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Matching images and sentences demands a fine understanding of both modalities. In this article, we propose

a new system to discriminatively embed the image and text to a shared visual-textual space. In this field,

most existing works apply the ranking loss to pull the positive image/text pairs close and push the nega-

tive pairs apart from each other. However, directly deploying the ranking loss on heterogeneous features

(i.e., text and image features) is less effective, because it is hard to find appropriate triplets at the beginning.

So the naive way of using the ranking loss may compromise the network from learning inter-modal rela-

tionship. To address this problem, we propose the instance loss, which explicitly considers the intra-modal

data distribution. It is based on an unsupervised assumption that each image/text group can be viewed as

a class. So the network can learn the fine granularity from every image/text group. The experiment shows

that the instance loss offers better weight initialization for the ranking loss, so that more discriminative em-

beddings can be learned. Besides, existing works usually apply the off-the-shelf features, i.e., word2vec and

fixed visual feature. So in a minor contribution, this article constructs an end-to-end dual-path convolutional

network to learn the image and text representations. End-to-end learning allows the system to directly learn

from the data and fully utilize the supervision. On two generic retrieval datasets (Flickr30k and MSCOCO),

experiments demonstrate that our method yields competitive accuracy compared to state-of-the-art methods.

Moreover, in language-based person retrieval, we improve the state of the art by a large margin. The code

has been made publicly available.
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1 INTRODUCTION

Image and text both contain very rich semantics but reside in heterogeneous modalities. Compar-
ing to information retrieval within the same modality, matching image-text poses extra critical
challenges, i.e., mapping images and text onto one shared feature space. For example, a model
needs to distinguish between the “black dog,” “gray dog,” and “two dogs” in the text, and under-
stand the visual differences in images depicting “black dog,” “gray dog,” and “two dogs.” In this
article, given an unseen image (text) query, we aim to measure its semantic similarity with the
text (image) instances in the database and retrieve the true matched texts (images) to the query.
Considering the testing procedure, this task requires connecting the two modalities with robust
representations. In the early times, some relatively small datasets were used, e.g., Wikipedia [55]
and Pascal Sentence [54], which contain around 3,000 and 5,000 image-text pairs, respectively. In
recent years, several large-scale datasets with more than 30,000 images, including MSCOCO [41]
and Flickr30k [78], have been introduced. Each image in these datasets is annotated with around
five sentences. These large datasets allow deep architectures to learn robust representations and
provide challenging evaluation scenarios.

During the past few years, ranking loss is commonly used as the objective function [13, 31,
47, 51, 56, 66] for image-text representation learning. The ranking loss aims to make the distance
between positive pairs smaller than that between negative pairs by a predefined margin. In image-
text matching, every training pair contains a visual feature and a textual feature. The ranking
loss focuses on the distance between the two modalities. Its potential drawback is that it does not
explicitly consider the feature distribution in a single modality. For example, when using ranking
loss during training which does not distinguish between the slight differences in images, then given
two testing images with slightly different semantics, the model may output similar descriptors for
the two images. This is clearly undesirable for image/text matching considering the extremely
fine granularity of this task. In our experiment, we observe that using the ranking loss alone in
end-to-end training may cause the network to be stuck in a local minimum.

What motivates us is the effectiveness of class labels in earlier years of cross-media retrieval
[58, 64, 65, 69, 71]. In these works, the class labels are annotated manually and during testing, the
aim is to retrieve image/text belonging to the same class to the query. In light of this early practice,
this article explores the feasibility of “class labels” in image/text matching, which is an instance
retrieval problem. Two differences exist between cross-media retrieval on the category level [69,
71] and on the instance level (considered in this article). First, the true matches are those with the
same category, and those with the exact same content with the query, respectively. That is to say,
instance-level retrieval has a more strict matching criteria than category-level retrieval. Second,
instance-level retrieval does not assume the existence of class labels. In this field of research, only
image/text pairs are utilized during training. Given the intrinsic differences between the two tasks,
it is non-trivial to directly transfer the experience from using class labels in category-level retrieval
to instance-level retrieval.

Without annotated class labels, how can we initiate the investigation of the underlying data
structures in the image/text embedding space? In this article, we name an image and its associated
sentences an “image/text group.” Our key assumption is that each “image/text” group is different
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Fig. 1. Motivation. We define an image/text group as an image with its associated sentences. We observe
that an image/text group is more or less different from each other. Therefore, we view every image/text group
as a distinct class during training, yielding the instance loss.

from the others and can be viewed as a distinct class (see Figure 1). So, we propose a classification
loss called instance loss to classify the image/text groups. Using this unsupervised class labels
as supervision, we aim to enforce the model to discriminate each two images and two sentences
(from different groups). It helps to investigate the fine-grained difference in single modality (intra-
modal) and provides a good initialization for ranking loss, which is a driving force for end-to-end
retrieval representation learning. In more details, using such an unsupervised assumption, we
train the network to classify every image/text group with the softmax loss. In the experiment, we
show that the instance loss that classifies a large number of classes, i.e., 113,287 image/text groups
on MSCOCO [41], is able to converge without any hyper-parameter tuning. Improved retrieval
accuracy can be observed as a result of instance loss.

In addition, we notice in the field of image-text matching that most recent works employ off-
the-shelf deep models for image feature extraction [21, 28, 33, 36, 42, 48, 51, 52, 56, 66, 67, 70]. The
fine-tuning strategy commonly seen in other computer vision tasks [2, 80, 83] is rarely adopted. A
drawback of using off-the-shelf models is that these models are usually trained to classify objects
into semantic categories [19, 34, 59]. The classification models are likely to miss image details such
as color, number, and environment, which may convey critical visual cues for matching images
and texts. For example, a model trained on ImageNet [57] can correctly classify the three images
as “dog”; but it may not tell the difference between black dog and gray dog, or between one dog

and two dogs. The ability to convey critical visual cues is a necessary component in instance-level
image-text matching. Similar observations have been reported with regards to image captioning
[62]. Moreover, for the text feature, word2vec [49] is a popular choice in image-text matching [30,
33, 52, 66]. Aiming to model the context information, the word2vec model is learned through a
shallow network to predict neighboring words. However, the word2vec model is trained on a large-
scale news dataset, i.e., GoogleNews, which differs substantially from the text in the target dataset.
We inspired by the practice in many computer vision tasks, i.e., using the model pre-trained on
ImageNet for initialization. Instead of directly using the off-the-shelf word2vec embeddings, we
explore the possibility of initializing the model weight with word2vec embedding and fine-tuning
the weights using image-text matching datasets.
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Fig. 2. We learn the image and text representations by two convolutional neural networks, i.e., deep image
CNN (top) and deep text CNN (bottom). The deep image CNN is a ResNet-50 model [19] pre-trained on
ImageNet. The deep text CNN is similar to the image CNN but with different basic blocks (see Figure 3).
The text input is converted to the code of size 1 × n × d , where n is the length of the sentence, and d denotes
the size of the dictionary (more details could be found in Section 3.2). After the average pooling, we add one
fully connected layer (input dim: 2,048, output dim: 2,048), one batchnorm layer, relu and one fully connected
layer (input dim: 2,048, output dim: 2,048) in both image CNN and text CNN (We denote as fc and fc∗ in the
figure, and the weights are not shared). Then, we add a shared-weightWshar e classification layer (input dim:
2,048, output dim: 29,783). The objectives are the ranking loss and the proposed instance loss. On Flickr30k,
for example, the model needs to classify 29,783 classes using instance loss.

Briefly, inspired by the effectiveness of class labels in early-time cross-media retrieval, we pro-
pose a similar practice in image-text matching called “instance loss.” Instance loss works by pro-
viding better weight initialization for the ranking loss, thus producing more discriminative and
robust image/text descriptions. Next, we also note that the pretrained CNN models may not meet
the fine-grained requirement in image/text matching. So, we construct a dual-path CNN to extract
image and text features directly from data rather. The network is end-to-end trainable and yields
superior results to using features extracted from off-the-shelf models as input. Our contributions
are summarized as follows:

• To provide better weight initialization and regularize the dual-path CNN model, we propose
a large-number classification loss called instance loss. The robustness and effectiveness of
instance loss are demonstrated by classifying each image/text group into one of the 113,287
classes on MSCOCO [41].

• We propose a dual-path CNN model for visual-textual embedding learning (see Figure 2). In
contrast to the commonly used RNN+CNN model using fixed CNN features, the proposed
CNN+CNN structure conducts efficient and effective end-to-end fine-tuning.

• We obtain competitive accuracy compared with the state-of-the-art image-text matching
methods on three large-scale datasets, i.e., Flickr30k [78], MSCOCO [41], and CUHK-PEDES
[39].

We note that Ma et al. also apply the CNN structure for text feature learning [47]. The main
difference between our method and [47] is twofold. First, Ma et al. [47] use the ranking loss alone.
In our method, we show that the proposed instance loss can further improve the result of ranking
loss. Second, in Reference [47], four text CNN models are used to capture different semantic levels
i.e., word, short phrase, long phrase and sentence. In this article, only one text CNN model is
used and the word-level input is considered. Our model uses the residual block shown in Figure 3,
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Fig. 3. The basic block of deep image CNN and deep text CNN. Similar with the local pattern of the images,
the neighbor words in the sentence may contains important clues. The filter size in the image CNN is 3 × 3

with height and width padding; the filter size in the text CNN is 1 × 2 with length padding. Besides, we also
use a shortcut connection, which helps to train a deep convolutional network [19]. The output F (x ) + x has
the same size with the input x .

which combines low level information i.e., word, as well as high-level inference to produce the
final feature. In experiment (Tables 1 and 3), we show that using on the same image CNN (VGG-
19), our method (with one text CNN) is superior to Reference [47] with text model ensembles by a
large margin.

The rest of this article is organized as follows. Section 2 reviews and discusses the related works.
Section 3 describes the proposed Image-Text CNN Structure in detail, followed by the objective
function in Section 4. Training policy is described in Section 5. Experimental results and compar-
isons are discussed in Section 6 and conclusions are in Section 7. Furthermore, some qualitative
results are included in Supplemental Material.

2 RELATED WORKS

The image-text bidirectional retrieval requires both understanding images and sentences in detail.
In this section, we discuss some related works.

Deep models for image recognition. Deep models have achieved success in computer vi-
sion. The convolutional neural network (CNN) won the ILSVRC12 competition [57] by a large
margin [34]. Later, VGGNet [59] and ResNet [19] further deepened the CNN and provide more in-
sights into the network structure. In the field of image-text matching, most recent methods directly
use fixed CNN features [21, 28, 33, 36, 42, 48, 51, 52, 56, 66, 67, 70] as input, which are extracted
from the models pre-trained on ImageNet. While it is efficient to fix the CNN features and learn
a visual-textual common space, it may lose the fine-grained differences between the images. This
motivates us to fine-tune the image CNN branch in the image-text matching to provide for more
discriminative embedding learning.
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Deep models for natural language understanding. For natural language representation,
word2vec [49] is commonly used [26, 30, 33, 52, 66]. This model contains two hidden layers, which
learns from the context information. In the application of image-text matching, Klein et al. [33] and
Wang et al. [66] pool word vectors extracted from the fixed word2vec model to form a sentence
descriptor using Fisher vector encoding. Karpathy et al. [30] also utilize fixed word vectors as
word-level input. With respect to this routine, this article proposes an equivalent scheme to fine-
tuning the word2vec model, allowing the learned text representations to be adaptable to a specific
task, which is, in our case, image-text matching.

Recurrent Neural Networks (RNN) are another common choice in natural language processing
[50, 73]. Mao et al. [48], Cornia et al. [4], and Wang [63] employ a RNN to generate image captions
with attention. Similarly, Nam et al. [51] utilize directional LSTM [23] for text encoding, yielding
state-of-the-art multi-modal retrieval accuracy. Conversely, our approach is inspired by recent
CNN breakthroughs on natural language understanding. For example, Gehring et al. apply CNNs
to conduct machine translation, yielding competitive results and more than 9.3x speedup on the
GPU [14]. There are also researchers who apply layer-by-layer CNNs for efficient text analysis
[3, 25, 32, 81], obtaining competitive results in title recognition, event detection and text content
matching. In this article, in place of RNNs, which are more commonly seen in image-text matching,
we explore the usage of CNNs for text representation learning.

Multi-modal learning. There is a growing body of works on the interaction between multiple
modalities. Some works focus on the efficient cross-modal searching by binary coding and hashing
[6, 7, 37, 45, 64, 72, 75–77, 79, 85]. Others pay more attention to the effective retrieval by under-
standing the semantic meaning, which is close to this work. As for the content-based retrieval,
one line of methods focus on category-level retrieval and leverage the category labels in the
training set. Sharma et al. [58] extend the Canonical Correlation Analysis [18] (CCA) to learning
class labels, and Wang et al. [65] learn the shared image-text space based on coupled input with
class regression. Deng et al. propose a discriminative dictionary learning method [5]. Wu et al.
[71] propose a bi-directional learning to rank for representation learning. In Reference [69], Wei
et al. perform CNN fine-tuning by classifying categories on the training set and report an improved
performance on image-text retrieval. Castrejon et al. deploy the multiple labels to learn the shared
semantic space [1]. The second line of methods consider instance-level retrieval and, except for
matched image-text pairs, do not provide any category label. Given a query, the retrieval objec-
tive is a specific image or related sentences [44]. Some works apply the auto-encoder to project
high-dimensional features from different modalities onto a common low-dimensional latent space
[9, 12, 68]. Some works deploy the pair-wise constraints. In Reference [20], He et al. use the as-
sumption that the text and image components in a web document form a pairwise constraint.
Zhang et al. consider the verification loss, using a binary classifier to classify the true matches and
false matches [82]. Other works widely apply the ranking loss for instance-level retrieval [13, 31,
47, 51, 56, 66]. Karpathy et al. propose a part-to-part matching approach using a global ranking
objective [31]. The “SPE” proposed in Reference [66] extends the ranking loss with structure-
preserving constraints. SPE is similar to our work in that both works consider the intra-modal
distance. Nevertheless, our work differs significantly from SPE. SPE enforces the model to rank
the texts, i.e., considering the feature separability within the text modality only. In comparison,
with the proposed instance loss, our method jointly discriminates the two modalities, i.e., images
and their associated texts.

Briefly, we focus on instance-level retrieval and propose the instance loss, a novel contribution to
the cross-modality community. It views each training image/text group as a distinct class and uses
the softmax loss for model training. The assumption is unsupervised. We show that this method
converges well and yields consistent improvement.
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3 PROPOSED CNN STRUCTURE

In this article, we propose a dual-path CNN to simultaneously learn visual and textual represen-
tations in an end-to-end fashion, consisting of a deep image CNN for image input and one deep
text CNN for sentence input. The entire network only contains four components, i.e., convolution,
pooling, ReLU and batch normalisation. Compared to many previous methods that use off-the-
shelf image CNNs [11, 21, 28, 33, 36, 42, 43, 48, 51, 52, 56, 66, 67, 70], end-to-end fine-tuning is
superior in learning representations that encode image details (see Figure 2).

3.1 Deep Image CNN

We use ResNet-50 [19] pre-trained on ImageNet [34] as a basic model (the final 1,000-classification
layer is removed) before conducting fine-tuning for visual feature learning. Given an input image of
size 224 × 224, a forward pass of the network produces a 2,048-dimension feature vector. Followed
by this feature, we add one fully connected layer (input dim: 2,048, output dim: 2,048), one batch
normalization, relu and one fully connected layer (input dim: 2,048, output dim: 2,048). We denote
the final 2,048-dim vector fimд as the visual descriptor of the input I . The forward pass process of
the CNN, which is a non-linear function, is represented by function Fimд (·) defined as

fimд = Fimд (I ). (1)

3.2 Deep Text CNN

Text processing. Next, we describe our text processing method and the text CNN structure. Given
a sentence, we first convert it into code T of size n × d , where n is the length of the sentence, and
d denotes the size of the dictionary. T is used as the input for the text CNN. We use word2vec
[49] as a general dictionary to filter out rare words; if a word does not appear in the word2vec
dictionary (3,000,000 words), it is discarded. For Flickr30k, we eventually use d = 20,074 words
as the dictionary. Every word in Flickr30k thus can find an index l ∈ [1,d] in the dictionary; for
instance, a sentence of 18 words can be converted to 18 × d matrix. The text input T can thus be
formulated as:

T (i, j ) =

{
1 if j = li
0 otherwise

, (2)

where i ∈ [1, 18], j ∈ [1,d]. The text CNN needs a fixed-length input. We set a fixed length 32 in this
article, because about 98% of sentences contain less than 32 words. If the length of the sentence
is shorter than 32, then we pad with zeros to the columns of T . If the length of the sentence is
longer than 32, then we clip the final several words. Now, we obtain the 32 × d sentence code T .
We further reshape T into the 1 × 32 × d format, which can be considered as height, width and
channel known in the image CNNs [19, 34].

Position shift. We are motivated by the jittering operation in the image CNN training. For text
CNN, we apply a data augmentation policy called position shift. In a baseline approach, if the
sentence length n is shorter than the standard input length 32, then a straightforward idea is to
pad zeros at the end of the sentence, called left alignment. In the proposed position shift approach,
we pad a random number of zeros at the beginning and the end of a sentence. In this manner,
shift variations are contained in the text representation, so that the learned embeddings are more
robust. In the experiment, we observe that position shift is of importance to the performance.

Deep text CNN. In the text CNN, filter size of the first convolution layer is 1 × 1 × d × 300,
which can be viewed as a lookup table. Using the first convolutional layer, a sentence is converted
to the word vector as follows. Given input T of 1 × 32 × d , the first convolution layer results in
a tensor of size 1 × 32 × 300. There are two methods to initialize the first convolutional layer:
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(1) random initialization [15], and (2) using thed × 300-dim matrix from word2vec for initialization.
In the experiment, we observe that word2vec initialization is superior to the random initialization.

For the rest of the text CNN, similar residual blocks are used as per the image CNN (see Figure 3).
Similar to the local pattern in the image CNN, every two neighbor components may form a phrase
containing content information. We set the filter size of convolution layers in basic text block to 1 ×
2. Additionally, we add the shortcut connection in the basic block, which has been demonstrated
to help training deep neural networks [19]. We apply basic blocks with a short connection to form
the deep textual network (see Figure 2). The number of blocks is consistent with the ResNet-50
model in the visual branch. Given a sentence matrix T , its text descriptor ftext can be extract in
an end-to-end manner from the text CNN Ftext (·):

ftext = Ftext (T ). (3)

4 PROPOSED INSTANCE LOSS

In this article, two types of losses are used, i.e., the standard ranking loss and the proposed instance
loss. In Section 4.1, we briefly review the formulation of the ranking loss and discuss the limitation
of the ranking loss. Section 4.2 describes the motivation and the formulation of the instance loss
followed by a discussion. The differences between instance loss and ranking loss are discussed,
and some primary experiments show the feasibility of instance loss. In Section 4.3, training con-
vergence of the instance loss is discussed.

4.1 Ranking Loss Review

Ranking loss is a widely used objective function for retrieval problems. We use the cosine distance

D ( fxi
, fx j

) =
fxi

| |fxi
| |2 ×

fxj

| |fxj
| |2 to measure the similarity between two samples, where f is the feature

of a sample, and | | · | |2 denotes the L2-norm. The distance value D ( fxi
, fx j

) ∈ [−1, 1].
To effectively account for two modalities, we follow the ranking loss formulation as in some

previous works [31, 51]. Here, I denotes the visual input, and T denotes the text input. Given a
quadric input (Ia ,Ta , In ,Tn ), where Ia ,Ta describe the same image/text group, In ,Tn are negative
samples, ranking loss can be written as

Lr ank =

imaдe anchor︷���������������������������������������������︸︸���������������������������������������������︷
max[0,α − (D ( fIa

, fTa
) − D ( fIa

, fTn
))]+max[0,α − (D ( fTa

, fIa
) − D ( fTa

, fIn
))]︸���������������������������������������������︷︷���������������������������������������������︸

text anchor

, (4)

where D (·, ·) is the cosine similarity, and α is a margin. Given an image query Ia , the similarity
score of the correct text matching should be higher. Similarly, if we use sentence query Ta , then
we expect the correct image content should be ranked higher. Ranking loss explicitly builds the
relationship between the image and text.

Limitations of ranking loss. Although widely used, ranking loss has a potential drawback
for the application of image-text matching. According to Equation (4), every pair contains a visual
feature and a textual feature. The ranking loss focuses on the distance between the two modalities.
So the potential drawback is that the ranking loss does not explicitly consider the feature distribu-
tion in a single modality. For instance, given two testing images with slightly different semantics,
the model may output similar features. It is clearly undesirable for the extremely fine granularity
of this task. In the experiment, using ranking loss alone is prone to get stuck in a local minimum
(as to be shown in Figure 7 and Table 4).
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Fig. 4. Sample images in the three datasets. For the MSCOCO and Flickr30k datasets, we view every image
and its captions as an image/text group. For CUHK-PEDES, we view every identity (with several images and
captions) as a class.

4.2 Instance Loss

Motivation. Some early works use coarse-grain category, i.e., art, biology, and sport, as the train-
ing supervision [58, 65, 69]. The multi-class classification loss has shown a good performance. But
for instance-level retrieval, the classification loss has not been used. There may be two reasons.
First, the category-level annotations are missing for most large-scale datasets. Second, if we use
the category to train the model, then it forces different instances, i.e., black dog and white dogs,
to the same class. It may compromise the CNN to learn the fine-grained difference.

In this article, we propose the instance loss for instance-level image-text matching. We define
an image and its related text descriptions as an image/text group. In specific applications such
as language-based person retrieval [38, 39], an image/text group is defined as images and their
descriptions, which depict the same person (see Figure 4). Based on image/text groups, our as-
sumption is that each image/text group is distinct (duplicates have been removed in the datasets).
Under such assumption, we view each image/text group as a class. So, in essence, instance loss is

a softmax loss that classifies an image/text group into one of a large number of classes. We want the
trained model can tell the difference between every two images as well as every two sentences
(from different groups). Formally, we define instance loss below.

Formulation. For two modalities, we formulate two classification objectives as follows:

Pvisual = so f tmax
(
W T

shar e fimд

)
, (5)

Lvisual = − log(Pvisual (c )), (6)

Ptextual = so f tmax
(
W T

shar e ftext

)
, (7)

Ltextual = − log(Ptext (c )), (8)

where fimд and ftext are image and text features defined in Equations (1) and (3), respectively.
Wshar e is the parameter of the final fully connected layer (Figure 2). It can be viewed as concate-
nated weightsWshar e = [W1,W2, . . . ,W29783]. Every weightWi is a 2,048-dim vector. L denotes the
loss and P denotes the probability over all classes. P (c ) is the predicted possibility of the right class
c . Here, we enforce shared weight Wshar e in the final fully connected layer for the two

modalities, because otherwise the learned image and text features may exist in totally

different subspaces.

As to be described in Section 5, in the first training stage, the ranking loss is not used. We only
use the instance loss; in the second training stage, both losses are used. The final loss function is
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Fig. 5. We extract image features (2,048-dim) from a randomly selected 100 images in the Flickr30k valida-
tion set, using the ImageNet pre-trained ResNet-50 model and our model (after Stage I), respectively. We
visualize the 100 × 100 Pearson’s correlation. Lower Pearson’s correlation between two features indicates
higher orthogonality. The instance loss encourages the model to learn the difference between images.

a combination of the ranking loss and the instance loss, defined as

L = λ1Lr ank + λ2Lvisual + λ3Ltextual , (9)

where λ1, λ2, λ3 are predefined weights for different losses.
Discussion. First, we show that instance loss provides better weight initialization than the Im-

ageNet pretrained model. To prove this, we compare the image features from the off-the-shelf
model pre-trained on ImageNet and the model trained with instance loss. Since the proposed in-
stance loss explicitly considers the intra-modal distance, we observe that the feature correlation
between two images is smaller after training with the instance loss (see Figure 5(b)). In fact, the
instance loss encourages the model to find the fine-grained image details such as ball, stick, and
frisbee to discriminate between image/text groups with similar semantics. We visualize the dog
retrieval results in Figure 10. Our model can be well generalized to the test set and still sensitive
to the subtle differences.

Second, we provide a two-class example to show the intuition of instance loss (Figure 6). After
the convergence of Stage I, the instance loss pulls the data with the same label/group together, and
pushes the data from different labels/groups away from each other. Although x1 and y1 are from
different modality, the distance between x1 andy1 is closer, because they belong to the same group.
In this manner, the positive pair (x1,y1) is closer than the negative pair (x1,y2). This property, as
shown in the Figure 6 (right), will provide better weight initialization for the subsequent training
using both the ranking loss and instance loss.

Third, we demonstrate that using the instance loss alone can lead to a decent initialization.
To validate this point, we plot the distribution P of the intra-modal intra-class similarity Dp =

D ( fxi
, fyi

) and the distribution Q of the intra-modal inter-class similarity Dn = D ( fxi
, fyj

) (j � i )
on Flickr30k validation set (Figure 7(b)). We observe that, using instance loss alone, in most cases,
leads to Dp > Dn by a margin. The mean of Dp equals to 0.2405 while the mean of Dn is 0.0237.

Fourth, using the ranking loss alone achieves a relatively large margin between the positive
pairs and negative pairs but there also exist many “hard” negative pairs (Figure 7(a)). These “hard”
negative pairs usually have a high similarity, which compromises the matching performance of the
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Fig. 6. Geometric Interpretation. Here, we give a two-class sample to show our intuition. The proposed
instance loss pulls the samples with the same label together (close to either the relative weight W1 or W2).
In this way, the positive pair (x1,y1) is closer than the negative pair (x1,y2). Stage I, therefore, leads to a
decent weight initialization to be used in Stage II (ranking loss + instance loss).

Fig. 7. The similarity (cosine distance) distribution of the positive pairs P and negative pairs Q on Flickr30k
validation dataset. We show the result obtained by (a) using ranking loss alone, (b) using instance loss alone,
and (c) full model (instance loss + ranking loss), respectively. Indicator S is calculated as the overlapping area
between P andQ (defined in Section 4.2, lower is better). Through comparing their S values, the performance
of the three methods is: “Full Model” > “Using Instance Loss Alone” > “Using Ranking Loss Alone.”

true matches. To quantitatively compare the three models, we propose a simple indicator function,

S =

∫ 1

−1

min(P (x ),Q (x ))dx , (10)

which encodes the overlapping area of P and Q over the range of cosine similarity [−1, 1].
Indicator S ∈ [0, 1]. The smaller S is, the better the positive pairs and negative pairs are separated,
and thus the better retrieval performance. S = 1 indicates the case where the two distributions,
P and Q are completely overlapping. To the other extreme, S = 0 indicates that the positive pairs
and negative pairs are perfectly separable: all the similarity scores of the positive pairs are larger
than the similarity scores of the negative pairs. Therefore, a lower indicator score S indicates a
better retrieval system.

In our experiment (Figure 7), the indicator scores of the three models are Sr ank = 0.2563,
Sinstance = 0.1633 and Sf ull = 0.0914, respectively. It clearly demonstrates that in terms of the
extent of feature separability: “Full Model” > “Using Instance Loss Alone” > “Using Ranking loss
Alone.” With the indicator function, we quantitatively show that using ranking loss alone pro-
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Fig. 8. Classification error curves when training on Flickr30k. The image CNN (a) and text CNN (b) converge
well with 29,783 training classes (image/text groups).

duces more hard negative pairs than the proposed two competing methods, which compromises
the matching performance of the ranking loss. In comparison, using instance loss alone produces
a smaller S value, suggesting a better feature separability of the trained model. Importantly, when
the two losses, i.e., ranking loss and instance loss, are combined, our full model has the smallest
S value, indicating the fewest hard negative samples and the best retrieval accuracy among the
three methods.

For the retrieval performance, using the instance loss alone can lead to a competitive accuracy
in the experiment (Table 4). The effect of the instance loss is twofold. In the first training stage,
when used alone, it pre-trains the text CNN and fine-tunes the two fully connected layers (and one
batchnorm layer) of image CNN so that ranking loss can arrive at a better optimization for both
modalities in the second stage (Figure 6). In the second training stage, when used together with
ranking loss, it exhibits a regularization effect on the ranking loss.

4.3 Training Convergence of Instance Loss

The instance loss views every image/text group as a class, so the number of training classes is
usually large. For instance, we have 29,783 classes when training on Flickr30k. In Figure 8, we
show the training error curves of the image CNN and text CNN during training. We observe that
the image CNN converges faster (Figure 8(a)), because the image CNN is pretrained on ImageNet.
Text CNN converges more slowly, because most part of it is trained from scratch, but it still begins
to learn something after 20 epochs, and finally converges after 240 epochs.

However, the convergence property is evidenced by some previous works. To our knowledge,
some practices also suffer from limited data per class, because manually annotating data is usually
expensive. For example, in person re-ID, CUHK03 dataset [40] has 9.6 training samples per class;
VIPeR dataset [16] has 2 training samples per class. The previous works [53, 84] on CUHK03 and
VIPeR show that the CNN classification model can be well trained as long as each class has more
than a couple of training samples. In our case, there are usually six positive training samples per
class (one image and five sentences). In the experiment, despite of the limited training data, the
learned model has a good generalization ability on the validation set and test set, which accords
with existing experience [53, 84].

5 A TWO-STAGE TRAINING PROCEDURE

We describe the training policy in this section. We split the training procedure into two stages. In
the experiment, we show this policy helps the training.
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Stage I: In this stage, we fix the pre-trained weights in the image CNN and use the proposed
instance loss to tune the remaining part. The main reason is that most weights of the text CNN
are learned from scratch. If we train the image and text CNNs simultaneously, then the text CNN
may compromise the pre-trained image CNN. We only use the proposed instance loss in this stage
(λ1 = 0, λ2 = 1, λ3 = 1). It can provide a good initialization for the ranking loss. We note that even
after Stage I, our network can achieve competitive results compared to previous works using off-
the-shelf CNNs.

Stage II: After Stage I converges, we start Stage II for end-to-end fine-tuning of the entire net-

work. Note that the weights of the image CNN are also fine-tuned. In this stage, we combine the
instance loss with the ranking loss (λ1 = 1, λ2 = 1, λ3 = 1), so that both classification and ranking
errors are considered. In Section 6.4, we study the mechanism of the two losses. It can be observed
that in Stage II, instance loss and ranking loss are complementary, thus further improving the re-
trieval result. Instance loss still regularizes the model and provides more attentions to discriminate
the images and sentences. After Stage II (end-to-end fine-tuning), another round of performance
improvement can be observed, and we achieve even more competitive performance.

6 EXPERIMENT

We first introduce the three large-scale image-text retrieval datasets, i.e., Flickr30k, MSCOCO, and
CUHK-PEDES, followed by the evaluation metric in Section 6.1. Then Section 6.2 describes the
implementation details and the reproducibility. We discuss the comparison with state of the art
and mechanism study in Sections 6.3 and 6.4.

6.1 Datasets

Flickr30k [78] is one of the large-scale image captioning datasets. It contains 31,783 images col-
lected from Flickr, in which every image is annotated with five text descriptions. The average
sentence length is 10.5 words after removing rare words. We follow the protocol in References [24,
31] to split the dataset into 1,000 test images, 1,000 validation images, and 29,783 training images.

MSCOCO [41] contains 123,287 images and 616,767 descriptions. Every images contains
roughly 5 text descriptions on average. The average length of captions is 8.7 after rare word re-
moval. Following the protocol in Reference [30], we randomly select 5,000 images as test data
and 5,000 images as validation data. The remaining 113,287 images are used as training data. The
evaluation is reported on 1K test images (fivefold) and 5K test images.

CUHK-PEDES [39] collects images from many different person re-identification datasets. It
contains 40,206 images from 13,003 different pedestrians and 80,440 descriptions. On average, each
person has 3.1 images, and each image has two sentences. The average sentence length is 19.6
words after we remove rare words. We follow the protocol in [39], selecting the last 1,000 persons
for evaluation. There are 3,074 test images with 6,156 captions, 3,078 validation images with 6,158
captions, and 34,054 training images with 68,126 captions.

Evaluation Metric We use two evaluation metrics, i.e., Recall@K and Median Rank. Recall@K

is the possibility that the true match appears in the top K of the rank list, where a higher score is
better. Median Rank is the median rank of the closest ground truth result in the rank list, with a
lower index being better.

6.2 Implementation Details

The model is trained by stochastic gradient descent (SGD) with momentum fixed to 0.9 for
weight update. While training, the images are resized to 224 × 224 pixels, which are randomly
cropped from images whose shorter size is 256. We also perform simple data augmentation such
as horizontal flipping. For training text input, we conduct position shift (Section 3.2) as data
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augmentation. Dropout is applied to both CNNs, and the dropout rate is 0.75. For Flickr30k and
MSCOCO, we set the max text length to 32; for CUHK-PEDES, we set the max text length to 56,
since most sentences are longer. In the first training stage, we fixed the pre-trained image CNN,
and train the text CNN only. The learning rate is 0.001. We stop training when instance loss
converges. In the second stage, we combine the ranking loss as Equation (9) (the margin α = 1)
and fine-tune the entire network. When testing, we can use the trained image CNN and trained
text CNN separately. We extract the image feature fimд by image CNN and the text feature
ftext by text CNN. We use the cosine distance to evaluate the similarity between the query and
candidate images/sentences. It is consistent with the similarity used in the ranking loss objective.
The final retrieval result is based on the similarity ranking. We also conduct the horizontal
flipping when testing and use the average features (no flip and flip) as the image feature.

Reproducibility. Our source code is available online.1 The implementation is based on the
Matconvnet package [60]. Since the entire network only uses four components, i.e., convolution,
pooling, ReLU and batch normalization, it can be easily modified to other deep learning packages.

Training Time The image CNN (ResNet-50) in our method uses ∼119 ms per image batch
(batch size = 32) on an Nvidia 1080Ti GPU. The text CNN (similar ResNet-50) also uses ∼117 ms
per sentence batch (batch size = 32). Therefore, the image feature and text feature can be simul-
taneously calculated. Although our implementation is sequential, the model can run in a parallel
style efficiently.

6.3 Comparison with State of the Art

We first compare our method with the state-of-the-art methods on the three datasets, i.e., Flickr30k,
MSCOCO, and CUHK-PEDES. The compared methods include recent models on the bidirectional
image and sentence retrieval. For a fair comparison, we present the results based on different image
CNN structures, i.e., VGGNet [59] and ResNet [19]. We also summarise the visual and textual
embeddings used in these works in Tables 1 and 3. Extensive results are shown in Tables 1, 3,
and 2, respectively. On Flickr30k, we achieve competitive results with state-of-the-art DAN [51]:
Recall@1 = 55.6%, Med r = 1 using image queries, and Recall@1 = 39.1%, Med r = 2 using text
queries. While both based on VGG-19, our method exceeds DAN 6.2% and 3.5% Recall@1 using
image and text query, respectively. On MSCOCO 1K-test-image setting, we arrive at Recall@1 =
65.6%, Med r = 1 using image queries, and Recall@1 = 47.1%, Med r = 2 using text queries. On 5K-
test-image setting, we arrive at Recall@1 = 41.2%, Med r = 2 using image queries, and Recall@1 =
25.3%, Med r = 5 using text queries. CUHK-PEDES is a specific dataset for retrieving pedestrian
images using the textual description. On CUHK-PEDES, we arrive at Recall@1 = 32.15%, Med r =
4. While both are based on a VGG-16 network, our model has 6.21% higher recall rate. Moreover,
our model based on ResNet-50 achieves new state-of-the-art performance: Recall@1 = 44.4%, Med
r = 2 using language description to search relevant pedestrians. Our method exceeds the second
best method [38] by 18.46% in Recall@1 accuracy.

Note that m-CNN [47] also fine-tunes the CNN model to extract visual and textual features. m-
CNN encompasses four different levels of text matching CNN, while we only use one deep textual
model with residual blocks. While both are based on VGG-19, our model has higher performance
than m-CNN. Compared with recent works, VSE++ [10], GXN [17] and CNP [29], our result is also
competitive. SCAN [35] is published after our submission and achieves higher accuracy than us.
The difference between the state-of-the-art method [35] and our method is provided below. First,
Reference [35] uses a stronger visual feature extracted from the Faster RCNN. Second, Reference
[35] applies a sequential text encoder, i.e., bi-directional GRU. It takes more training and test time

1https://github.com/layumi/Image-Text-Embedding.
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Table 1. Method Comparisons on Flickr30k

Method Visual Textual
Image Query Text Query

R@1 R@5 R@10 Med R@1 R@5 R@10 Med r

DeVise [13] ft AlexNet ft skip-gram 4.5 18.1 29.2 26 6.7 21.9 32.7 25

DBRLM-7J7k [22] fixed AlexNet w2v 9.0 14.7 24.4 - 9.4 14.9 25.2 -

Deep Fragment [31] ft RCNN fixed word vector from [27] 16.4 40.2 54.7 8 10.3 31.4 44.5 13

DCCA [74] ft AlexNet TF-IDF 16.7 39.3 52.9 8 12.6 31.0 43.0 15

DVSA [30] ft RCNN w2v + ft RNN 22.2 48.2 61.4 4.8 15.2 37.7 50.5 9.2

LRCN [8] ft VGG-16 ft RNN 23.6 46.6 58.3 7 17.5 40.3 50.8 9

m-CNN [47] ft VGG-19 4 × ft CNN 33.6 64.1 74.9 3 26.2 56.3 69.6 4

VQA-A [42] fixed VGG-19 ft RNN 33.9 62.5 74.5 - 24.9 52.6 64.8 -

GMM-FV [33] fixed VGG-16 w2v + GMM + HGLMM 35.0 62.0 73.8 3 25.0 52.7 66.0 5

m-RNN [48] fixed VGG-16 ft RNN 35.4 63.8 73.7 3 22.8 50.7 63.1 5

RNN-FV [36] fixed VGG-19 feature from [33] 35.6 62.5 74.2 3 27.4 55.9 70.0 4

HM-LSTM [52] fixed RCNN from [30] w2v + ft RNN 38.1 - 76.5 3 27.7 - 68.8 4

SPE [66] fixed VGG-19 w2v + HGLMM 40.3 68.9 79.9 - 29.7 60.1 72.1 -

sm-LSTM [28] fixed VGG-19 ft RNN 42.5 71.9 81.5 2 30.2 60.4 72.3 3

RRF-Net [46] fixed ResNet-152 w2v + HGLMM 47.6 77.4 87.1 - 35.4 68.3 79.9 -

2WayNet [9] fixed VGG-16 feature from [33] 49.8 67.5 - - 36.0 55.6 - -

DAN (VGG-19) [51] fixed VGG-19 ft RNN 41.4 73.5 82.5 2 31.8 61.7 72.5 3

VSE++ [10] ft ResNet-152 ft RNN 52.9 - 87.2 1 39.6 - 79.5 2

DAN (ResNet-152) [51] fixed ResNet-152 ft RNN 55.0 81.8 89.0 1 39.4 69.2 79.1 2

CNP [29] fixed ResNet-152 ft RNN 55.5 82.0 89.3 - 41.1 70.5 80.1 -

GXN [17] fixed ResNet-152 ft RNN 56.8 - 89.6 1 41.5 - 80.1 2

SCAN [35] Faster R-CNN ft RNN 67.9 90.3 95.8 - 48.6 77.7 85.2 -

Ours (VGG-19) Stage I fixed VGG-19 ft ResNet-50† (w2v init.) 37.5 66.0 75.6 3 27.2 55.4 67.6 4

Ours (VGG-19) Stage II ft VGG-19 ft ResNet-50† (w2v init.) 47.6 77.3 87.1 2 35.3 66.6 78.2 3

Ours (ResNet-50) Stage I fixed ResNet-50 ft ResNet-50† (w2v init.) 41.2 69.7 78.9 2 28.6 56.2 67.8 4

Ours (ResNet-50) Stage II ft ResNet-50 ft ResNet-50† (w2v init.) 53.9 80.9 89.9 1 39.2 69.8 80.8 2

Ours (ResNet-152) Stage I fixed ResNet-152 ft ResNet-152† (w2v init.) 44.2 70.2 79.7 2 30.7 59.2 70.8 4

Ours (ResNet-152) Stage II ft ResNet-152 ft ResNet-152† (w2v init.) 55.6 81.9 89.5 1 39.1 69.2 80.9 2

“Image Query” denotes using an image as query to search for the relevant sentences, and “Text Query” denotes using a

sentence to find the relevant image. R@K is Recall@K (higher is better). Med r is the median rank (lower is better). “ft”

means fine-tuning. †: Text CNN structure is similar to the image CNN, illustrated in Figure 3.

Table 2. Method Comparisons on CUHK-PEDES

Method Visual
Text Query

R@1 R@5 R@10 Med r
CNN-RNN (VGG-16‡) [56] fixed 8.07 - 32.47 -

Neural Talk (VGG-16‡) [61] fixed 13.66 - 41.72 -

GNA-RNN (VGG-16‡) [39] fixed 19.05 - 53.64 -
IATV (VGG-16) [38] ft 25.94 - 60.48 -
Ours (VGG-16) Stage I fixed 14.26 33.07 43.47 16
Ours (VGG-16) Stage II ft 32.15 54.42 64.30 4
Ours (ResNet-50) Stage I fixed 15.03 31.66 41.62 18
Ours (ResNet-50) Stage II ft 44.40 66.26 75.07 2

R@K (%) is Recall@K (high is good). Med r is the median rank (low is good). ft means fine-

tuning. ‡: pre-trained on person identification.

than the proposed text CNN. Text CNN does not depend on the output of the former words in
the sentence and it is as fast as the Image CNN. In this work, we mainly seek to investigate the
effect of the instance loss and ranking loss. The primary concern of our article is to prove that the
instance loss + ranking loss model is superior to the commonly used ranking loss baseline (55.4%
vs. 6.1%), and we report competitive performance.
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Table 3. Method Comparisons on MSCOCO

Method Visual Textual
Image Query Text Query

R@1 R@5 R@10 Med R@1 R@5 R@10 Med r

1K test images

DVSA [30] ft RCNN w2v + ft RNN 38.4 69.9 80.5 1 27.4 60.2 74.8 3

GMM-FV [33] fixed VGG-16 w2v + GMM + HGLMM 39.4 67.9 80.9 2 25.1 59.8 76.6 4

m-RNN [48] fixed VGG-16 ft RNN 41.0 73.0 83.5 2 29.0 42.2 77.0 3

RNN-FV [36] fixed VGG-19 feature from [33] 41.5 72.0 82.9 2 29.2 64.7 80.4 3

m-CNN [47] ft VGG-19 4 × ft CNN 42.8 73.1 84.1 2 32.6 68.6 82.8 3

HM-LSTM [52] fixed CNN from [30] ft RNN 43.9 - 87.8 2 36.1 - 86.7 3

SPE [66] fixed VGG-19 w2v + HGLMM 50.1 79.7 89.2 - 39.6 75.2 86.9 -

VQA-A [42] fixed VGG-19 ft RNN 50.5 80.1 89.7 - 37.0 70.9 82.9 -

sm-LSTM [28] fixed VGG-19 ft RNN 53.2 83.1 91.5 1 40.7 75.8 87.4 2

2WayNet [9] fixed VGG-16 feature from [33] 55.8 75.2 - - 39.7 63.3 - -

RRF-Net [46] fixed ResNet-152 w2v + HGLMM 56.4 85.3 91.5 - 43.9 78.1 88.6 -

VSE++ [10] ft ResNet-152 ft RNN 64.6 - 95.7 1 52.0 - 92.0 1

CNP [29] fixed ResNet-152 ft RNN 69.9 92.9 97.5 - 56.7 87.5 94.8 -

GXN [17] fixed ResNet-152 ft RNN 68.5 - 97.9 1 56.6 - 94.5 1

SCAN [35] Faster R-CNN ft RNN 72.7 94.8 98.4 - 58.8 88.4 94.8 -

Ours (VGG-19) Stage I fixed VGG-19 ft ResNet-50† (w2v init.) 46.0 75.6 85.3 2 34.4 66.6 78.7 3

Ours (VGG-19) Stage II ft VGG-19 ft ResNet-50† (w2v init.) 59.4 86.2 92.9 1 41.6 76.3 87.5 2

Ours (ResNet-50) Stage I fixed ResNet-50 ft ResNet-50† (w2v init.) 52.2 80.4 88.7 1 37.2 69.5 80.6 2

Ours (ResNet-50) Stage II ft ResNet-50 ft ResNet-50† (w2v init.) 65.6 89.8 95.5 1 47.1 79.9 90.0 2

5K test images

GMM-FV [33] fixed VGG-16 w2v + GMM + HGLMM 17.3 39.0 50.2 10 10.8 28.3 40.1 17

DVSA [30] ft RCNN w2v + ft RNN 16.5 39.2 52.0 9 10.7 29.6 42.2 14

VQA-A [42] fixed VGG-19 ft RNN 23.5 50.7 63.6 - 16.7 40.5 53.8 -

VSE++ [10] ft ResNet-152 ft RNN 41.3 - 81.2 2 30.3 - 72.4 4

GXN [17] fixed ResNet-152 ft RNN 42.0 - 84.7 2 31.7 - 74.6 3

SCAN [35] Faster R-CNN ft RNN 50.4 82.2 90.0 - 38.6 69.3 80.4 -

Ours (VGG-19) Stage I fixed VGG-19 ft ResNet-50† (w2v init.) 24.5 50.1 62.1 5 16.5 39.1 51.8 10

Ours (VGG-19) Stage II ft VGG-19 ft ResNet-50† (w2v init.) 35.5 63.2 75.6 3 21.0 47.5 60.9 6

Ours (ResNet-50) Stage I fixed ResNet-50 ft ResNet-50† (w2v init.) 28.6 56.2 68.0 4 18.7 42.4 55.1 8

Ours (ResNet-50) Stage II ft ResNet-50 ft ResNet-50† (w2v init.) 41.2 70.5 81.1 2 25.3 53.4 66.4 5

R@K (%) is Recall@K (high is good). Med r is the median rank (low is good). 1K test images denotes using five non-

overlap splits of 5K images to conduct retrieval evaluation and report the average result. 5K test images means using all

images and texts to perform retrieval. ft means fine-tuning. †: Text CNN structure is similar to the image CNN, illustrated

in Figure 3.

6.4 Mechanism Study

The effect of Stage I training. We replace the instance loss with the ranking loss at the first
stage when fixing the image CNN. As shown in Table 4, the performance is limited. As discussed
in Section 4.2, ranking loss focuses on inter-modal distance. It may be hard to tune the visual and
textual features simultaneously at the beginning. As we expected, instance loss performs better,
which focuses more on learning intra-modal discriminative descriptors. Besides, we observe that
the result with both ranking loss and instance loss at Stage I is a bit lower than the one only using
instance loss. We speculate that the ranking loss may not select good triplets at the beginning and
converge to an inferior local minimum early, which also compromises the instance loss learning.
Moreover, since the instance loss does not need the hard sample selection, the first stage using the
instance loss is more computational efficient than using both losses.

Two losses can works together. In Stage II, the experiment on the validation set verifies that
two losses can work together to improve the final retrieval result (see Table 4). Compared with
models using only ranking loss or instance loss, the model with two losses provides for higher
performance. In the second stage, instance loss does help to regularize the model.
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Table 4. Ranking Loss and Instance Loss Retrieval Results
on Flickr30k Validation Set

Method Stage
Image Query Text Query
R@1 R@10 R@1 R@10

Only Ranking Loss I 6.1 27.3 4.9 27.8
Only Instance Loss I 39.9 79.1 28.2 67.9
Instance Loss + Ranking Loss I 37.6 75.1 24.1 65.6
Only Instance Loss II 50.5 86.0 34.9 75.7
Only Ranking Loss II 47.5 85.4 29.0 68.7
Full model II 55.4 89.3 39.7 80.8

Except for the different losses, we apply the entirely same network (ResNet-50). For a clear

comparison, we also fixed the image CNN in Stage I and tune the entire network in Stage II

to observe the overfitting.

End-to-end fine-tuning helps. In Stage II, we fine-tune the entire network. For the two general
object datasets Flickr30k and MSCOCO, fine-tuning the whole network can improve the rank-1
accuracy by approximately 10% (see Tables 1 and 3). Imagenet collects images from the Internet,
while the pedestrian dataset CUHK-PEDES collects images from surveillance cameras. The fine-
tuning result is more obvious on the CUHK-PEDES due to the different data distribution. The fine-
tuned network (based on ResNet-50) improves the Recall@1 by 29.37%. The experiments indicate
the end-to-end training is critical to image-sentence retrieval, especially person search.

Could we use one instance loss? One natural idea is to use one instance loss with the sum of
two modality features. It could be formulated as

Pboth = so f tmax
(
W T

shar e ( fimд + ftext )
)
, (11)

Lossboth = −loд(Pboth ). (12)

We note that this loss does not equal to the proposed loss in Equations (5), (6), (7), and (8). The
method using fimд + ftext may depend on fimд or ftext . As shown in Table 8, the result is quite
below the normal result on Flickr30k and MSCOCO. Because there is only one image sample for
each class. It could be easy to cheat the loss and over-fit the image feature. The experiment shows
that the ftext converges to small values, which are close to zero. The network is prone to only up-
dating the fimд to cheat the loss. Pboth = so f tmax (W T

shar e
fimд ). Compared with one instance loss

on fimд + ftext , the proposed two losses demand the network to learn fimд and ftext separately,
which invades this unexpected condition.

Do we really need so many classes? For instance loss, the number of classes is usually large.
Is it possible to use fewer classes? We implement the pseudo-category method by k-means clus-
tering on MSCOCO, since MSCOCO has most images (classes). We use pool5 feature of ResNet50
pretrained on ImageNet to cluster 3,000 and 10,000 categories by K-means. The clustering results
are used as the pseudo label for the images to conduct classification. Although clustering can de-
crease the number of training classes and add the samples per classes, different instances are forced
to be of the same class and details may be lost (black/gray dog, two dogs), which compromises the
accuracy. The retrieval result with k-classes on MSCOCO is shown in Table 5. It shows that the
strategy is inferior to the instance loss.

Word2vec initialization helps. We compare the result using the word2vec initialization or
random initialization [15] for the first convolution layer of text CNN. Note that we remove the
words, which have not appeared in the training set, in the training data as well as dictionary. So
the weight of first convolution layer is d × 300 instead of 3,000,000 × 300. d is the dictionary size.
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Table 5. K-class Loss vs. Instance Loss on MSCOCO

Methods Image-Query R@1 Text-Query R@1
3,000 categories (StageI) 38.0 26.1
10,000 categories (StageI) 44.7 31.3
Our (StageI) 52.2 37.2

We use the K-means clustering result as pseudo categories. The experiment is based

on Res50 + Res50† as the model structure.

Table 6. Ablation Study

Method
Image Query Text Query
R@1 R@10 R@1 R@10

Random initialization [15] 38.0 78.7 26.6 66.6
Word2vec initialization 39.9 79.1 28.2 67.9

With/without word2vec initialization on Flickr30k validation. The result

suggests word2vec serves as a proper initialization for text CNN.

Table 7. Ablation Study

Method
Image Query Text Query
R@1 R@10 R@1 R@10

Left alignment 34.1 73.1 23.6 61.4
Position shift 39.9 79.1 28.2 67.9

Position shift vs. Left alignment on Flickr30k validation. It

shows that position shift can serve as a significant data aug-

mentation method for the text CNN.

Table 8. Ablation Study Using One Instance
Loss on the fimд + ftext

Dataset
Image Query Text Query
R@1 R@10 R@1 R@10

Flickr30k 0.3 1.7 0.1 1.4
MSCOCO 0.3 1.4 0.1 1.0

The result suggests that the method using fimд + ft ext

may depend on fimд or ft ex t . The network is prone to

overfit the dataset.

When testing, the missing words in the dictionary will also be removed in advance. As shown in
Table 6, it can be observed that using word2vec initialization outperforms by 1% to 2% compared
to the random initialization. Although word2vec is not trained on the target dataset, it still serves
as a proper initialization for text CNN.

Position shift vs. Left alignment: Text CNN has a fixed-length input. As discussed in Sec-
tion 3.2, left alignment is to pad zeros at the end of text input (like aligning the whole sentence
left), if the length of the sentence is shorter than 32. Position shift is to add zeros at the end of text
input as well as the beginning of the input. We conduct the position shift online when reading
data from the disk. We do the experiment on Flickr30k validation set. As shown in Table 7, the
model using position shift outperforms the one using left alignment ∼5%. Position shift serves as
a significant data augmentation method for text feature learning.
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Fig. 9. Qualitative image search results using text query. The results are sorted from left to right according
to their confidence. The images in green boxes are the true matches, and the images in red boxes are the
false matches. In the last row, the rank-1 woman also wears a blue shirt, a pair of blue jeans and a pair of
white shoes. The model outputs reasonable false matches.

Fig. 10. Qualitative description search results using image query on Flickr30k. Below each image, we show
the top five retrieval sentences (there are 5,000 candidate sentences in the gallery) in descending confidence.
Here, we select four black and white dogs as our query. Except for the main object (dog), we show the model
can correctly recognize environment and small object. The sentences in green are the true matches, and
the descriptions in red are the false matches. Note that some general descriptions are also reasonable. (Best
viewed when zoomed in.)
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In Figures 9 and 10, we present some visual retrieval results on CUHK-PEDES and Flickr30k,
respectively. Our method returns reasonable rank lists. (More qualitative results can be found in
Supplemental Material.)

7 CONCLUSION

In this article, we propose the instance loss for image-text retrieval. It is based on an unsuper-
vised assumption that every image/test group can be viewed as one class. The experiment shows
instance loss can provide a proper initialization for ranking loss and further regularize the train-
ing. As a minor contribution, we propose a dual-path CNN to conduct end-to-end training on
both image and text branches. The proposed method achieves competitive results on two generic
retrieval datasets Flickr30k and MSCOCO. Furthermore, we arrive a +18% improvement on the
person retrieval dataset CUHK-PEDES. Our code has been made publicly available. Additional ex-
amples can be found in Supplemental Material. We notice that there are limited training samples
for each class, which may compromise the effectiveness of the proposed instance loss. In the future,
we will investigate the feasibility of using generated samples for training. The generated samples
could largely enrich the training set. However, the synthesis data may also introduce noise. How
to use the generated text/images properly would be a new scientific problem. We will investigate
high-fidelity sample generation and different pseudo-labeling methods.
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