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Sign language provides a way for differently-abled individuals to express their feelings and emotions. However,
learning sign language can be challenging and time-consuming. An alternative approach is to animate user
photos using sign language videos of specific words, which can be achieved using existing image animation
methods. However, the finger motions in the generated videos are often not ideal. To address this issue, we
propose the Structure-aware Temporal Consistency Network (STCNet), which jointly optimizes the prior
structure of humans with temporal consistency to produce sign language videos. We use a fine-grained
skeleton detector to acquire knowledge of body structure and introduce short-term cycle loss and long-term
cycle loss to ensure the continuity of the generated video. The two losses and keypoint detector network are
optimized in an end-to-end manner. Quantitative and qualitative evaluations on three widely-used datasets,
namely LSA64, Phoenix-2014T, and WLASL-2000, demonstrate the effectiveness of the proposed method. We
hope this work can contribute to future studies on sign language production.
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1 INTRODUCTION
Sign language is a type of visual language that conveys meanings through hand gestures and
facial expressions [73]. According to the World Federation of the Deaf (WFD), approximately 72
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Fig. 1. The example picture of sign language motion transfer results. Given a source image and a driving video,
the model generates a new video clip where the person in the source image performs the sign language motion
in the driving video. Compared with the state-of-the-art method TPSMM [93], our method can generate
smooth videos while preserving identity attributes such as hair and face. Check out the video example at
https://youtu.be/2XL8o34hrHc.
million people worldwide use sign language [47]. However, learning sign language can be time-
consuming and challenging, making it impractical for many people. Additionally, sign language
varies depending on the local language and culture [32]. To address this, we aim to animate user
photos based on sign language videos, allowing everyone to communicate using sign language
without having to learn it.

Over the past few years, significant progress has been made in image animation [64–66, 93].
Given a video and an image containing the same type of object, the goal of image animation is to
generate a new video whose object comes from the image and the motion comes from the video.
However, when applying existing motion transfer methods to sign language generation, two main
limitations arise. Firstly, the importance of body structure is often underestimated, as many works
[64–66, 93] extract body keypoints in an unsupervised manner. These keypoints are not always
aligned with the semantic body parts, making it difficult to capture detailed motions, especially for
small-scale patterns like fingers. As shown in Figure 1, finger motions are often missing or blurred.
Secondly, there is a lack of long-term temporal consistency in recent works [64–66, 93] that focus
on short-term continuity between two frames. When given a pair of images, these methods only
prioritize the quality of the reconstructed single frame during training, as shown in the top part of
Figure 2, while ignoring the continuity and consistency of more frames in the future.

To overcome these limitations, we propose the Structure-aware Temporal Consistency Network
(STCNet), a human body structure-aware network that generates sign language videos with high
quality and continuity. The proposed framework has three main features. First, we employ a
fine-grained keypoint detector network that provides strong human body structure knowledge,
enhancing hand motion estimation. Second, we propose short-term cycle loss and long-term cycle
loss to promote the continuity of the generated videos. Finally, to address the instability of the
keypoint detector network’s output, we adopt a jointly training strategy to fine-tune the pre-trained
network without additional annotations.
We conduct extensive experiments on three sign language datasets: LSA64 [56], Phoenix-

2014T [6], and WLASL-2000 [40]. The results demonstrate that our method outperforms state-of-
the-art methods, including Monkey-Net [64], First Order Motion Model (FOMM) [65], Articulated
Animation (AA) [66], and Thin-Plate Spline Motion Model (TPSMM) [93], in terms of the quality
of the generated videos. As shown in Figure 1, our method generates smooth videos with correct
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Fig. 2. Comparison between existing methods and our method Existing methods [64–66, 93] typically
use an unsupervised keypoint detector and perform a single-frame generation procedure during training. In
contrast, our method utilizes a fine-grained skeleton detector and enforces two types of temporal consistency.
The R○ in the figure indicates that we exchange the source image and the driving image to estimate the
motion reversely. The red arrows show the generation order of our method during training.

motion details, as compared to the state-of-the-art method TPSMM. Briefly, our contributions can
be concluded as follows:

• We propose a new Structure-aware Temporal Consistency network (STCNet). In particular,
we explicitly introduce the prior human keypoints to guide the generation and involve the
temporal consistency objective to further regularize the training process.

• Extensive experiments on LSA64 [56], Phoenix-2014T [6], and WLASL-2000 [40] datasets
show that our approach surpasses several competitive methods, verifying the effectiveness
of the proposed method.

2 RELATEDWORKS
2.1 Skeleton keypoint Detection
Skeleton keypoint detection, also known as pose estimation, is to locate the essential parts of people
in an image or a video [14]. The pioneering work in deep learning-based pose estimation is DeepPose
[74], which outperforms traditional methods based on regression or retrieval [15, 18]. State-of-
the-art methods are typically derived from Convolutional Neural Networks [8, 50]. OpenPose
[7, 8, 67, 82] is one of the most popular methods in the research community, capable of estimating
whole-body pose. In essence, all pose estimation methods can be divided into top-downmethods and
bottom-upmethods [90]. The bottom-upmethod involves detecting joints first and gathering several
joints to estimate the pose of a human. Representative works include DeepCut [53], Associative
Embedding [48], PifPaf [36], OpenPifPaf [37], Keypoint Communities [90], etc.
On the contrary, the top-down method involves detecting a human first and then estimating

the joints within the bounding box. CFN [30] uses a "Coarse-Fine" network structure to exploit
multi-level supervision. CPN [11] introduces a cascaded pyramid network that aims to deal with
occluded keypoints. CrowdPose [42] designs a person-joint connection graph to deal with wrong
joint assembling and redundant pose prediction. RMPE, also known as Alphapose [19, 43] designs
Symmetric Spatial Transformer Network, Parametric Pose NonMaximum-Suppression, and Pose-
Guided Proposals Generator to handle inaccurately detected bounding boxes. Inspired by recent
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sign language translation works [21, 28, 69, 96], we adopt a keypoint detector to facilitate the
sign language understanding in this work. Since every sign language video only contains one
signer in the center, we skip the human detection process in practice and fine-tune the off-the-shelf
AlphaPose method to extract key points.

Video pose estimation is different from image-based pose estimation since video requires temporal
continuity and identity tracking [14, 94]. Cherian et al. [13] propose extending the spatial graph
model with temporal links to capture motions of specific human body parts. The extra links ensure
temporal consistency with additional parameters. Nie et al. [85] propose a unified spatial-temporal
model to jointly accomplish video pose estimation and action recognition, thus the estimated
pose is aligned with action semantics. Deepflow [83] and Thin-Slicing [71] are two works using
optical flow to improve continuity by introducing temporal information. Pfister et al. [52] utilize
similar techniques, demonstrating the effectiveness of optical flow. UniPose [4] leverages the LSTM
network to provide the memory of adjacent frames. Recent work DiffsionPose [55] uses a diffusion
model to estimate human pose and achieves remarkable results on various datasets. Researchers
also curate benchmarks like YoutubePose [10] and PoseTrack [3] for videos in various domains and
complex poses. In this paper, we finetune the keypoint detector network in an end-to-end manner,
ensuring the temporal consistency of sign language videos.

2.2 Image Animation
Image animation refers to synthesizing action given an image and a driving video. Efros et al. [17]
propose a retrieval-based action synthesis method. In recent years, most motion transfer generation
networks deploy deep networks [86].

For instance, MoCoGAN [75] decomposes motion and content into separate representations to
generate video. Yang et al. propose a two-stage approach, i.e., PSGAN and SCGAN [87], to transfer
motions collaboratively. Everybody Dance Now (EDN) [9] is another two-stage motion transfer
network. The first stage is to generate the image frame as a whole and the second stage is to realism
to the face region. Zhou et al. propose a dance motion transfer network using a spatial transformer
network [97]. G3AN [80] is a three-stream video generation network to disentangle motion features.
Siarohin et al. propose a series of works on motion transfer including Monkey-Net [64], First Order
Motion Model (FOMM) [65], and Articulated Animation (AA) [66]. Monkey-Net is an end-to-end
motion transfer network, which learns to detect keypoint in an unsupervised way. FOMM calculates
the first-order Taylor expansion in a neighborhood of the keypoint locations. AA transfers the
motion from the essential regions of the object. Liu et al. adopt neural-ODEs for motion deformation
[44]. Yoon et al. design a network to animate images using UV maps produced by a 3D human
model [89]. Thin-Plate Spline Motion Model (TPSMM) by Zhao et al. [93] applies Thin-Plate Spline
(TPS) transformation based on FOMM. However, TPSMM needs five sets of keypoints which bring
redundancy. In contrast, our work differs from existing works by mining semantic-aware keypoints.
Moreover, inspired by the spirit of the cycle consistency [79], we consider the temporal consistency
as an essential influence factor of the generated video quality, which is crucial for sign language
understanding [12, 22, 41, 54].
Diffusion models [25, 70] recently achieved impressive results on generation tasks like image

generation [49] and super-resolution [20]. Researchers also leverage diffusion to generate data
for discriminative tasks [88]. Diffusion models sample data from the distribution and gradually
add noise by the diffusion process. Then diffusion models learn the reverse process which is to
denoise and reconstruct the sample. However, diffusion models require high computing resources.
To address this challenge, DDIM [70] boosts the inference speed by skipping step sampling. For
conditional generation, GLIDE [49] injects CLIP text features to guide the generation process.
Current works substitute the text feature with human pose features to achieve pose-guided video
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generation. DreamPose [34] leverages pose sequences to generate fashion videos. DISCO [78]
disentangles foreground and background features to improve background quality. Our method
differs from these works in two points. First, we acquire human poses from raw videos. Second,
our method captures fine-grained finger motion details.

2.3 Sign Language Production
Sign Language Production (SLP) is a research field related to generating sign language videos,
as highlighted in several recent studies [29, 38, 58–60, 62, 63, 91]. Saunders et al. proposes an
Adversarial Multi-Channel approach [58] to generate sign language pose sequences. Saunders
et al. use progressive transformer [60] to generate consecutive pose sequences, improving the
BLEU performance. Everybody Sign Now [59] takes the spoken language as input and samples
skeleton pose to generate photorealistic sign language videos. Zelinka et al. [91] propose a CNN-
based method to deal with text-to-video sign language pose synthesis. AnonySign proposed by
Saunders et al. [61] is the most related work, they implicitly encode the style features to generate
sign language videos. However, the video generation procedure in their method does not take
time-consistency into consideration. Ventura et al. [77] and Duarte et al. [16] deploy Everybody
Dance Now (EDN), to generate sign language videos. EDN is a two-stage network that directly
takes keypoints as input, yet our method conforms to end-to-end training paradigm and extracts
keypoints from sign language videos. SIGNGAN proposed by Saunders et al. [63] aims to produce
sign language videos given spoken languages. The sign pose is selected in a given pose dictionary.

3 METHOD
We propose STCNet, a body structure-aware framework that focuses on sign language motion
transfer while maintaining the cycle consistency of time. As Figure 3 shows, STCNet consists of
four parts, a keypoint detector network, a motion estimation network, an encoder, and a decoder.

3.1 Keypoint Detector Network
To obtain explainable and accurate keypoint locations, we adopt Alphapose model pre-trained on
the Halpe dataset [43]. Sign language videos only contain the upper part human body, and the
semantic information is revealed by the hand gestures and the facial expressions of the signer.
Therefore, we select 21 vital keypoints with 12 on the hands, 5 on the upper body, and 4 on the
face to remove redundancy without losing the details. Given the 𝑖𝑡ℎ frame 𝐼 𝑖 ∈ R𝐻×𝑊 ×3 in a video
clip, we pass the image to the Alphapose model 𝐹𝑃 and get the result coordinates 𝐾𝑖 ∈ R21×2. The
keypoint detection procedure can be formulated as follow:

𝐾𝑖 = 𝐹𝑃 (𝐼 𝑖 ). (1)

Empirically, we find that the output of two continuous frames within a video clip generated by
the pre-trained AlphaPose model differs a lot, especially when the frames are vague. One possible
reason behind the large discrepancy between the detection results could be a lack of continuity of
time. To address this problem, we fine-tune the keypoint detector along with the training procedure
of the other modules. The keypoint detector shares the optimization goals with the other modules,
thus no extra annotation is required. Therefore, it is conducted on single frames but preserves the
temporal consistency in sign language videos. A violent fine-tuning procedure leads to missing the
body structure information provided by the pre-trained model. Hence, we set the learning rate at a
smaller value to fine-tune the detection module slowly.
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Fig. 3. The Brief Framework. The generator consists of an encoder, a decoder, a keypoint detector, and
a motion estimation network. Specifically, the keypoint detector takes the source image 𝐼 𝑖 and the driving
image 𝐼 𝑖+𝑗 as input and passes the location of the keypoints to the motion estimation network to predict the
optical flow 𝑂 and the occlusion masks𝑀 . The encoder downsamples the source image to extract features
whereas the decoder warps the encoded image according to the predicted optical flow 𝑂 and occlusion
masks𝑀 and generates the final output ¤𝐼 𝑖+𝑗 . The detailed structure of the motion estimation network and
the decoder is depicted at the bottom. Note that ⊖ here indicates element-wise subtract, ⊕ indicates the
concatenation operation, and ⊗ represents element-wise product.

3.2 Motion Estimation Network
Themotion estimation network aims to predict a dense optical flow𝑂𝑖→𝑖+𝑗 ∈ R𝐻/4×𝑊 /4×2 indicating
the motion of the upper part of the body. 𝑖 → 𝑖 + 𝑗 means the model takes the 𝑖𝑡ℎ frame 𝐼 𝑖 as the
source image and the 𝑖 + 𝑗𝑡ℎ frame 𝐼 𝑖+𝑗 as the driving image.
Specifically, given 21 pairs of keypoint detected from the source image and driving image, we

first use Thin Plate Spline (TPS) transformation [5] to estimate 21 corresponding optical flows.
A learnable background predictor is adopted to predict an extra optical flow to approximate the
motion of the background [66, 93]. We warp the downsampled source image according to each
coarse optical flow mentioned above for later use. Every keypoint is modeled by a Gaussian in
a heatmap, which means two sets of heatmaps can be obtained from the source image and the
driving image. To emphasize the keypoint location difference between the source image and the
driving image, the previously warped images are concatenated with the heatmap difference and
then used as the input of the U-Net structure [57] to learn the residual motions. The output of
the U-Net network is passed to a softmax layer and then multiplied with the coarse optical flows
elementwisely. The final predicted optical flow 𝑂𝑖→𝑖+𝑗 is obtained by summing the multiplied
result along the channel axis. Meanwhile, the motion estimation network additionally predicts
a set of occlusion masks 𝑀 in different resolutions via applying a convolutional layer after the
U-Net structure. The occlusion masks are applied in the decoder network to mask the unnecessary
deformation within the feature map. Overall, the motion estimation process can be summarized as:

𝑀𝑖→𝑖+𝑗 = 𝐹𝑀 (𝐹𝑈 (𝐾𝑖 , 𝐾𝑖+𝑗 )),
𝑂𝑖→𝑖+𝑗 = 𝐹𝑂 (𝐹𝑈 (𝐾𝑖 , 𝐾𝑖+𝑗 )),

(2)

where 𝐹𝑈 denotes the U-Net structure. 𝐹𝑀 is a convolutional layer used to predict the occlusion
masks𝑀𝑖→𝑖+𝑗 in different resolutions, and 𝐹𝑂 represents a softmax layer followed by multiplying
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the optical flows estimated by TPS, and a sum operation along the channel axis. Both 𝐹𝑀 and 𝐹𝑂
take the output of the U-Net model as the input. Note that in the motion estimation network, the
driving images during inference only provide motion information and do not involve appearance
textures. This enables animation between different signers, which means that even though during
training the source image and driving image contain the same signer, we can still use videos of
different signers to animate the source image.

3.3 Encoder and Decoder
As Figure 3 shows, the source image 𝐼 𝑖 ∈ R𝐻×𝑊 ×3 is first passed to the encoder to extract features.
We adopt a simple but effective "high to low" architecture for the encoder. The intuition is to
combine the general information in the low-resolution feature maps and the detailed information
in the high-resolution feature maps. The input image 𝐼 𝑖 is first passed to a convolutional layer to
expand the feature channel. Followed by three downsampling blocks, the encoder aims to capture
high-level features step by step. Every downsampling block consists of a 3 × 3 convolutional layer
with a stride of 1, an instance normalization layer, a ReLU activation layer, and a 2 × 2 average
pooling layer with a stride of 2. Let 𝐹𝐸 denote the encoder model and 𝐹𝐷 denote the decoder model.
To get the generation result ¤𝐼 𝑖+𝑗 ∈ R𝐻×𝑊 ×3, the deformation and decoding processes are carried on
concurrently and progressively and can be formulated as:

¤𝐼 𝑖+𝑗 = 𝐹𝐷 (𝐹𝐸 (𝐼 𝑖 ), 𝑀𝑖→𝑖+𝑗 ,𝑂𝑖→𝑖+𝑗 ). (3)

As shown in the bottom of the Figure 3, the encoded feature map in the lowest resolution (i.e., the
output of the third downsampling block in the encoder) is first warped according to the optical flow
𝑂𝑖→𝑖+𝑗 and then multiplied by the occlusion mask𝑀𝑖→𝑖+𝑗 in the corresponding resolution. Followed
by a series of Resblocks, the model learns the residual information. In particular, a Resblock contains
two 3 × 3 convolutional layers and a shortcut connection [24]. The input of each convolutional
layer in the Resblock is normalized by an instance normalization layer and activated by a ReLU
layer. We then warp the middle-resolution feature map (i.e., the output of the second downsampling
block in the encoder) according to the optical flow 𝑂𝑖→𝑖+𝑗 and multiply the result by the occlusion
mask. The warped middle-resolution feature map is concatenated with the upsampled output of
the previous Resblocks and then passed to another series of Resblocks. Likewise, the feature map
in the highest resolution (i.e., the output of the first downsampling block in the encoder) is also
warped by the optical flow, multiplied by the occlusion mask, concatenated with the output of the
previous Resblocks, and passed to some other Resblocks. The decoding process ends up with a
final convolutional layer which decreases the channel number to three. We use a sigmoid layer to
restrict the output value and get the final result ¤𝐼 𝑖+𝑗 . Similarly, we can get the result of the other
generation procedures depicted in the same training iteration, which can be formulated as:

¤𝐼 𝑖+𝑗+𝑞 = 𝐹𝐷 (𝐹𝐸 ( ¤𝐼 𝑖+𝑗 ), 𝑀𝑖+𝑗→𝑖+𝑗+𝑞,𝑂𝑖+𝑗→𝑖+𝑗+𝑞),
¥𝐼 𝑖+𝑗 = 𝐹𝐷 (𝐹𝐸 ( ¤𝐼 𝑖+𝑗+𝑞), 𝑀𝑖+𝑗+𝑞→𝑖+𝑗 ,𝑂𝑖+𝑗+𝑞→𝑖+𝑗 ),
¤𝐼 𝑖 = 𝐹𝐷 (𝐹𝐸 ( ¥𝐼 𝑖 ), 𝑀𝑖+𝑗→𝑖 ,𝑂𝑖+𝑗→𝑖 ).

(4)

3.4 Optimization
During training, we apply a compound reconstruction loss as the optimization goal. Pyramid
perceptual loss, middle feature loss, short-term cycle loss, and long-term cycle loss are the main
components of reconstruction loss.
Perceptual Loss. Perceptual loss is proposed by Johnson et al. and is widely used in image trans-
formation and reconstruction [33]. We minimize the L1 distance between two feature maps in five
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different middle layers extracted by a pre-trained VGG-19 network. The loss can be depicted as:

L𝑝 =
∑︁
𝑛

��𝑉 𝑛 (𝐼 𝑖+𝑗 ) −𝑉 𝑛 ( ¤𝐼 𝑖+𝑗 )
�� , (5)

where 𝐼 𝑖+𝑗 denotes the ground truth driving image and ¤𝐼 𝑖+𝑗 means the generated image. 𝑉 𝑛 repre-
sents the 𝑛𝑡ℎ layer output of the pre-trained VGG-19 network [68]. In practice, we downsample the
image pair and conduct a pyramid perceptual loss to facilitate the reconstruction supervision in
different resolutions [64].
Warp Consistency Loss.We also constrain the warped encoded image to simulate the encoded
driving image in the generation network [93]. To this end, the warp consistency loss is defined as:

L𝑤 =
∑︁
𝑟

��W(𝐹 𝑟𝐸 (𝐼
𝑖 ),𝑂𝑖→𝑖+𝑗 ) − 𝐹 𝑟𝐸 (𝐼

𝑖+𝑗 )
�� . (6)

Note that 𝐼 𝑖 denotes the source image, and 𝐼 𝑖+𝑗 represents the driving image. 𝐹 𝑟
𝐸
means the 𝑟 𝑡ℎ

downsampling block in the encoder architecture. W is the warping operation according to the
predicted optical flow 𝑂𝑖→𝑖+𝑗 .
Cycle-Consistency Losses. Temporal continuity is an essential influence factor for video genera-
tion since the real world is smooth and coherent. We propose two types of cycle-consistency losses:
short-term cycle loss and long-term cycle loss to ensure temporal continuity. The short-term cycle
loss is defined as:

L𝑠 =
��¤𝐼 𝑖+𝑗 − ¥𝐼 𝑖+𝑗

�� . (7)
Let ¤𝐼 𝑖+𝑗 denote the image generated by the first generation procedure, which means the model
takes the 𝑖𝑡ℎ frame 𝐼 𝑖 as the source image and the 𝑖 + 𝑗𝑡ℎ frame 𝐼 𝑖+𝑗 as the driving image. ¥𝐼 𝑖+𝑗 is the
image generated by the third generation procedure. Although sharing the same driving image with
the first generation procedure, the third procedure considers the output of the second generation
procedure ¤𝐼 𝑖+𝑗+𝑞 as the source image. Based on the temporal consistency hypothesis, the short-term
cycle loss minimizes the L1 distance between ¤𝐼 𝑖+𝑗 and ¥𝐼 𝑖+𝑗 . In other words, the short-term cycle
loss allows the model to generate the same results given different source images and the same
driving image. We also adopt the long-term cycle loss, an augmented version of the original cycle
loss. The long-term cycle loss is defined as:

L𝑙 =
��¤𝐼 𝑖 − 𝐼 𝑖 �� . (8)

The long-term cycle loss performs a larger cycle compared to the previous short-term cycle loss
as shown in Figure 2. We aim to consolidate the cycle consistency by minimizing the L1 distance
between the output of the fourth generation procedure ¤𝐼 𝑖 and the 𝑖𝑡ℎ frame 𝐼 𝑖 . Overall, the short-
term cycle loss and the long-term cycle loss provide temporal self-supervision, promoting the
continuity and consistency of the generated videos.

The overall loss function is a combination of the above losses:
L𝑡𝑜𝑡𝑎𝑙 = _𝑝L𝑝 + _𝑤L𝑤 + _𝑐 (L𝑠 + L𝑙 ). (9)

The pyramid perceptual loss is considered the most essential reconstruction loss, thus we follow
existing works [93] and set _𝑝 to 10. _𝑤 represents the weight of the warp consistency loss and is
set to 1. The short-term cycle loss and long-term cycle loss share the same weight which is 2.
Training Strategy. As Figure 2 shows, existing motion transfer networks usually take an image
pair as input and perform the generation procedure once to calculate the reconstruction loss. This
training mode neglects the temporal information in a video clip, thus the generation results vary
when given the same driving image but different source images picked from the same video. To
address this problem, our framework conducts a cyclic end-to-end jointly training strategy. For
every iteration, the model randomly chooses three frames from a video clip as input and performs
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LSA64 RWTH-PHOENIX-Weather 2014T WLASL-2000

Fig. 4. Qualitative comparison. We compare our method with existing methods under the transfer setting
on three datasets, i.e., LSA64 [56], Phoenix-2014T [6], and WLASL-2000 [40]. Given the same source image
driven by different driving images, we show the generated result. Note that the identity of the driving image
is different from the identity of the source image. Our method keeps identity attributes of the source image
while transferring fine-grained motion details from the driving image (highlighted in white dashed boxes).

the generation procedure four times. The short-term cycle loss is calculated between ¤𝐼 𝑖+𝑗 and
¥𝐼 𝑖+𝑗 , while the long-term cycle loss is calculated between ¤𝐼 𝑖 and 𝐼 𝑖 . We consider the temporal
cycle-consistency as the prior hypothesis which helps the model learn the temporal information.
The benefit of our training strategy is that the models can promise strong temporal robustness
and generate videos with high continuity. Every rose has its thorn, the proposed strategy could be
time-consuming in one iteration but converges quickly overall. Since the pre-trained image-based
keypoint detector network does not maintain video continuity when facing blurred frames in a
video clip, we jointly optimize the keypoint detector network and the generator network using the
same optimization objective without extra human body structure annotations.
Inference Strategy. Similar to the training stage, the model takes two images as input for every
generation procedure during testing. The model generates a new image, which resembles the target
motion by deforming the source image. To generate the whole video clip, we further use the first
image of a video clip as the source image and other frames as the driving images in sequence.

4 EXPERIMENTS
4.1 Dataset and Evaluation
LSA64 [56] is a small-scale dataset containing 64 words in Argentinian Sign Language (LSA). LSA64
consists of 3200 sign language videos performed by 10 different signers. We use videos in 8 word
categories among 64 classes as the test set and the remaining vidoes as the training set.
Phoenix-2014T [6] is a German sign language dataset consists of 7738 videos performed by 9
different signers wearing dark clothes in front of a grey background. We follow the setting in the
original dataset where 7096 videos are used for training and the rest 642 videos for testing.
WLASL-2000 [40] is a large-scale word-level American Sign Language (ASL) dataset including
around 2000 words performed by more than 100 signers. There are 21083 videos in total and we
use the official train-test split.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article . Publication date: June 2023.



10 Y. Suo et al.

LSA64 Phoenix-2014T WLASL-2000
L1 ↓ SSIM ↑ LPIPS ↓ L1 ↓ SSIM ↑ LPIPS ↓ L1 ↓ SSIM ↑ LPIPS ↓

Monkey-Net [64] 0.0121 0.9489 0.0217 0.0340 0.8314 0.0784 0.0242 0.8786 0.0623
FOMM [65] 0.0186 0.9151 0.0274 0.0253 0.8681 0.0461 0.0260 0.8726 0.0587
AA [66] 0.0110 0.9493 0.0187 0.0190 0.9077 0.0365 0.0178 0.9118 0.0415

TPSMM [93] 0.0109 0.9499 0.0203 0.0188 0.9149 0.0327 0.0158 0.9218 0.0374
Ours 0.0104 0.9533 0.0170 0.0172 0.9211 0.0302 0.0153 0.9273 0.0313

Table 1. Results for the four competitive methods and our method under the reconstruction setting on the
three datasets. Three image quality evaluation metrics are adopted to test the reconstruction ability of models.

Evaluation Metrics. (1) Manhattan Distance (L1) [76] is the mean L1 distance between every
pixel of the generated frame and the ground-truth frame. Lower L1 distance indicates higher
reconstruction quality. (2) Structural SIMilarity (SSIM) [81] compares the resemblance between
two images concerning luminance, contrast, and structure. Higher value means higher generation
quality. (3) Learned Perceptual Image Patch Similarity (LPIPS) [92] proposed by Zhang et al. is
a metric used to compare the perceptual similarity between two images. We adopt the default
Alexnet [39] version here. Lower value indicates better reconstruction quality.

4.2 Implementation Details
We deploy a single Tesla V100 GPU to train models on every dataset. According to the dataset
size, we train 100 epochs, 200 epochs, and 300 epochs for LSA64, Phoenix-2014T, and WLASL-2000
respectively. The resolution of frames is resized to 128 × 128. Following existing works [66, 93], the
generator network and the motion estimation network are trained by the Adam Optimizer [35]
with 𝛽1 = 0.5, 𝛽2 = 0.99. We set the initial learning rate to 0.0002 except for the keypoint detector
network and apply a multistep scheduler to decay the learning rate. The learning rate decay factor
𝛾 is set to 0.1. To balance the memory cost and the training speed, we adopt a batch size of 16. In
terms of the keypoint detector network, we set the initial learning rate to 0.00002 while the decay
happens along with the generator network. The code is based on Pytorch[51]. We will make our
code open-source for reproducing all experiments.

4.3 Quantitative Results
We compare our method with four previous representative works for motion transfer, including
Monkey-Net [64], FOMM [65], AA [66], and TPSMM [93]. We re-trained all these works following
the best setting reported in their papers for comparison. As shown in Table 1, the proposed method
surpasses other methods and reaches the state-of-the-art results of all three metrics on three datasets.
The results verify that our method can generate video in high fidelity by recovering more human
body structure details. The reason is that our keypoint detector learns 21 explainable keypoints,
making the motion estimation model focus on the motion of essential body parts accurately. Our
method predicts 12 keypoints located on the hands, which explicitly makes the motion estimation
network pay attention to fine-grained finger motions.

4.4 Qualitative Results
Different from the reconstruction setting in the quantitative comparison, we test the transferability
of our method via qualitative analysis. As Figure 4 shows, we select a source image and multiple
driving videos with different identities to compare the animation quality (details highlighted in the
white dashed boxes). For all three datasets, our method maintains high identity consistency and
correct motion, especially in facial expression and hand details. The pre-trained keypoint detector
model explicitly raises the attention of the motion estimation network toward the hand motions
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L1 L𝑠 L1 ↓ SSIM ↑ LPIPS ↓
0.0106 0.9516 0.0179

✓ 0.0105 0.9519 0.0177
✓ 0.0105 0.9526 0.0175

✓ ✓ 0.0104 0.9533 0.0170

Table 2. Ablation study on the proposed short-term cycle loss and the long-term cycle loss. We train the
models while removing the losses in turn on the LSA64 dataset and then test the reconstruction ability using
three metrics.
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Fig. 5. Qualitative results of various complex backgrounds on WLASL and BOBSL datasets.

and the facial expressions, providing more details in the generation results. Monkey-Net [64] and
FOMM [65] show poor motion transfer capability on every dataset. AA [66] and TPSMM [93] have
a robust capability to capture the motion and preserve the correct body structure. However, the
identity attributes of the generated image, such as hair and face, are relatively blurred with the
identity of the driving image, especially on the Phoenix-2014T dataset.
Apart from the single-frame fidelity, we also provide visual results for the video continuity

comparison in Figure 1. The motion in the reconstructed video is smoother than in the videos
generated by other methods. The end-to-end training strategy empowers the generator network
with strong temporal consistency.

4.5 Ablation Studies
Do the proposed cycle-consistency losses work? Table 2 shows the results of adopting the
short-term cycle loss and long-term cycle loss on the LSA64 dataset. In particular, the L1, SSIM,
and LPIPS of the vanilla model trained without the two losses arrive at 0.0106, 0.9516, and 0.0179
respectively. We could observe two points: (1) Compared with the vanilla model, the short-term
cycle loss and the long-term cycle loss can individually boost the reconstruction quality of the
trained model. The short-term cycle loss has a larger regularization impact on the reconstruction.
(2) The short-term and long-term consistency losses are complementary. The model achieves the
best performance (-0.0002 for L1, +0.0017 for SSIM, and -0.0009 for LPIPS) when both the two
proposed losses are deployed. We think both losses ensure video continuity and robustness by
refraining from the unrecoverable movements.
Is the model sensitive to the cycle-consistency losses? To test whether the model is sensitive
to the weight of the cycle-consistency losses, we apply another experiment to explore the proper
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_𝑐 L1 ↓ SSIM ↑ LPIPS ↓
0.5 0.0106 0.9513 0.0179
1 0.0105 0.9528 0.0176
2 0.0104 0.9533 0.0170
5 0.0106 0.9518 0.0175
10 0.0105 0.9518 0.0177

Table 3. Ablation study on the weight of the proposed losses. We train the same model using different _𝑐
values and test the reconstruction ability on the LSA64 dataset.

Source Driving

Learning Rate = 0

Learning Rate = 2e-4

+

Learning Rate = 2e-5

Fig. 6. Ablation study on different learning rates of the keypoint detector network. We provide the visual
result on the Phoenix-2014T dataset using different learning rates of the keypoint detector network.

shared weight _𝑐 . As shown in Table 3, we attempt five different values of the weight including 0.5,
1, 2, 5, and 10. Under the same reconstruction setting carried out in the quantitative section, 2 is the
optimal value for _𝑐 . The model is not sensitive to the value of _𝑐 , yet a too-large or too-small value
of _𝑐 could harm the performance. For instance, compared with setting _𝑐 to 2, the performance
decreases when setting _𝑐 to 0.5 (+0.0002 L1, -0.0020 SSIM and +0.0009 LPIPS) or 10 (+0.0001 L1,
-0.0015 SSIM and +0.0007 LPIPS). We consider the reason is that lower weight for the cycle losses
does not offer enough penalty on the cycle consistency. Meanwhile, a way larger weight could force
the model to overfit the cycle losses and weaken the supervision provided by the reconstruction
loss. Hence, we select 2 as the value of _𝑐 to balance the influence of the cycle losses and the
reconstruction loss.
Shall we fine-tune the keypoint detection network? To explore whether the fine-tuning
procedure of the keypoint detector network is essential, we conduct an ablation experiment on the
Phoenix-2014T dataset. In particular, we set the learning rate of the keypoint detector network
to 0, 0.0002, and 0.00002 and test the motion transfer ability of the models. The visual results are
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Backbone L1 ↓ SSIM ↑ LPIPS ↓
Ours 0.0104 0.9533 0.0170
HRNet 0.0098 0.9503 0.0176

Table 4. Ablation study on different encoder architecture.

Original Frame OpenPose AlphaPose

Fig. 7. Comparison between OpenPose and AlphaPose.

shown in Figure 6 and 0.00002 turns out to be the proper learning rate for the keypoint detector
network. When we fix the parameters of the keypoint detector network, the transfer results are not
ideal. The pre-trained keypoint detector model does not leverage the temporal information in video
clips, leading to instability when facing blurred frames. The results demonstrate the importance
of the fine-tuning process. Additionally, a large learning rate brings distortions in the face since
it forces the pre-trained model to forget the prior human body structure information, making
the generator model capture the wrong identity and background texture information. Therefore,
to keep fine-grained finger details while avoiding losing body structure information, we set the
learning rate of the keypoint detector network to 0.00002.
Is STCNet robust to complex backgrounds? To explore whether STCNet is robust to different
backgrounds, we provide additional qualitative results on the WLASL dataset [40] and BOBSL
dataset [2] as shown in Figure 5. BOBSL is a large-scale dataset of British Sign Language (BSL)
containing about a total of 1400 hours videos of BBC broadcast footage in different backgrounds.
Results show that the proposed STCNet is capable of videos with complex backgrounds like
classrooms and studios. Although STCNet does not explicitly restrict keeping the background, we
still observe that the learned decoder model is able to preserve the video background and correct
human motion. It is worth mentioning that we directly use the model trained on the WLASL dataset
to generate results on the BOBSL dataset. The impressive result indicates that STCNet has the
ability to generalize to different datasets.
Can we use a different network architecture?We utilize the convolutional encoder and decoder
architecture, following baseline methods for a fair comparison. We also try a different visual encoder
backbone i.e., HRNet [72], on the LSA64 dataset. The result is shown in Table 4. We find that our
light-weight encoder model is competitive with the HRNet.
Why choosing Alphapose as the keypoint detection network? We test OpenPose[7, 8, 67, 82]
and AlphaPose [19, 43]. As shown in Figure 7, AlphaPose detects accurate finger keypoints, yet
OpenPose somehow fails to detect finger keypoints. Therefore, we select AlphaPose as default
instead of OpenPose.
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5 CONCLUSION
In this paper, we propose a sign language motion transfer framework called Structure-aware
Temporal Consistency Network (STCNet). Different from existing works, STCNet leverages prior
human body structure knowledge and temporal consistency for sign language video generation. We
also introduce a pair of cycle-consistency losses to fully exploit temporal information within sign
language videos and further improve the temporal continuity of the generated videos. Extensive
experiments verify that our method could generate competitive videos with accurate motion
and high-fidelity video continuity compared with existing works. In the future, we will continue
exploring the potential of applying this method to other relevant research fields [26, 45, 46, 84], such
as data augmentation for sign language recognition [1, 6, 28], clothing / makeup try-on according
to keypoints [23, 27, 31] and 3D person re-identification [95].
Broad Impact. This research has the potential to improve social communication and inclusion for
people who rely on sign language as a means of communication.
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