAD [33] on MVTec
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Figure 3: Qualitative analysis on MVTec LOCO AD with logi-
cal and structural anomalies.
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Figure 4: Qualitative analysis on VisA with only structural
anomalies.

LOCO AD [5], VisA [48], and MVTec-AD [6] datasets. Consistent
with previous studies, we adopt the Area Under the Receiver Oper-
ating Characteristic (AUROC) and saturated Per-Region Overlap
(sPRO) as the primary quantitative evaluation metric.

4.2 Quantitative and Qualitative Results

The anomaly detection results on MVTec LOCO AD are shown in
Table 1, where the image-level anomaly scores are calculated us-
ing (15). Across both structural and logical anomaly detection, our
method achieves the highest overall performance. Our model shows
significantly higher average anomaly detection performance with
AUROC, i.e, surpassing the second-best method by 2.7%. Similarly,
in terms of performance under the sPRO metric, our method outper-
forms the second-best method by 1.4%, showcasing its effectiveness
and precision across various anomaly types. Moreover, as shown
in Table 3, our model not only achieves superior performance but
also demonstrates a significant advantage in terms of efficiency.

For models designed to detect logical anomalies, such as [5], our
model not only outperforms it in detecting structural anomalies
but also surpasses it in identifying logical anomalies. Similarly, our
model shows superior performance compared to models like [36],
which exhibits stronger capabilities in detecting structural anom-
alies than logical ones. Moreover, our method presents superior
performance when compared to [19], which focuses solely on logi-
cal anomaly metrics in text-guided approaches.

Representative samples and the corresponding anomaly local-
ization results are visualized in Fig. 3. We observe that our method
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Table 4: AUROC performance of different backbones for stu-
dent model on MVTec LOCO AD in logical anomaly (LA) and
structural anomaly (SA) detection.

Backbone LA SA Avg
DINO 74.2 85.4 79.8
WideResNet50 93.7 93.2 93.4

effectively detects logical anomalies. For instance, in the “juice bot-
tle” category, the juice color is quite similar to the label, making it
difficult to distinguish between them. Despite this, our model accu-
rately identifies the incorrectly assigned label position. Similarly,
in the “pushpins” category, the grids where the pushpins are placed
are extremely easily confused with the background. However, our
model still effectively detects violations of the logical constraint-
where each grid should contain only one pushpin. These results
underscore the ability of our model for logical anomaly detection,
even in challenging scenarios. For structural anomalies, in many
cases, the defects are extremely small and difficult to detect. How-
ever, our model accurately pinpoints these smaller and localized
defects, such as missing labels, contaminated pushpins, and broken
screws. These results highlight the capability of our model to detect
and locate a wide range of structural anomalies.

The detection results on the ViSA and MVTec-AD datasets are
shown in Table 2. On these datasets, which contains only structural
anomalies, our model demonstrates commendable performance
compared to models [36, 44] specifically designed to address struc-
tural anomalies. Furthermore, our method also exhibits notable
advantages over [26], a text-guided method, in detecting structural
anomalies. In the context of detecting anomalies within this dataset,
the logical branch, which excels at identifying logical inconsisten-
cies, plays a diminished role due to the absence of logical anomalies
in the dataset. Consequently, the structural branch of our model,
which is adept at detecting structural anomalies, becomes more
pivotal. As illustrated in Fig. 4, our model can effectively iden-
tify structural defects within samples, such as missing corners or
notches in objects, or contaminated areas on PCBs.

4.3 Ablation Studies and Further Discussion

Ablation Study on Different Student Backbones. We test the
student model with different backbones, and the results are shown
in Table 4. We find that among the tested architectures, WideRes-
Net50 manifests superior performance compared to the DINO back-
bone. This is because, when handling structural branches, it is
crucial to focus on the precise capture of geometric cues. However,
DINO, as a network suited for extracting semantic cues, tends to per-
form suboptimally in this regard. On the other hand, WideResNet50,
by stacking multiple convolutional layers, excels at extracting geo-
metric cues from images, making it more effective in addressing
structural anomalies. Furthermore, its deep architecture provides
multi-level feature representations, which enable flexible learning
of feature representations from other networks when combined
with multi-scale feature fusion techniques. This enhances its capa-
bility to detect logical anomalies.

Ablation Study on Different Feature Distillations. We config-
ure the student model to learn different features, and the corre-
sponding results are shown in Table 5. We observe that selecting
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Table 5: AUROC performance of different feature distillation
on MVTec LOCO AD.

Low-level Feature High-level Feature LA SA Avg
v 92.7 92.9 92.8

v 92.2 92.4 92.3

v v 93.7 93.2 93.4

Table 6: AUROC performance of different teachers on MVTec
LOCO AD.

Structural Teacher Logical Teacher LA SA Avg
v 823 921 872

v 90.6 75.3 83.0

v v 93.7 93.2 93.4

Table 7: AUROC performance of different VLLMs on MVTec
LOCO AD. SB and LB denote structural and logical branches
respectively.

VLLM LA SA Avg
Without 93.0 93.2 93.1
GPT-40 (only LB) 93.5 93.1 93.3
Qwen-VL (SB & LB) 93.2 93.0 93.1
Qwen-VL (only LB) 93.7 93.2 93.4

both low-level multi-dimensional features and high-level features
for feature distillation yields the best performance, outperforming
single-feature approaches. Combining both feature types helps the
model more effective capture of geometric cues, thereby improv-
ing its capability in detecting structural anomalies. If only single
feature is selected for learning, such as high-level features, the
student model may fail to learn finer-grained features, leading to
incomplete learning and reduced detection performance.
Ablation Study on Different Teachers. The experimental results
in Table 6 illustrate the impact of the different teacher models on
the overall architecture. The results from experiments using either
a single structural teacher or a single logical teacher validate their
respective specificity in addressing different types of anomalies.
However, when both teacher models are incorporated simultane-
ously, optimization across all anomaly types is achieved, thereby
validating the effectiveness of the dual-teacher design.

Ablation Study on Different VLLMs. The experimental results in
Table 7 indicate that using descriptions from different large models
consistently improves the average anomaly detection performance,
demonstrating that our method is VLLM-agnostic. The third and
fourth lines of Table 7 show that applying text guidance to the struc-
tural branch slightly degrades the detection performance by 0.3%
compared to the case without text guidance. The reason may be
that the structural anomaly often exhibits phisical changes, which
are not easily described in text without specific technical vocab-
ulary or detailed context. In contrast, the logical anomalies often
involve violations of predefined rules, which contains rich semantic
information. Text guidance can exploit these rules with additional
semantic context, making it crucial for the logical branch.
Ablation Study on Different Branches. The experimental results
in Table 8 validate the effectiveness of different branches in han-
dling various types of anomalies. When only the structural branch

Xiaodong Wang et al.

Table 8: AUROC performance on MVTec LOCO AD with Dual-
branch methods. SFD, LFD, and TSE represent Structural
Feature Distillation, Logical Feature Distillation, and Text-
guided Semantic Enhancement module, respectively.

Structural Branch Logical Branch

SFD LFD TSE LA SA Avg
v 83.4 92.3 87.9
v 88.8 755 82.2

v v 91.2 75.6 83.4

v v 930 932 931
v v v 937 932 934

Table 9: AUROC performance of different anomaly score
fusions on MVTec LOCO AD.

st Stog ss,, Stog LA SA Avg
v 82.5 83.9 83.2
v 92.2 73.9 83.1

v 89.0 83.3 86.2

v 92.5 73.5 83.0

v v 92.9 92.6 92.8
v v 93.1 85.8 89.5

v v v v 93.7 93.2 93.4

is employed, the performance in detecting structural anomalies sur-
passes that of detecting logical anomalies compared to experiments
using only the logical branch. Conversely, when relying solely on
the logical branch, the detection of logical anomalies achieves supe-
rior results. Additionally, the experiments in the second and third
rows, as well as the fourth and fifth rows, highlight the efficacy of
the text-guided semantic enhancement module. Finally, the fifth-
row experiment, which integrates the geometric and semantic cues
of both branches, achieves the optimal overall performance, thereby
validating the effectiveness of the dual-branch design.

Ablation Study on Different Anomaly Score Fusions. During
testing, different score fusion methods can affect the final detection
performance. We fuse anomaly scores in different combinations and
present the results in Table 9. We find that when all anomaly scores
are fused (shown in the last row), the detection metrics reach their
highest levels. This indicates that combining scores of students and
teachers can yield optimal detection performance. This shows that
different anomaly scores complement each other, enhancing the
overall detection capability of model when combined.

5 Conclusion

In this paper, we propose a new image anomaly detection frame-
work, UniAD, which unifies both structural and logical anomaly
detection tasks through dual-branch teacher-student network. Geo-
metric cues localize structural defects via multi-level feature align-
ment, while semantic cues enforce logical constraints through
component-aware segmentation maps and text-guided reasoning.
The synergistic integration of both teachers enables the student
to simultaneously resolve both types of anomalies. Experimental
results showcase competitive accuracy improvements in both struc-
tural and logical anomaly detection tasks.
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