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Soft Person Re-identification Network Pruning via
Block-wise Adjacent Filter Decaying

Xiaodong Wang, Zhedong Zheng, Yang He, Fei Yan, Zhiqiang Zeng, and Yi Yang, Senior Member, IEEE

Abstract—Deep learning has shown significant successes in per-
son re-identification (re-id) tasks. However, most existing works
focus on discriminative feature learning and impose complex
neural networks, suffering from low inference efficiency. In fact,
feature extraction time is also crucial for real-world applications
and light-weight models are needed. Prevailing pruning methods
usually pay attention to compact classification models. However,
these methods are sub-optimal for compacting re-id models,
which usually produce continuous features and are sensitive
to network pruning. The key point of pruning re-id models
is how to retain the original filter distribution in continuous
features as much as possible. In this work, we propose a block-
wise adjacent filter decaying method to fill this gap. Specifically,
given a trained model, we first evaluate the redundancy of filters
based on the adjacency relationships to preserve the original
filter distribution. Second, previous layer-wise pruning methods
ignore that discriminative information is enhanced block-by-
block. Therefore, we propose a block-wise filter pruning strategy
to better utilize the block relations in the pre-trained model.
Third, we propose a novel filter decaying policy to progressively
reduce the scale of redundant filters. Different from conventional
soft filter pruning that directly sets the filter values as zeros,
the proposed filter decaying can keep the pre-trained knowledge
as much as possible. We evaluate our method on three popular
person re-identification datasets, i.e., Market-1501, DukeMTMC-
reID, and MSMT17 V1. The proposed method shows superior
performance to existing state-of-the-art pruning methods. Af-
ter pruning over 91.9% parameters on DukeMTMC-reID, the
Rank-1 accuracy only drop 3.7%, demonstrating its effectiveness
for compacting person re-identification.

Index Terms—Deep learning, representation learning, network
pruning, person re-identification.

I. INTRODUCTION

D eeply-learned features generated by the Convolutional
Neural Network (CNN) have been successfully applied

to person re-identification in recent years [1], [2]. However,

Work done during the visiting at University of Technology Sydney. This
paper was supported by China Scholarship Council (No.201908350025),
National Natural Science Foundation of China (Grant Nos.61871464,
U1805264), National Natural Science Foundation of Fujian Province (Grant
Nos.2020J01266, 2021J011186), the “Climbing” Program of XMUT (Grant
No.XPDKT20031), Program of XMUT for high-Level talents introduction
plan (Grant No.YKJ19003R).

Xiaodong Wang is with the college of Computer and Information En-
gineering, Xiamen University of Technology, Xiamen 361024, China (e-
mail:xdwangjsj@xmut.edu.cn)

Zhedong Zheng is with NExT++, School of Computing, National University
of Singapore, Singapore. (e-mail: zdzheng@nus.edu.sg)

Yang He, and Yi Yang are with the Australian Artificial Intelligence
Institute, University of Technology Sydney, NSW 2007, Australia. Yang He
is also with Institute of High Performance Computing, Agency for Science,
Technology and Research, Singapore 138632.

Fei Yan and Zhiqiang Zeng are with the college of Computer and Informa-
tion Engineering, Xiamen University of Technology, Xiamen 361024, China.

Retained filters Pruned filters

Distance to center

N
um

be
r o

f f
ilt

er
s

0 Distance to center

N
um

be
r o

f f
ilt

er
s

0
(a) Center-based methods (b) Our method

Fig. 1: Filter distribution (distance to the geometric center)
for different pruning methods. The red shadow and the green
shadow denote the pruned filters and retained filters, respec-
tively. (a) For center-based methods, only the filters far away
from the geometric center (green) are kept. The original filter
distribution will be damaged when a large proportion of filters
(red) is entirely removed. (b) In contrast, our method prunes
filters according to their adjacent relationships, which can
adequately maintain the original filter distribution.

training and testing the CNN models need expensive com-
putational resources [3]–[6], making them hard to deploy on
devices with limited resources, such as embedded devices and
autonomous vehicles. For example, given a 256 × 128 × 3
input image, it takes nearly 0.2 seconds to extract the feature
embedding using a ResNet-50 network [7] on an 1.3GHz
Dual-Core I5 CPU, which is not ideal for most real-time
applications.

To accelerate the CNN model inference, researchers resort
to compressing model without significantly hurting the accu-
racy [8]. Network pruning is one of the most popular compres-
sion techniques due to its compatibility with the traditional
training procedure and efficiency in shortening the inference
time [9], [10]. Most existing pruning methods focus on the
classification problem, which is entirely different from the
person re-identification problem. Generally, the classification
model usually focuses on categorical logic output. However, in
many person re-identification applications, one usually deploys
the deep network as the feature extractor and combines it with
some distance metrics for final evaluation. In this case, changes
in these continuous features could lead to a large bias on
final person matching or ranking results [11]. Therefore, com-
pared with the classification model, the person re-identification
model could be more sensitive to visual representation. Such a
difference poses three challenges for existing pruning methods
for person re-identification tasks.

First, how to effectively retain the original filter distri-
bution as much as possible? Basically, the previous network
pruning methods [12]–[14] typically consider the center-based
criteria. These criteria are rooted in that redundant filters are
close to the reference center, such as small-norm values (e.g.,
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l1-norm [12] and l2-norm [13]) or geometry median [14]. One
disadvantage of these criteria, as shown in Figure 1, is that the
filters close to the reference center can be removed entirely.
Hence, these center-based criteria might cause an enormous
change in original filter distribution and hurt the performance
of person re-identification.

Second, how to effectively utilize the block relations in
the pre-trained model? Recent CNN models have achieved
great successes in imposing a block-wise network frame-
work [7], [15], [16], which wraps a sequence of coherent
layers (e.g., Conv-BN-ReLU-Conv-BN-ReLU) as a block.
Some studies also have made deep investigations into the
function of intermediate feature layers and block relations,
demonstrating that the discriminative information in CNN is
enhanced block by block [17], [18]. This observation indicates
that different blocks exhibit diverse levels of redundancy [19].
However, recent layer-wise works usually focus on retaining
the layer-topology in the same block, neglecting the redun-
dancy diversity of blocks [12]–[14].

Third, how to leverage the pre-trained knowledge in orig-
inal models while pruning? Pre-trained models are widely
adopted in previous person re-identification studies [20], [21].
However, most of the existing network pruning methods
remove redundant filters in a hard-pruning manner, where the
pruned filters are directly deleted and have no chance to be
recovered. As shown in Figure 2, cursorily discarding the
redundant filters can prevent pre-trained knowledge utilization
and reduce the model capacity. To deal with this problem,
some recent soft-pruning methods propose to relieve perfor-
mance degradation by postponing the deletion of pruned filters
until the end of the fine-tuning phase [13], [14]. However,
when the pruning rate increases, the parameter gaps between
the pruned network and the pre-trained network will become
larger, resulting in degraded pre-trained knowledge transfer.

To solve the above-mentioned problems, we propose a
novel Block-wise Adjacent Filter Decaying (BAFD) method to
accelerate person re-identification. To be specific, before prun-
ing, a block-wise adjacent filter ranking strategy is imposed
to determine the redundancy of each block. This ranking
strategy explores the block redundancy and simultaneously
retains the topology of the pre-trained blocks. Concretely, the
layers in the same block share a similar pruning strategy, while
those in different blocks are pruned with diverse pruning rates.
Then, we progressively reduce the scale of redundant filters
(i.e., filter decaying) and fine-tune the model subsequently.
This “decaying and fine-tuning” process continues until the
pruned model is converged. Finally, some filters with small
scales (i.e., zero) will be selected and safely deleted. This
progressive block-wise adjacent filter decaying enables the
compact network to recover the missing knowledge and retain
its original model capacity. Therefore, it is easy to improve
the model compactness with limited performance dropped.

The main contributions of this paper are listed as follows.

• We propose a block-wise adjacent filter pruning manner
to accelerate person re-identification. It explores the block
relations in the pre-trained model and retains the original
filter distribution as well.

• We propose to progressively reduce the scales of re-
dundant filters, giving the pruned model more space to
optimize itself and retaining pre-trained knowledge.

• Extensive experiments on three widely-used person re-
identification datasets have demonstrated the effective-
ness of the proposed method. After reducing more than
76.8% parameters, the compact model increases by nearly
0.35% on mAP over the original model on Market-1501.
Furthermore, we reduce 91.9% parameters only with an
increase of 3.7% rank-1 error on DukeMTMC-reID.

II. RELATED WORKS

The proposed method is close to the network pruning and
person re-identification. In this section, we briefly introduce
several related studies on these two research domains.

A. Person Re-identification

Person re-identification, which originates from pedestrian
tracking [22], [23], has gained increasing research attention
over the past decade [24]. Recently, CNN-based image repre-
sentation has shown extraordinary performance on person re-
identification [24]–[33]. To explore the discriminative features
at different locations and scales, Qian et al. [27] propose a
multi-scale deep learning framework. Considering the impor-
tance of diversity in feature maps, Zheng et al. [34] introduce
a pedestrian alignment network to extract discriminative rep-
resentation without additional annotations. Shen et al. [30]
impose a similarity constraint to both low-level and high-
level convolutional layers, which is superior to learn local
and global representation simultaneously. Jiang et al. [35]
design a self-attention learning method to capture multi-level
information among different levels of convolutional layers.
Some studies pay attention to impose different loss functions
to extract person representation, such as metric learning [25],
[36], classification losses [24], [37], or the combination of
different losses [21], [38]. Inspired by the recent develop-
ment of the Generative Adversarial Network (GAN) [39],
some studies propose to improve the re-identification em-
beddings by leveraging the augmented data [21], [40]–[42].
To increase the interpretability of person re-identification net-
works, Yuan et al. [43] propose a Gabor convolution module,
which can boost the representation learning ability of existing
networks. The abovementioned studies have achieved lots
of successes in person re-identification. Unfortunately, they
usually consume expensive computation resources to extract
CNN descriptors, hampering their practicability for real-world
applications.

B. Network Pruning

Most previous pruning methods can be roughly classified
into two groups: weight pruning and filter pruning. Weight
pruning mainly focuses on pruning the fine-grained weight
of filters and results in unstructured models, making it hard
for hardware deployment [44]–[46]. In contrast, filter pruning
reduces the model size by removing the whole redundant filters
and can achieve a structured model, which is more hardware
friendly [47]–[49].
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Fig. 2: Filter pruning interpretation of different methods. (a) Given a pre-trained model, the hard-pruning method directly
removes the redundant filters to compress model, which disuses the pruned filters during the fine-tuning procedure, leading
to a model capacity reduction. (b) Soft-pruning method zeros the redundant filters, which are allowed to join the subsequent
model optimization, to improve the model capacity. However, the large parameter gap between the pruned model and the
pre-trained model increases when a large number of filters is pruned, resulting in performance degradation. (c) Our method
deploys the filter decaying policy to adjust the scale of pruned filters (light purple squares). It iteratively re-samples candidate
filters and fine-tunes the model to give the wrongly-selected filters chances to be rectified, until the weight of redundant filters
gradually converges to zeros (that can be safely removed). Therefore, our method could give pruned models more chances to
recover the missing knowledge.

Weight pruning: One of the earliest works on weight
pruning imposes the second-order Taylor expansion to evaluate
the importance of the weight [44]. Then, it resets the redundant
weight to zero to reduce the pruning impacts on the network.
Similar to [44], a ”surgical recovery” technology is proposed
to remove redundant weights while allowing the other weight
values for further restoration. However, the above methods
require calculating the second-order Hessian matrix, which
needs a heavy computing burden [45]. Later, several advance-
ments on weight magnitude, such as direct threshold [46], l1-
norm [12], have been proposed to overcome this problem. To
reduce the negative impacts on model accuracy, a dynamic
network technology solution is proposed in [50]. It allows the
zeroed weights to participate in the network training, giving
them a certain opportunity to restore the weight value. Some
recent works also remove weights and reduce their quantitative
compression (the weight bits) simultaneously [51]. Never-
theless, weight pruning uses an unstructured way to delete
the weight and increase the sparsity of network parameters.
Therefore, to accelerate the network, it usually depends on
special software libraries or hardware, limiting its application.

Filter pruning: Similar to the weight pruning, the mag-
nitude criteria have also been successfully applied to filter
pruning, such as l1-norm [12] and l2-norm [13]. To improve
the robustness of network pruning, some studies prune filters
according to the network training status [52], adjacent-layer
relations [53], batch normalization [54], ReLU output [55], and
the contributions to network loss [47], [56]. Nevertheless, all of
the above methods are “hard” pruning methods. In these meth-
ods, the redundant filters are directly deleted from the original
network, followed by fine-tuning to restore model accuracy.
However, due to the early cut of network connections, the
pruned network is difficult to utilize the pre-trained knowledge,
resulting in the network capacity reduction. To tackle this

issue, some studies propose to keep the redundant filters while
fine-tuning, giving the pruned filters more chances to recover
themselves. Soft Filter Pruning (SFP) is one of the early
attempts to embed pruning into the training procedure [13].
However, SFP depends on the norm-based criterion, which
fails when the “smaller-norm-less-important” requirement is
not satisfied. To solve this problem, a Filter Pruning method
via Geometric Median (FPGM) is proposed to determine the
network redundancy according to the geometric relations of
filters. However, these soft-pruning methods need to search
for a center reference to evaluate the importance of filters.
Such criteria may lead to filters in dense areas are deleted and
damage the original filter distribution.

III. THE PROPOSED METHOD

A. Preliminary

Let a deep CNN network be parameterized by W = {W l =

[wl
1, w

l
2, · · · , wl

Cl
out

] ∈ RCl
out×C

l
in×K

l×Kl

, 1 ≤ l ≤ L}, where
W l denotes a matrix of connection weights in the l-th layer,
L denotes the number of layers, Cl

out and Cl
in represent the

numbers of output channels and input channels for the l-th
convolutional layer, respectively, Kl is the kernel size. We
denote F = {F1,F2, · · · ,FL} as a set of filters for the whole
network, where F l is the set of filters for the l-th convolutional
layer, i.e., F l = {wl

1, w
l
2, · · · , wl

Cl
out
}.

B. Formulation

From the analysis of the related work, evaluating the
importance of filters in a soft-pruning manner is helpful
to improve the pruning performance. An acceptable reason
may lie in that the soft-pruning method can give the pruned
filters more chances to adjust themselves to the new structure
in the pruned network. However, the way the soft-pruning
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Fig. 3: Training and pruning schedule of our method. Before pruning, we first calculate the adjacent power of filters in each
block, and sort these filters to determine the pruning rate of each block. Then, we individually select redundant filters in
each convolutional layer according to the block-wise pruning rate. After that, we prune the redundant filters by progressively
reducing their scales, followed by one epoch fine-tuning. We iteratively perform adjacent filter selection, filter decaying, and
fine-tuning several epochs till the redundant filters converge to zeros. Finally, we could obtain a slim model by removing the
zero-weight filters.
evaluates the redundant filters easily damages the original filter
distributions. Intuitively, if some filters are redundant, they can
be safely replaced by their adjacency. Inspired by this, it may
be beneficial for network pruning if the adjacent relationships
is considered under the soft-pruning scenarios. Formally, let
Fpr be the filter set in pre-trained model, and f(F) be the
distribution function (the l2-norm of the filter in this paper) of
F . Our soft-pruning method can be formulated as:

min
F

`(F ; (X,Y ))

s.t. ‖f(F)−f(Fpr)‖ < ε,G0(F) ≤ κ, |F| = |Fpr|
(1)

where `(·) is the loss function (e.g., cross-entropy loss and
triplet loss); ε is a small constant; G0(F) refers to the number
of non-zeros filters in F ; κ denotes the sparse level of the
network (i.e., the number of non-zeros filters); X andY refer
to the input data and the target label, respectively; |·| represents
the cardinalities of the filter set.

One critical shortcoming in Eq.(1) is that it neglects the
block relations of the network. Under this framework, existing
soft-pruning methods usually pruning filters in a layer-wise
manner, which manually sets the same pruning rate for each
layer. Nevertheless, as discussed in Section I, recent CNN
networks benefit from block-wise structure, where discrimina-
tive information is enhanced block by block. In other words,
different blocks may exhibit diverse filter redundancy and
deserve different pruning rates. Concretely, given an l-th layer
in b-th block with pruning rate P l

b , we want the layers in the
same block to share the same pruning rate. Formally, we want

P l
b = P k

b , l, k ∈ B(b), 1 ≤ b ≤ B, ∀l, k, b, (2)

where B(b) is the index set of filters in the b-th block.
To better utilize the pre-trained knowledge, the initial pa-

rameters W0 (i.e., the weight values in F) used to train the
pruned model should be close to the parameters Wpr (i.e., the
weight values in Fpr) in the pre-trained model. In other words,
network pruning should minimize the parameter gaps between
W0 and Wpr while pruning. Such an observation motivates us

to propose a new soft-pruning framework as follows:

min `(F ; (X,Y ))

s.t. ‖f(F)− f(Fpr)‖ < ε, G0(F) ≤ κ
|F| = |Fpr|, ‖Wpr −W0‖ < δ

P l
b = P k

b , l, k ∈ B(b), 1 ≤ b ≤ B, ∀l, k, b,

(3)

where δ is a small constant.
To solve the problem in Eq.(3), we propose a two-step

filter pruning method: the adjacent block-wise pruning and
progressive filter decaying. In the adjacent block-wise pruning
step, we first select the representative filters for each block
across the network. Then, we rank these filters according to
their adjacent power to determine the pruning rate of each
block. After that, we individually select redundant filters in
each convolutional layer according to the pruning rate. In
the filter decaying step, we progressively reduce the scale
of pruned filters for each layer, followed by fine-tuning to
optimize pruned model. This filter decaying operation allows
the wrongly pruned filters to recover themselves. Such a “ad-
jacent filter selection, filter decaying and fine-tuning” process
is repeated several iterations until all the redundant filters
converge to zeros. Finally, we can safely remove these zeroed-
weight filters to obtain a compact model. Figure 3 shows the
proposed framework.

C. Block-wise Adjacent Filter Selection

(1) Block Redundancy Determination
In the adjacent block-wise pruning stage, we intend to find

the redundancy for each block in the pre-trained network.
To achieve this goal, we propose to rank the convolutional
filters across the whole network according to their adjacent
relations. Intuitively, we can thoroughly analyze the redun-
dancy for all the convolutional layers, such as layers with
1x1, 3x3, and 5x5 convolutions. However, this strategy has
the following drawbacks. On the one hand, it will consume
expensive computation resources due to a large number of
convolutional filters. On the other hand, the 1x1 convolution,
which is usually used to change the dimensionality, appears
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in the plain scale and contains less information for block
redundancy evaluation. To cope with these problems, we skip
the 1x1 convolutional layers and propose the following filter
redundancy evaluation metric:

H(wl
i) =

{
E
[
− φ(w,wl

i)
]

if wl
i 6∈ Ω1×1

0, otherwise

s.t. w ∈ U(wl
i),

(4)

where Ω1×1 is a set that contains all the 1x1 convolutional
filters in the pre-trained network; φ(w,wl

i) refers to the dis-
tance measurement function w.r.t. w and wl

i, such as Euclidean
distance (used in this paper) and cosine distance; U(wl

i)
represents the adjacent set of wl

i, such as k-nearest neighbors
of wl

i. This measurement in Eq.(4) assesses the correlation and
its neighbors of wl

i. A larger value of H(wl
i) indicates a higher

level of redundancy of wl
i.

It is worth noticing that the criterion in Eq.(4) is different
from that of the previous center-based type pruning methods,
which need to find a global reference for all the filters. BAFD
chooses the filters themselves as the reference. For example,
given four filters A=(1,1), B=(1,0.99), C=(0,0), D=(-2,-2). If
we want to prune one of these filters. Center-based methods
tend to remove filter C (center reference). When we take a
closer look at these filers, we can easily find that filters A
and B are very similar and may make similar contributions
to the network. Therefore, pruning A or B seems to be more
reasonable. BAFD evaluates the adjacent relations of filters
and can locate the most redundant filter, i.e., filter B.

We evaluate the redundancy of each filter across the
whole network using Eq.(4). Suppose T l

vec is the adjacent
redundancy vector for l-th convolutional layer, i.e., T l

vec =
{H(wl

1),H(wl
2), · · · ,H(wl

Cl
out

)}. We normalize it for the
consistent scales of different convolutional layers. Specifically,
we use the following normalization equation:

(T̂ l
vec)

(k) =
(T l

vec)
(k)√∑

j((T l
vec)

(j))2
. (5)

After we get the adjacent redundancy vectors for each layer
in Eq.(5), we rank the filters across layers in descending order
and select the first p ∗ |F| filters as the redundancy filter set
F̂ , where p is the global pruning rate for the network. Then,
for the b-th block, we collect all the redundant filters in it and
calculate its pruning rate as follows:

Pb = E
k∈B(b)

[∑
w∈Fk ζ(w, F̂)
|Fk|

]
, (6)

where ζ(w, F̂) = 1 if w ∈ F̂ ; ζ(w, F̂) = 0 otherwise.

(2) Iterative Adjacent Filter Selection

After determining the redundancy for each block, we need
to select the redundant filters for each convolutional layer.
Given an l-th layer in the b-th block, we want to select and
prune m = P l

b × Cl
out filters, i.e., filters in F̂ l, to compress

the network. Formally, we propose to optimize the following
objective function:

min
s

Cl
out∑

i=1

∥∥∥∥H(siwl
i)−H(wl

i)

∥∥∥∥
s.t. si ∈ {0, 1},

Cl
out∑

i=1

si = Cl
out −m,

(7)

where s is a filter selection vector. If si equals to 1, the filter
wl

i will remain; otherwise, the filter is pruned. H(wl
i) and

H(siwl
i) refer to the adjacent redundancy before and after

pruning wl
i, respectively. For each convolutional layer, we hope

their adjacent redundancy to be minimized after pruning.
To optimize Eq.(7), we can simply select and prune the first

m largest filters according to their redundancy. However, every
time we update the filter selection s, the adjacent relationship
of remained filters may also be changed. Therefore, this
naive optimization may cause the dense area of filters to
be deleted. To solve this problem, we propose an iterative
optimization approach. Concretely, we sample one filter in F l

according to Eq. (7), re-evaluate the adjacent redundancy of
each remaining filter using Eq.(4) without wl

i 6∈ Ω1×1. We
repeat the optimization procedure till m filters are sampled. If
two or more filters reveal the same adjacent geometry power,
we calculate their global distance ( the global distance of
filter wl

i is the total distance between wl
i and the other filters

in the same layer) and select the filter with the minimum
global distance score. The detailed algorithm is provided in
Algorithm 1.

D. Progressive Pruning via Filter Decaying

After sampling the pruned filters of each layer, we can
directly remove them to eliminate their impact on the network.
However, as discussed in Section III-B, the hard-pruning
methods tend to cut the network connections prematurely. This
may prevent the knowledge transfer between the pre-trained
and the pruned models. Although the soft-pruning method
can ease this problem by zeroing the redundant filters, they
suffer from performance degradation when the parameter gaps
between Wpr and W0 become larger. This problem appears to
be more severe when a large percentage of filters pruned. To
fix this problem, we propose to softly reduce the impacts of
pruned filters by decaying their weight scale while pruning.
Formally, let N t be the network in the t-th pruning iteration,
and Xl be the input for the l-th convolutional layer. The output
of the l-th layer is defined as zl = σl(Wl, Xl), and is the input
of the (l + 1)-th layer, i.e., zl+1 = σl(Wl+1, zl), where σl(·)
is the activation function. Then, after the decay operation, the
network can be formulated as:

N t+1 = σt
L

(
[Ẇ t

L, βW̃
t
L], · · · ,

σt
2

(
[Ẇ t

2 , βW̃
t
2 ],
(
σt
1([Ẇ

t
1 , βW̃

t
1 ], X)

)))
s.t. 0 ≤ β ≤ 1,

(8)

where W̃l and Ẇl represent the pruned parameters and
retained parameters of the l-th layer, respectively; β refers to
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Algorithm 1 Iterative Adjacent Filter Selection

Input: The network filter set F l for the l-th convolutional
layer in the b-th block; the pruning rate Pb for the b-th
block.

Output: The selected redundant filter subset F̂ l with the best
adjacent power preservation.

1: Initialize the selected subset F̂ l ← {}
2: Initialize the rest subset Ḟ l ← {wl

1, w
l
2, · · · , wl

Cl
out
}

3: Construct an undirected graph G = 〈V,E〉 with the vertex
set V = {wl

1, w
l
2, · · · , wl

Cl
out
} and the edge set E are

defined as: ∀vi, vj ∈ V, 1 ≤ i, j ≤ |V |,

Eij ←

{
H(vi), if vj ∈ U(vi)
0, Otherwise.

4: while |F̂ l| < Pb × Cl
out do

5: i∗, j∗ = argmin1≤i,j≤|V |Eij

6: k∗ = argmink∈{i∗,j∗}
∑|Ḟl|

i=1 Eki

7: F̂ l ← F̂ l
⋃
wl

k∗ , Ḟ l ← Ḟ l − wl
k∗

8: Delete node vk∗ in V and the incident edges from G
9: end while

10: return F̂ l

Algorithm 2 Progressive Filter Decaying

Input: training data X and training epoch epochmax; the
model with parameters W ; the pruning rate p and the
weight decay parameter β

Output: The compact model and its parameters W ∗.
1: Calculate the pruning rate Pb for b-th (1 ≤ b ≤ B) block

by Eq.(6)
2: for epoch← 1 to epochmax by 1 do
3: Update W = {W l, 1 ≤ l ≤ L} based on X
4: Calculate the redundant filter set F̂ = {F̂ l, 1 ≤ l ≤ L}

by Algorithm 1
5: for l← 1 to L by 1 do
6: Get the pruned parameters Ŵ l from W l according

to F̂ l

7: Decrease the scale of Ŵ l by Ŵ l ← βŴ l

8: end for
9: end for

10: return The compact model with optimal parameters W ∗

the weight decay parameter. In each pruning phrase, we reduce
the scale of the pruned filters for all the layers by Eq.(8), then
we fine-tune the pruned network one epoch to let the pruned
filters recover themselves.

The “adjacent filter selection, filter decaying, and fine-
tuning” process is repeated several times until the redundant
filters converge to zeros. To this end, we can safely remove
the filters with zero scales from the network and achieve the
final compact model. The detailed algorithm is provided in
Algorithm 2.

IV. EXPERIMENTS

We prune three kinds of ResNet-type networks, i.e.,
ResNet-18, ResNet-34, ResNet-50, on two popular per-
son re-identification datasets, i.e., Market-1501 [57] and

DukeMTMC-reID [58]. One person re-identification base-
line [21] and three closely related pruning methods are in-
troduced for comparison, including two soft-pruning methods
(i.e., SFP [13] and FPGM [14]) and one hard-pruning method
(i.e., HFP [12]). Note that this paper mainly focuses on
network pruning for person re-identification. In other words,
we try to keep the pruned model as small as possible while
with limited performance degradation.

1) Datasets: Market-1501 [57] contains 32,668 images,
each collected in a university by at most six cameras. All
images are automatically detected using the Deformable Part
Model (DPM) detector [59]. Market-1501 consists of 1,501
different individuals. These individuals are divided into two
groups without overlapping: 751 individuals from 12,936
images for the training set and 750 individuals from 19,732
images for the testing set. There are on average 17.2 photos
per individual in the training set. In testing, 3368 images are
randomly selected as queries to retrieval the matching person
in the testing set.

DukeMTMC-reID [58] is a subset of the well-known
DukeMTMC dataset [58] in the format of the Market-1501
dataset [57]. Following [60], we collect 36,411 pedestrian
images with IDs annotated by [58]. In total, there are 1,812
identities, where 1,404 identities appear in more than two
cameras and 408 identities (distractor ID) walk in front of only
one camera. 702 IDs are randomly selected as the training
set, and the remaining 702 IDs form the testing set. In the
testing set, we pick up one query image for each individual
from each camera it appears, to make up the query set. The
rest of the testing set is put in the gallery. As a result, we
get 16,522 training images, 2,228 query images, and 17,661
gallery images.

MSMT17 V1 [61] is one of the widely-used large-scale
person re-identification datasets. This dataset is collected by a
15-camera network deployed in different locations (including
indoors and outdoors) of campus, making it much complex
and challenging. It contains 126,441 images, which are au-
tomatically detected by Faster RCNN [62]. Following [61],
32,621 images are randomly selected for the training set. The
rest of the dataset is put in the testing set. From the testing
set, 11,659 images are randomly selected as query set and the
other 82,161 images are put in the gallery.

2) Compared Methods: We compare the proposed method
with the competitive pruning approaches, including (1)
HFP [12], the hard-pruning method. It uses the l1-norm-
based criterion to select redundant filters and directly deletes
them to get the small model; (2) SFP [13], the soft-pruning
method. Instead of direct filter deletion, it allows the redundant
filters to join the model optimization by setting them to zeros;
(3) FPGM [14], the soft-pruning via geometric median [14].
It imposes a geometric relation criterion, i.e., the distance
between filters and their geometric centers, to evaluate the
redundancy of filters.

The pruned model is based on a widely-used person re-
identification baseline [21].

3) Experimental Setting: Following [13], for the layer-
wise pruning methods, i.e., HFP [12], SFP [13], and
FPGM [14], all the convolutional layers are pruned with the
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TABLE I: Performance evaluation of the compared pruning methods on Market-1501 using ResNet-18, ResNet-34, and ResNet-
50 backbone networks. In the third column, the letters S and D refer to “same pruning rate for different layers” and “different
pruning rates for different layers”, respectively.

Depth Methods Pruned rate mAP(%) Rank-1(%) Rank-5(%) Rank-10(%) Parameters(M) Parameters(%)↓

18

baseline [21] 65.71 84.65 92.90 95.16 12.08 0
SFP [13]

S: 20%

63.12 82.19 92.25 94.98
8.89 26.41FPGM [14] 63.02 82.63 92.87 95.25

HFP [12] 59.96 80.97 91.66 94.74
Ours D: p=0.5 63.19 81.29 92.19 94.95 3.97 67.14

SFP [13]

S: 50%

58.53 78.71 89.99 93.79
5.01 58.53FPGM [14] 59.04 78.53 91.30 94.27

HFP [12] 52.30 73.72 88.57 92.76
Ours D: p=0.6 62.28 81.38 91.66 94.24 2.99 75.25

SFP [13]

S: 90%

46.04 68.38 85.57 89.76
1.63 86.51FPGM [14] 45.14 67.43 84.62 89.79

HFP [12] 41.45 64.34 82.63 88.42
Ours D: p=0.9 47.50 69.06 85.39 90.38 1.43 88.16

34

baseline [21] 66.88 84.44 93.50 95.61 22.18 0
SFP [13]

S: 20%

65.60 83.58 93.26 95.48
16.18 27.05FPGM [14] 64.82 82.75 92.96 95.31

HFP [12] 63.17 82.01 92.04 94.83
Ours D: p=0.5 68.13 84.38 93.17 94.46 6.89 68.94

SFP [13]

S: 50%

61.30 80.40 90.80 93.88
8.80 60.32FPGM [14] 61.66 80.29 91.36 94.77

HFP [12] 56.32 76.60 89.46 92.73
Ours D: p=0.6 67.23 84.80 92.87 95.60 5.14 76.83

SFP [13]

S: 90%

49.96 71.88 86.76 90.83
2.19 90.13FPGM [14] 50.05 72.47 86.85 90.94

HFP [12] 47.29 70.01 85.75 90.14
Ours D: p=0.9 56.79 76.63 89.31 93.02 1.81 91.84

50

baseline [21] 70.81 86.63 93.74 96.05 27.10 0
SFP [13]

S: 20%

69.03 84.77 93.74 95.69
20.37 24.83FPGM [14] 70.07 86.07 93.79 95.81

HFP [12] 67.93 85.51 93.97 96.14
Ours D: p=0.5 71.71 87.11 94.63 96.70 11.31 58.27

SFP [13]

S: 50%

65.85 83.05 92.96 95.52
12.64 53.36FPGM [14] 65.31 83.02 91.98 94.66

HFP [12] 57.22 77.82 90.29 93.74
Ours D: p=0.6 70.07 86.02 93.94 96.20 9.52 64.87

SFP [13]

S: 90%

48.02 71.17 86.88 90.91
6.97 74.28FPGM [14] 45.31 68.26 84.74 89.64

HFP [12] 47.24 70.57 85.09 89.85
Ours D: p=0.9 57.80 77.02 90.02 93.62 6.77 75.02

same pruning rate at the same time. Besides, following [48],
to keep the residual structure of the original network, we skip
the downsample layer while pruning. The pruning rate is tuned
from {20%, 50%, 90%}. For our method, we tune the pruning
rate parameter p from {0.1, 0.2, · · · , 0.8, 0.9} and choose three
values, i.e., {0.5, 0.6, 0.9}, which achieve the similar accuracy
as the other layer-wise methods. Note that in our experiment,
we impose a round-down strategy for pruning. For example,
if the pruning rate is 20% and the number of the filter is 64,
then the actual number of pruned filters is b64×0.2c = b12.8c
= 12.

For the soft-pruning methods, i.e., SFP, FPGM, and our
method, we embed the pruning operation into the training
procedure and prune filters while fine-tuning for 100 epochs.
To conduct a fair comparison, for the hard-pruning method,
i.e., HFP, we prune the network once and fine-tune it with
the same number of epochs as the soft-pruning methods.
There are three constraints controlled by κ, ε, and δ, in the
objective function of our method in Eq.(1). For κ, we set
it to (1 − p)|F|. For ε and δ, it is hard to directly assign

precise values for them. Alternately, since ε and δ are used to
control the progress of adjacent filter selection and redundant
filter decaying, in practice, we dynamically monitor the status
of pruning and perform an early stop if these constraints
are met. Concretely, if the F̂ l in Algorithm 1 and ‖Ŵ l‖ in
Algorithm 2 for every l-th convolutional layer are no longer
changed in 5 consecutive epochs, then we assume that the
constraints ‖f(F) − f(Fpr)‖ < ε and ‖Wpr −W0‖ < δ are
met, respectively. Our method contains one hyper-parameter,
i.e., β. We choose the optimal β according to the sensitive
analysis in Section IV-D3. Concretely, we set β = 1 × 10−2

when p < 0.7 and β = 3× 10−1 when p > 0.7.

Following [21], we deploy ResNet-18, ResNet-34, and
ResNet-50 that are pre-trained on ImageNet [63] as the back-
bone networks for our person re-identification baseline, and
replace the last average pooling layer and fully-connected layer
with an adaptive max-pooling layer. We employ the widely
used triplet loss function [64] and SGD to train the network
with an initial learning rate l0 = 0.001, momentum 0.9, margin
0.3, pool size 128, and batch size 32.
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TABLE II: Performance comparison of different pruning methods on DukeMTMC-reID using ResNet-18, ResNet-34, and
ResNet-50 backbone networks. In the third column, the letters S and D refer to “same pruning rate for different layers” and
“different pruning rates for different layers”, respectively. “-” means the models fail to converge while training.

Depth Methods Pruned rate mAP(%) Rank-1(%) Rank-5(%) Rank-10(%) Parameters(M) Parameters(%)↓

18

baseline [21] 55.87 75.36 86.45 89.90 12.05 0
SFP [13]

S: 20%

53.37 74.33 85.95 89.63
8.87 26.39FPGM [14] 53.65 73.43 85.14 88.69

HFP [12] 49.78 70.74 83.98 87.43
Ours D: p=0.5 54.07 74.37 85.91 89.18 3.94 67.30

SFP [13]

S: 50%

49.46 70.29 82.90 86.94
4.99 58.59FPGM [14] 47.80 69.03 82.72 86.62

HFP [12] 43.07 64.14 78.82 83.44
Ours D: p=0.6 52.36 72.53 85.01 88.33 2.96 75.44

SFP [13]

S: 90%

- - - -
1.61 86.64FPGM [14] - - - -

HFP [12] 34.23 55.66 73.07 78.95
Ours D: p=0.9 40.96 62.66 79.00 83.75 1.41 88.30

34

baseline [21] 56.38 74.69 86.31 89.50 22.16 0
SFP [13]

S: 20%

55.22 74.60 85.50 89.23
16.16 27.08FPGM [14] 54.42 73.29 84.61 88.73

HFP [12] 52.85 73.15 85.10 88.29
Ours D: p=0.5 58.74 76.80 87.34 90.40 6.86 69.04

SFP [13]

S: 50%

51.18 72.08 83.62 87.34
8.78 60.38FPGM [14] 52.05 71.72 83.75 87.52

HFP [12] 47.26 68.04 81.73 86.22
Ours D: p=0.6 57.83 76.12 88.11 90.84 5.11 76.94

SFP [13]

S: 90%

41.85 64.59 79.49 84.43
2.17 90.21FPGM [14] 40.46 62.75 78.82 84.02

HFP [12] 37.94 59.42 76.62 81.96
Ours D: p=0.9 50.35 70.96 83.30 87.61 1.79 91.92

50

baseline [21] 59.63 77.56 87.84 91.02 27.00 0
SFP [13]

S: 20%

59.55 77.24 87.57 90.98
20.27 24.93FPGM [14] 60.00 78.86 88.47 90.89

HFP [12] 58.67 78.37 88.64 91.16
Ours D: p=0.5 62.36 80.39 89.36 92.10 11.21 58.48

SFP [13]

S: 50%

55.57 75.13 86.13 89.59
12.54 53.56FPGM [14] 55.94 74.60 86.22 89.90

HFP [12] 46.79 68.31 81.24 86.18
Ours D: p=0.6 60.60 78.68 87.97 91.38 9.42 65.11

SFP [13]

S: 90%

- - - -
6.87 74.56FPGM [14] - - - -

HFP [12] 36.05 57.59 75.18 80.97
Ours D: p=0.9 50.37 70.02 83.66 87.66 6.67 75.30

A. Results on the Market-1501 Dataset
Table I shows the comparison results on the Market-1501

dataset. We can conclude that:
• In most cases, the soft-pruning methods, i.e., SFP, FPGM,

and ours, outperform the hard-pruning method, i.e., HFP.
This indicates that by keeping the connections of pruned
filters while fine-tuning, the soft-pruning methods can
give the potentially important filters more chances to
recover themselves. Thus, it can boost the performance
of network pruning.

• Our method consistently achieves the best mAP over
other comparison methods with all the selected backbone
networks, indicating the advantage of our method. For
example, on ResNet-34, our method surpasses the second
best result over 6% in terms of mAP while removing
over 91.8% parameters, i.e., with only 1.81M left.

• With the increase of parameter gaps (i.e., the rise of
the pruning rate) between the pruned network and the
pre-trained network, the advantages of our method over
the compared soft-pruning methods are increasing. For

example, on ResNet-50, our method outperforms the
compared soft-pruning methods by over 1.6% on mAP
when the parameter gap is 20% (p = 0.5 for BAFD).
If we increase the parameter gap to 90% (p = 0.9 for
BAFD), the advantages of our method over the other soft-
pruning methods reach 9.7% on mAP . This demonstrates
that our method is suitable for pruning a large proportion
of filters. It should be noticed that SFP and FPGM are
hard to converge while training on ResNet-50 when the
abovementioned parameter gaps become extremely large,
i.e., 90% filters are pruned, which is similar to the results
on DukeMTMC-reID. We show detailed reason in Section
IV-B. Here we repeatedly optimize SFP and FPGM till
the convergent models appear and report the best results.

B. Results on the DukeMTMC-reID Dataset

We also testify all the pruning methods on DukeMTMC-
reID. Table II shows the comparison results, where the “-”
refers to “fail to convergence” while running the experiment.
We have the following observations:
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TABLE III: Performance comparison of different pruning methods on MSMT17 V1 using ResNet-18, ResNet-34, and ResNet-
50 backbone networks. In the third column, the letters S and D refer to “same pruning rate for different layers” and “different
pruning rates for different layers”, respectively. “-” means the models fail to converge while training.

Depth Methods Pruned rate mAP(%) Rank-1(%) Rank-5(%) Rank-10(%) Parameters(M) Parameters(%)↓

18

baseline [21] 23.31 49.11 66.85 73.21 12.22 0
SFP [13]

S: 20%

17.70 31.48 45.17 51.40
9.04 26.02FPGM [14] 16.83 30.72 44.11 50.26

HFP [12] 15.99 29.66 43.14 49.02
Ours D: p=0.5 18.09 31.56 45.56 52.80 4.12 66.29

SFP [13]

S: 50%

14.99 27.64 41.53 47.76
5.16 57.77FPGM [14] 14.94 27.22 41.89 48.22

HFP [12] 9.81 19.62 32.59 38.86
Ours D: p=0.6 17.93 31.07 45.96 52.36 3.14 74.30

SFP [13]

S: 90%

- - - -
- -FPGM [14] - - - -

HFP [12] - - - -
Ours D: p=0.9 - - - - - -

34

baseline [21] 24.80 50.42 67.44 74.39 22.33 0
SFP [13]

S: 20%

19.07 33.17 47.22 52.96
16.33 26.87FPGM [14] 18.42 32.31 46.11 51.82

HFP [12] 18.06 32.31 46.08 52.19
Ours D: p=0.5 22.81 37.78 51.43 57.34 7.04 68.47

SFP [13]

S: 50%

15.98 28.87 41.93 47.97
8.95 59.92FPGM [14] 16.13 29.09 43.01 48.86

HFP [12] 10.55 20.76 34.13 40.12
Ours D: p=0.6 21.74 36.62 50.46 56.34 5.29 76.31

SFP [13]

S: 90%

- - - -
- -FPGM [14] - - - -

HFP [12] - - - -
Ours D: p=0.9 14.33 26.13 40.94 47.03 1.96 91.22

50

baseline [21] 27.63 54.93 71.52 77.27 27.69 0
SFP [13]

S: 20%

21.67 36.32 50.61 56.48
20.96 24.30FPGM [14] 21.85 36.00 49.73 55.42

HFP [12] 21.43 36.13 49.65 55.30
Ours D: p=0.5 26.46 42.44 56.06 61.57 11.91 56.99

SFP [13]

S: 50%

15.98 28.87 41.93 47.97
13.23 52.22FPGM [14] 19.06 32.97 46.76 52.79

HFP [12] 10.16 19.79 32.68 38.95
Ours D: p=0.6 23.94 39.57 53.27 58.63 10.12 65.11

SFP [13]

S: 90%

- - - -
- -FPGM [14] - - - -

HFP [12] - - - -
Ours D: p=0.9 13.66 25.41 39.67 46.31 7.36 73.42

• Similar to the results on Market-1501, our method con-
sistently achieves the best performance in terms of mAP
and Rank-1, especially when a large number of filters
is pruned. For example, our method outperform HFP
7.7% when removing 88.3% parameters (1.41M left) on
ResNet-18.

• In some cases, the soft-pruning methods, i.e., SFP and
FPGM, fail to converge when a large proportion of filters
is pruned, i.e., 90% filters on ResNet-18 and ResNet-
50. The reason may lie in that the soft-pruning methods
keep the pruned filters while training, which maintains
the same volume of parameters as the pre-trained model.
When a large number of filters is set to zeros, the initial
parameters of the pruned network have a large gap to that
of the pre-trained network. Such a parameter gap may
be insufficient for the pruned network to keep the pre-
trained knowledge in a large parameter space. In contrast,
the hard-pruning method, i.e., HFP, directly removes the
redundant filters and generates the compact model, which

optimizes the model in small parameter space (with fewer
parameters) and converges easily even with part of the
pre-trained parameters.

• Our method introduces a filter decaying strategy, giving
the pruned model more chances to utilize the pre-trained
knowledge. Therefore, it can get stable results than the
others. For example, we reduce 91.9% parameters (1.79M
left) only with an increase of 3.7% rank-1 error on
ResNet-34.

C. Results on the MSMT17 V1 Dataset

Table III shows the comparison results on the large-scale
re-identification dataset MSMT17 V1. We have the following
observations:
• The soft-pruning methods, i.e., SFP, FPGM, and ours,

invariably outperform the hard-pruning method, i.e., HFP,
on all types of networks. Note that the data collection
scenarios in MSMT17 V1 are quite more complex than
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that of Market-1501 and DukeMTMC-reID. This indi-
cates that by keeping the connections of pruned filters
while fine-tuning, the soft-pruning methods can retain the
original model capacity as much as possible and are more
adaptive to complex datasets.

• Due to the complexity of MSMT17 V1, when removing
a large proportion of filters, e.g., 90% filters, all the
compared methods, i.e., SFP, FPGM, and HFP, suffer
from convergence problems on all the networks. Despite
failures on ResNet18 with p = 0.9, our method still
performs well on the other two networks, i.e., ResNet34
and ResNet50. This again demonstrates the advantage of
our method.

D. Ablation Study

Our method contains three main components, i.e., adjacent
filter selection, block-wise pruning, and filter decaying. In
this section, we provide case studies to help understand these
components.
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Fig. 4: Influence analysis of adjacent filter selection in the
proposed method. BAFD with adjacent filter criterion is suit-
able for removing a large number of filters with smaller mAP
dropping over G-BAFD, which selects redundant filters using
the center-based criterion in FPGM [14].

1) Influence of Adjacent Filter Selection: Our method
imposes the adjacent filter selection to locate the redundant
filters and retains the original filter distributions in the pre-
trained network. To study the effectiveness of adjacent fil-
ter selection, we replace it with the global-geometric selec-
tion in FPGM [14], namely G-BAFD. G-BAFD evaluates
the importance of filters according to the distance to their
geometry centers. We report the pruning performance of
BAFD and G-BAFD on ResNet-18 with pruning rate tuned
from {0.6, 0, 7, 0.8, 0.9} on the DukeMTMC-reID dataset.
The setting of other parameters is following Section IV-3.
Figure 4 shows the comparison results. We can find that BAFD
consistently outperforms G-BAFD on the selected pruning
rate. Particularly, when the pruning rate is increasing, BAFD
achieves much higher mAP over G-BAFD. Besides, we also
report the filter distributions (the l2-norm of filters) of different
methods before and after pruning in Figure 5. In this experi-
ment, we remove the block-wise pruning component in BAFD
and obtain a layer-wise version like SFP. The pruning rate is
set to P = 50% for SFP and p = 0.5 for BAFD. The filters are

collected from the last convolutional layer of ResNet34. We
can see that the center-based method, i.e., SFP (green curve),
tends to prune small-scale filters (close to zero), leading
to a larger bias (marked by green box) compared with the
original distribution (orange curve) than BAFD (purple curve).
This observation demonstrates that our adjacent filter selection
mechanism is more suitable for removing a large proportion
of filters while retaining the original filter distribution.
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Fig. 5: Filter distributions of different methods before and after
pruning. The center-based method, i.e., SFP (green curve), can
only keep the small-scale filters whose norm values are bigger
than 0.9, resulting in a large disparity in filter distribution.
In contrast, BAFD (purple curve) evaluates the redundancy
of filters according to their local adjacent power, which can
preserve more small-scale filters (the norm values are bigger
than 0.7) and better retain the original filter distribution
(orange curve).

2) Influence of Block-wise Pruning: Our method prunes
filters in a block-wise manner. Concretely, the convolutional
layers in the same block share the same pruning rate, while
those in different blocks cover diverse pruning rates. To
investigate its validity, we manually set the same pruning rate
for all the blocks across the whole network, and named the new
method as L-BAFD. Then, we test L-BAFD with the pruning
rate tuned from {0.5, 0.6, · · · , 0.9} on DukeMTMC-reID
using ResNet-18. Figure 6 illustrates the comparison results,
where we use the size of the marker to reveal the number of
parameters (a bigger marker indicates the more parameters).
We can find that our method consistently outperforms L-BAFD
in terms of mAP while maintaining fewer parameters. This
demonstrates the efficiency of our block-wise pruning strategy.

To better explain how the redundant filters are selected, we
record the number of pruned filters of the convolutional layers
in each block. ResNet-50 is chosen for the backbone network
on Market-1501 with pruning rate tuned from {0.5, 0.6, 0.9}.
Figure 7 shows the results. Clearly, our method tends to prune
filters in high-level blocks. This observation shows a consistent
result with the previous studies [47], which indicates that
the deep blocks are prone to encode the high-level semantic
information of the input images and contain relatively high
rates of redundancy compared with the lower blocks. Such
observation also again demonstrates the effectiveness of our
block ranking approach.

3) Influence of Filter Decaying: Our method utilizes a
filter decaying strategy to prune and reduce the impact of
the redundant filters on the network. Filter decaying helps
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Fig. 6: Influence analysis of block-wise pruning in BAFD. The
larger marker size indicates more parameters remaining. We
can observe that BAFD is superior to L-BAFD, which sets the
same pruning rate for all the blocks across the whole network.

the pruned network to keep the pre-trained knowledge. To
understand its sensitivity, we evaluate BAFD with β tuned
from {6× 10−1, 3× 10−1, 1× 10−1, 6× 10−2, 3× 10−2, 1×
10−2, 0} on three validation sets using ResNet-50. Follow-
ing [65], these validation sets are split out from the training
set of Market-1501, DukeMTMC-reID, and MSMT17 V1,
respectively. For each validation set on the selected dataset,
the last 100 classes are selected for validation, and the rest
classes are used for training. The pruning rate p is tuned
from {0.4, 0.5, 0.6, · · · , 0.8, 0.9}. The results are shown in
Figure 8. We observe that the impact of β is slight when p
is small, e.g., p < 0.7. In contrast, when a large proportion
of parameters is dropped, e.g., p ≥ 0.7, BAFD is sensitive to
β. Concretely, a larger β decreases the filter scale slowly and
enhances performance. This is consistent with our intuition
that the filter decaying helps the model adapt to the large
prune rate. Note that if the value of β is too large, e.g.,
β = 6 × 10−1, the performance may degrade significantly.
In this case, the network may converge very slowly, resulting
in limited redundant filters are decreased to zeros. For a fair
comparison, following the hard-pruning methods, all the final
redundant filters are dropped to obtain the compact model.
Thus, the model with β = 6× 10−1 does not perform well.

To have a clear illustration of how filter decaying works, we
report the pruning performance w.r.t. the fine-tuning epochs.
In this experiment, we manually remove filter decaying (i.e.,
β = 0) from BAFD to form a new method, namely Non-
BAFD, and test it on various ResNet-type networks. Suppose
Mi

B and Mi
N be the mAP for BAFD and Non-BAFD in

the i-th training epoch, respectively. The results are shown in
Figure 9. There are several observations:
• At the early stage of fine-tuning phase, i.e., the first 10

epochs, Non-BAFD performs better than BAFD. This is
because Non-BAFD directly zeros redundant filters to
get a relatively stable network structure. Such a steady
network structure makes Non-BAFD efficient for training
and superior to BAFD.

• BAFD imposes the filter decaying strategy to smoothly
reduce the filter scales, which gives the selected filters
more chances to recover themselves and consumes more
epochs to converge at the early training stage, e.g., in the
first 10 epochs on ResNet-34.

• BAFD and Non-BAFD spend a similar number of epochs
to converge on the selected networks, i.e., 70 for ResNet-
18, 50 for ResNet-34, and 50 for ResNet-50. This demon-
strates that our filter decaying strategy does not increase
the total fine-tuning epochs compared with the soft-
pruning strategy.

• BAFD constantly outperforms Non-BAFD after fine-
tuning 60 epochs on three selected networks. Considering
BAFD imposes the filter decaying to shrink the parameter
gaps between W0 and Wpr, this results demonstrate the
effectiveness of our filter decaying, which is beneficial
for pruning.

E. Pruning Efficiency Analysis

In this experiment, we study the efficiency of our method
in training and inferencing on Market-1501. For training,
we independently run all the pruning methods on ResNet50
100 epochs on an Intel (R) Core (TM) i9-9980XE CPU @
3.00GHz PC with 64G memory and a GPU (Nvidia 2080Ti).
The average training time for each epoch is reported, i.e., 2.95
minutes, 3.13 minutes, and 3.34 minutes for SFP, FPGM, and
our method, respectively. Therefore, compared with other soft-
pruning methods, the increase in computational complexity of
our method is limited and negligible.

Previous works have theoretically analyzed the speedup of
conventional layer-wise pruning methods [48]. However, as
different layers in BAFD may have different pruning rates,
it is hard to compute the theoretical speedup ratio. To test
the efficiency of pruned models, we record the inference time
of various kinds of networks with 90% filters (p is set to 0.9
for BAFD) are pruned. For the soft-pruning methods, i.e., SFP,
FPGM, and ours, they keep the redundant filters while pruning.
We remove the zeroed filters directly to obtain the slim models
after they converge. All the slim models are run 10 times
on an Intel Dual-Core i5 @ 1.3GHz PC with 4G memory,
and the average inference time is recorded. As can be seen
in Table IV, our method achieves superior performance and
reduces more parameters over the other methods. For example,
our method surpasses the second best result over 4% on Rank-
1 by reducing 91.84% parameters using RestNet-34. For model
inference, our method slightly spends more inference time than
FPGM, e.g., 8.66ms on ResNet-34. As discussed in Section
IV-D2, our method tends to prune filters in the high-level
convolutional layers, which is adept at reducing parameters
rather than computation cost.

F. Feature Maps Visualization

To further understand the mechanism of BAFD, we apply
it to ResNet-50 and visualize the feature maps of the first
convolutional layer of the pruned network. In this experiment,
we set the pruning rate p = 0.5 and β = 1×10−2. As shown in
Figure 10, we provide visualization results, where the pruned
feature maps are marked with the red box. Clearly, we can
see that the strong similarity yields up over the pruned feature
maps. For example, feature maps (2,20,41,44) show close
relations, which demonstrates the existence of redundancy in
the ResNet-50 network and the necessity of network pruning.
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Fig. 7: The pruned filter statistics of our method on ResNet-50 with pruning rate p tuned from {0.5, 0.6, 0.9}. We observe that
our method tends to prune redundant filters in high-level blocks.
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Fig. 8: Filter decaying analysis with different β. The impact of β is slight when the pruning rate is small, i.e., p < 0.7. In
contrast, larger β may be better if p ≥ 0.7.
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Fig. 9: The influence analysis of filter decaying on various kinds of networks, i.e., ResNet-18, ResNet-34, and ResNet-50,
from left to right with 90% filters pruned. “Diff” refers to the absolute difference in mAP between our pruning methods with
and without filter decaying. Our filter decaying strategy could boost the pruning performance, especially when large amounts
of filters are pruned on ResNet-34 and ResNet-50.

What is more, the pruned feature maps can be replaced by the
retained filters. For example, feature maps (2,11,39) can be
replaced by feature maps (8,40,36), respectively. This clearly
shows that our method can slim the CNN network while
maintaining the original filter distribution.

V. CONCLUSION

In this paper, we propose a novel block-wise adjacent filter
pruning method, namely BAFD, to address the problem of
pruning re-id models. In particular, BAFD combines adjacent
filter selection, block ranking, and filter decaying into a joint
soft-pruning framework. Different from existing works, BAFD
is able to retain the filter distribution and block relations of
the original model at the same time. More importantly, unlike
existing methods that usually delete or zero redundant filters
directly, BAFD is much “softer” by progressively reducing
the scale of redundant filters. It outperforms other prevailing

pruning methods on three popular person re-ID benchmarks
and shows potential advantages when a large proportion of
filters is pruned.
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