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A Discriminatively Learned CNN Embedding for Person
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In this article, we revisit two popular convolutional neural networks in person re-identification (re-ID): ver-

ification and identification models. The two models have their respective advantages and limitations due to

different loss functions. Here, we shed light on how to combine the two models to learn more discriminative

pedestrian descriptors. Specifically, we propose a Siamese network that simultaneously computes the identifi-

cation loss and verification loss. Given a pair of training images, the network predicts the identities of the two

input images and whether they belong to the same identity. Our network learns a discriminative embedding

and a similarity measurement at the same time, thus taking full usage of the re-ID annotations. Our method

can be easily applied on different pretrained networks. Albeit simple, the learned embedding improves the

state-of-the-art performance on two public person re-ID benchmarks. Further, we show that our architecture

can also be applied to image retrieval. The code is available at https://github.com/layumi/2016_person_re-ID.
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1 INTRODUCTION

Person reidentification (re-ID) is usually viewed as an image retrieval problem, which aims to
match pedestrians from multiple cameras [25, 41, 53—57]. Given a person-of-interest (query), per-
son re-ID determines whether the person has been observed by another camera. Recent progress
in this area has been due to two factors: (1) the availability of the large-scale pedestrian datasets
(compared to small datasets, large-scale datasets contain the common visual variance of pedestrian
and provide a comprehensive evaluation [18, 52]) and (2) the learned pedestrian descriptor using
a convolutional neural network (CNN).
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Fig. 1. The difference between identification models, verification models, and our model. Gray blocks rep-

resent nonlinear functions by CNN. (a) Identification models treat person re-ID as a multiclass recognition

task, which takes one image as input and predicts its identity. (b) Verification models treat person re-ID

as a binary class recognition task or a similarity regression task, which take a pair of images as input and

determine whether they belong to the same person or not. Here we only show a binary class recognition

case. (c) Our model fuses the identification and verification models together. Given one pair of images, we

can know who is in the image separately and whether two images depict the same person or not.

Recently, the CNN has shown potential for learning state-of-the-art feature embeddings or deep
metrics [5, 18, 38, 43, 44, 47, 56]. As shown in Figure 1, there are two major types of CNN structures:
verification models and identification models. The two models are different concerning input, fea-
ture extraction, and loss function for training. Our motivation is to combine the strengths of the
two models and learn a more discriminative pedestrian embedding.
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Table 1. The Advantages and Disadvantages of Verification and Identification Models

are Listed. We Assume Sufficient Training Data in All Models. Our Model Takes the

Advantages of the Two Models

Similarity Re-ID
Method Strong Label Estimation Performance

Verification Models × � fair
Identification Models � × good

Our Model � � good

Verification models take a pair of images (x1,x2) as input and predict f (x1,x2) → s; s is a
binary label, whether the two inputs belong to the same person or not. If two inputs depict the
same person, s = 1 and otherwise s = 0. Many previous works treat person re-ID as a binary class
classification task [1, 18, 43] or a similarity regression task [38, 47]. The verification network forces
two images of the same person to be mapped to nearby points in the feature space. If the images are
of different people, the points are far apart. However, the major problem in the verification models
is that they only use weak re-ID labels (same/different) [56] and do not take all of the annotated
information into consideration. Therefore, the verification network lacks the consideration of the
relationship between the image pairs and other images in the dataset.

In the attempt to take full advantages of the re-ID labels, identification models take a single
image (or a batch of images) as input x and predict the predefined identity label f (x ) → t . The
identification models directly learn the nonlinear functions from an input image to the person ID,
and the cross-entropy loss is usually used following the final layer [56, 59]. During testing, the
feature is extracted from a fully connected (FC) layer and then normalized. The similarity of two
images is thus computed by the Euclidean distance between their normalized CNN embeddings.
The major drawback of the identification model is that the training objective is different from the
testing procedure—that is, it does not account for the similarity measurement between image pairs,
which can be problematic during the pedestrian retrieval process.

The observations mentioned earlier demonstrate that the two types of models have complemen-
tary advantages and limitations, as shown in Table 1. Motivated by these properties, this work
proposes to combine the strengths of the two networks and leverage their complementary nature
to improve the discriminative ability of the learned embeddings. The proposed model is a Siamese
network that predicts person identities and similarity scores at the same time. Compared to pre-
vious networks, we take full advantage of the annotated data regarding pairwise similarity and
image identities. During testing, the final convolutional activations are extracted for Euclidean
distance–based pedestrian retrieval. Our contributions include the following:

• We propose a Siamese network that has two losses: identification loss and verification loss.
This network simultaneously learns a discriminative CNN embedding and a similarity met-
ric, thus improving pedestrian retrieval accuracy.

• We report competitive accuracy compared to the state-of-art methods on two large-scale
person re-ID datasets (Market1501 [52] and CUHK03 [18]) and one instance retrieval dataset
(Oxford5k [27]).

The article is organized as follows. We first review some related work in Section 2. In Section 3,
we describe how we combine the two losses and define the CNN structure. The implementation
details are provided. In Section 4, we present the experimental results on two large-scale person
re-ID datasets and one instance retrieval dataset. We conclude in Section 5.
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2 RELATED WORK

In this section, we first review handcrafted systems and then describe deeply learned systems
for person re-ID. The deeply learned systems are mainly based on the verification model and the
identification model.

2.1 Handcrafted Systems

Discriminative information plays an important role in multimedia retrieval [8, 46]. Some pioneer-
ing works focus on finding discriminative handcrafted features. Local features such as color his-
togram [50], LBP [24], and LOMO [19] are widely studied. Houle et al. [13] combine the local
feature with the global feature to conduct retrieval. Zheng et al. [52] explore the color name de-
scriptor and bag-of-words method on large-scale datasets. Yang et al. [45] use Gaussian of Gaussian
feature [23] to conduct semisupervised learning. Chang and Yang [4] analyze the semisupervised
features. Recently, Lisanti et al. [20] proposed a kernel canonical correlation analysis to combine
multiple features.

In addition to finding invariant features, Zheng et al. [58] formulate the person re-ID as a dis-
tance comparison problem. Koestinger et al. [15] propose the KISSME metric learning method
based on Mahalanobis distance. Further, Liao et al. [19] extend the Bayesian face and KISSME to
learn a discriminative subspace. Zhang et al. [48] propose a discriminative null subspace. More-
over, Zhang et al. [49] learn a specific SVM for each training identity to discriminate between
different identities.

2.2 Deeply Learned Systems

Verification models. In 1993, Bromley et al. [3] first used verification models to deep metric learn-
ing in signature verification. Verification models usually take a pair of images as input and output
a similarity score by calculating the cosine distance between low-dimensional features, which can
be penalized by the contrastive loss. Recently, researchers have begun to apply verification mod-
els to person re-ID with a focus on data augmentation and image matching. Yi et al. [47] split
a pedestrian image into three horizontal parts and train three part-CNNs to extract features. The
similarity of two images is computed by the cosine distance of their features. Similarly, Cheng et al.
[7] split the convolutional map into four parts and fuse the part features with the global features.
Li et al. [18] add a patch matching layer that multiplies the activation of two images in different
horizontal stripes. They use it to find similar locations and treat similarity comparison as binary
classification penalized by Softmax loss. Later, Ahmed et al. [1] improved the verification model
by adding a different matching layer that compares the activation of two images in neighboring
pixels. In addition, Wu et al. [43] use smaller filters and a deeper network to extract features. Varior
et al. [38] combine CNN with some gate functions, similar to long short-term memory (LSTM) in
spirit, which aims to adaptively focus on the similar parts of input image pairs. But it is limited by
the computational inefficiency because the query image has to pair with every gallery image to
pass through the network. Moreover, Ding et al. [9] use triplet samples for training the network
that considers the images from the same people and the different people at the same time.

Identification models. Recent datasets such as CUHK03 [18] and Market1501 [52] provide
large-scale training sets, which make it possible to train a deeper classification model without
overfitting. Every identity has 9.6 training images on average in CUHK03 [18] and 17.2 images
in Market1501 [52]. CNN can learn discriminative embeddings by itself without part matching.
Zheng et al. [51, 56] directly use a conventional fine-tuning approach on Market1501 [52], PRW
[56], and MARS [51], and outperform many recent results. Additionally, Zheng et al. [59] introduce
the GAN model to generate more pedestrian images to regularize the network.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 1, Article 13. Publication date: December 2017.



A Discriminatively Learned CNN Embedding for Person Reidentification 13:5

Verification-identification models. In face recognition, the “DeepID networks” train the net-
work with the verification and identification losses [33, 34], which is similar to our network. Sun
et al. [33] jointly train face identification and verification. Then more verification supervision is
added into the model [34].

Our method is different from their models in the following aspects. First, in face recognition, the
training dataset contains 202,599 face images of 10,177 identities [33], whereas the current largest
person re-ID training dataset contains 12,936 images of 751 identities [52]. DeepID networks apply
contrastive loss to the verification problem, whereas our model uses the cross-entropy loss. We
find that the contrastive loss leads to overfitting when the number of images is limited. In the
experiment, we show that the proposed method learns more robust person representative and
outperforms using contrastive loss. Second, dropout [32] cannot be applied on the embedding
before the contrastive loss, which introduces zero values at random locations. However, we can
add dropout regularization on the embedding in the proposed model. Third, the DeepID networks
are trained from scratch, whereas our model benefits from the networks pretrained on ImageNet
[30]. Finally, we evaluate our method on the tasks of person re-ID and instance retrieval, providing
more insights into the verification-classification models.

Here we mention a contemporary work to us—that of Geng et al. [10].1 In this article, we provide
more working mechanism on the combination of the two losses.

3 PROPOSED METHOD

3.1 Preview

Figure 2(a) and (b) illustrate the relational graph built by verification and identification models.
We were inspired by Song et al. [26] to visualize the relationship. In a sample batch of sizem = 10,
blue edges represent the positive pairs (the same person) and red edges represent the negative
pairs (different persons). The dotted edges denote implicit relationships built by the identification
loss, and the solid edges denote explicit relationships built by the verification loss.

In verification models, there are several operations between the two inputs. The explicit rela-
tionship between data is built by the pairwise comparison, such as part matching [1, 18] or con-
trastive loss [11]. In identification models, the input is independent of each other. But there is an
implicit relationship between the learned embeddings built by the cross-entropy loss. Specifically,
the cross-entropy loss can be formulated as loss = −loд(pдt ),where pдt =Wдt fi .W is the weight
of the linear function. fm , fn are the embeddings of the two images xm ,xn from the same class
k . To maximize Wk fm , Wk fn , the network converges when fm and fn have similar vector direc-
tion withWk . In Liu et al. [22], similar observation and visualization are shown. Thus, the learned
embeddings are eventually close for images within the same class and far away for images in the
different classes. The relationship is implicitly built between xm ,xn and bridged by the weightWk .

Due to the usage of the weak labels, verification models take limited relationships into con-
sideration. However, classification models do not explicitly consider similarity measurements.
Figure 2(c) illustrates how our model works in a batch. We benefit from simultaneously consider-
ing the verification and identification losses. The proposed model thus combines the strength of
the two models (see Table 1).

3.2 Overall Network

Our network is a convolutional Siamese network that combines the verification and identification
losses. Figure 3 briefly illustrates the architecture of the proposed network. Given an input pair

1The work of Geng et al. [10] was submitted to arXiv on November 16, 2016; this work was submitted to arXiv on November

17, 2016.
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Fig. 2. Illustration for a training batch. The number in the circle is the identity label. Blue and red edges rep-

resent whether the image pair depicts the same identity or not. Dotted edges represent implicit relationships,

and solid edges represent explicit relationships. Our model combines the strengths of the two models.

of images resized to 227 × 227, the proposed network simultaneously predicts the IDs of the two
images and the similarity score. The network consists of two ImageNet [30] pretrained CNN mod-
els, three additional convolutional layers, one square layer, and three losses. It is supervised by
the identification label t and the verification label s . The pretrained CNN model can be CaffeNet
[17], VGG16 [31], or ResNet-50 [12], from which we have removed the final FC (FC) layer. The
re-ID performance of the three models is comprehensively evaluated in Section 4. Here we do not
provide detailed descriptions of the architecture of the CNN models and only take CaffeNet as
an example in the following sections. The three optimization objectives include two identification
losses and one verification loss. We use the final convolutional activations f as the discriminative
descriptor for person re-ID, which is directly supervised by three objectives.

3.3 Identification Loss

There are two CaffeNets in our architecture. They share weights and predict the two identity labels
of the input image pair simultaneously. To fine tune the network on a new dataset, we replace the
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Fig. 3. The proposed model structure. Given n pairs of images of size 227 × 227, two identical CaffeNet

models are used as the nonlinear embedding functions and output 4,096-dim embeddings f1, f2. Then f1, f2
are used to predict the identity t of the two input images, respectively, and also predict the verification label

s jointly. We introduce a nonparametric layer called the square layer to compare high-level features f1, f2.

Finally, the softmax loss is applied on the three objectives.

final FC layer (1,000-dim) of the pretrained CNN model with a convolutional layer. The number of
the training identities in Market1501 is 751. Thus, this convolutional layer has 751 kernels of size
1 × 1 × 4,096 connected to the output f of CaffeNet, and then we add a softmax unit to normalize
the output. The size of the result tensor is 1 × 1 × 751. The rectified linear unit (ReLU) is not added
after this convolution. Similar to conventional multiclass recognition approaches, we use the cross-
entropy loss for identity prediction, which is

p̂ = so f tmax (θI ◦ f ), (1)

Identif( f , t ,θI ) =
K∑

i=1

−pi log(p̂i ). (2)

Here, ◦ denotes the convolutional operation. f is a 1 × 1 × 4, 096 tensor, t is the target class, and
θI denotes the parameters of the added convolutional layer. p̂ is the predicted probability, and pi

is the target probability. pi = 0 for all i except pt = 1.

3.4 Verification Loss

Whereas some previous works contain a matching function in the intermediate layers [1, 18, 38],
our work directly compares the high-level features f1, f2 for similarity estimation. The high-level
feature from the fine-tuned CNN has shown a discriminative ability [51, 56], and it is more compact
than the activations in the intermediate layers. Thus, in our model, the pedestrian descriptors f1, f2
in the identification model are directly supervised by the verification loss. As shown in Figure 3,
we introduce a nonparametric layer called the square layer to compare the high-level features. It
takes two tensors as inputs and outputs one tensor after subtracting and squaring element-wisely.
The square layer is denoted as fs = ( f1 − f2)2, where f1, f2 are the 4,096-dim embeddings and fs is
the output tensor of the square layer.

We then add a convolutional layer and the softmax output function to embed the resulting
tensor fs to a 2-dim vector (q̂1, q̂2) that represents the predicted probability of the two input images
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Table 2. Results on Market1501 [52] by Identification Loss and

Verification Loss Individually and Jointly

Method mAP rank-1
CaffeNet (V) 22.47 41.24
CaffeNet (I) 26.79 50.89
CaffeNet (I+V) 39.61 62.14

VGG16 (V) 24.29 42.99
VGG16 (I) 38.27 65.02
VGG16 (I+V) 47.45 70.16

ResNet-50 (V) 44.94 64.58
ResNet-50 (I) 51.48 73.69
ResNet-50 (I+V) 59.87 79.51

Note: “I” and “V” denote the identification loss and verification loss,

respectively.

belonging to the same identity. q̂1 + q̂2 = 1. The convolutional layer takes fs as input and filters
it with two kernels of size 1 × 1 × 4, 096. The ReLU is not added after this convolution. We treat
pedestrian verification as a binary classification problem and use the cross-entropy loss that is
similar to the one in the identification loss, which is

q̂ = so f tmax (θS ◦ fs ), (3)

Verif( f1, f2, s,θS ) =
2∑

i=1

−qi log(q̂i ). (4)

Here, f1, f2 are the two tensors of size 1 × 1 × 4,096. s is the target class (same/different), θS denotes
the parameters of the added convolutional layer, and q̂ is the predicted probability. If the image
pair depicts the same person, q1 = 1,q2 = 0; otherwise, q1 = 0,q2 = 1.

Departing from Sun et al. [33], we do not use the contrastive loss [11]. On the one hand, the
contrastive loss, as a regression loss, forces the same class embeddings to be as close as possible.
It may make the model overfitting because the number of training of each identity is limited in
person re-ID. On the other hand, dropout [32], which introduces zero values at random locations,
cannot be applied on the embedding before the contrastive loss. But the cross-entropy loss in our
model can work with dropout to regularize the model. In Section 4, we show that the result using
contrastive loss is 4.39% and 6.55% lower than the one using the cross-entropy loss on rank-1
accuracy and mean average precision (mAP), respectively.

3.5 Identification Versus Verification

The proposed network is trained to minimize the three cross-entropy losses jointly. To figure out
which objective contributes more, we train the identification model and verification model sepa-
rately. Following the learning rate setting in Section 3.6, we train the models until convergence.
We also train the network with the two losses jointly until two objectives both converge. As the
quantitative results are shown in Table 2, the fine-tuned CNN model with two kinds of losses
outperforms the one trained individually. This result has been confirmed on the three different
network structures.

Further, we visualize the intermediate feature maps that are trained using ResNet-50 [12] as
the pretrained model and try to find the differences between identification loss and verification
loss. We select three test images in Market1501. One image is considered to be well detected, and

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 1, Article 13. Publication date: December 2017.



A Discriminatively Learned CNN Embedding for Person Reidentification 13:9

Fig. 4. Barnes-Hut t-SNE visualization [37] of our embedding on a test split (354 identity, 6,868 images) of

Market1501. Best viewed when zoomed in. We find that the color is the major clue for the person re-ID, and

our learned embedding is robust to some viewpoint variations.

the other two images are not well aligned. Given one image as input, we get its activation in the
intermediate layer “res4fx,” the size of which is 14 × 14. We visualize the sum of several activation
maps. The local patterns (i.e., clothing color and texture) are important clues to person re-ID. This is
basically what we want the model to learn. In our work, for both two losses, the network can learn
the important local information, which implies the effectiveness of our model. As shown later in
Figure 5, the identification and the verification networks exhibit different activation patterns to the
pedestrian. We find that if we use only one kind of loss, the network tends to find one discriminative
part. The proposed model takes the advantages of both networks, so the new activation map is
mostly a union of the two individual maps. This also illustrates the complementary nature of the
two baseline networks. The proposed model makes more neurons activated.

Moreover, as shown in Figure 4, we visualize the embedding by plotting them to the 2D map.
Regarding Figure 5, we find that the network usually has strong attention on the center part of the
human (usually clothes), and it also illustrates that the color of the clothes is the major clue for
the person re-ID.

3.6 Training and Optimization

Input preparation. We resize all training images to 256 × 256. The mean image computed from
all training images is subtracted from all of the images. During training, all of the images are
randomly cropped to 227 × 227 for CaffeNet [17] and mirrored horizontally. For ResNet-50 [12]
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Fig. 5. Visualization of the activation maps in the ResNet-50 [12] model trained by the two losses. The iden-

tification and the verification networks exhibit different activation patterns to the pedestrian. The proposed

model takes the advantages of both networks, and the new activation map is almost a union of the two

individual maps. Our model activates more neurons.

and VGG16 [31], we randomly crop images to 224 × 224. We shuffle the dataset and use a random
order of the images. Then we sample another image from the same/different class to compose a
positive/negative pair. The initial ratio between negative pairs and positive pairs is 1:1 to alleviate
the prediction bias, and we multiply it by a factor of 1.01 every epoch until it reaches 1:4 since the
number of positive pairs is so limited that the network risks overfitting.

Training. We use the MatConvNet [40] package for training and testing the embedding with
CaffeNet [17], VGG16 [31], and ResNet-50 [12], respectively. The maximum number of training
epochs is set to 75 for ResNet-50, 65 for VGG16net, and 155 for CaffeNet. The batch size (in image
pairs) is set to 128 for CaffeNet, and 48 for VGG16 and ResNet-50. The learning rate is initialized
as 0.001 and then set to 0.0001 for the final five epochs. We adopt the mini-batch stochastic gra-
dient descent (SGD) to update the parameters of the network. There are three objectives in our
network. Therefore, we first compute all gradients produced by every objective respectively and
add the weighted gradients together to update the network. We assign a weight of 1 to the gradi-
ent produced by the verification loss and 0.5 for the two gradients produced by two identification
losses. Moreover, we insert the dropout function [32] before the final convolutional layer.

Testing. We adopt an efficient method to extract features as well as the activation of the in-
termediate layer. Because two CaffeNets share weights, our model has nearly the same memory
consumption with the pretrained model. Thus, we extract features by only activating one fine-
tuned model. Given a 227 × 227 image, we feed forward the image to one CaffeNet in our network
and obtain a 4,096-dim pedestrian descriptor f . Once the descriptors for the gallery sets are ob-
tained, they are stored offline. Given a query image, its descriptor is extracted online. We sort the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 1, Article 13. Publication date: December 2017.



A Discriminatively Learned CNN Embedding for Person Reidentification 13:11

cosine distance between the query and all gallery features to obtain the final ranking result. Note
that the cosine distance is equivalent to Euclidean distance when the feature is L2 normalized.

4 EXPERIMENTS

We mainly verify the proposed model on two large-scale datasets: Market1501 [52] and CUHK03
[18]. We report the results trained by three network structures. In addition, we also report the
result on a Market1501+500k dataset [52]. Meanwhile, the proposed architecture is also applied
on the image retrieval task. We modify our model and test it on a popular image retrieval dataset:
Oxford Buildings [27]. The performance is comparable to the state of the art. The code is available
at https://github.com/layumi/2016_person_re-ID.

4.1 Dataset

Market1501. Market1501 [52] contains 32,668 annotated bounding boxes of 1,501 identities. Im-
ages of each identity are captured by at most six cameras. According to the dataset setting, the
training set contains 12,936 cropped images of 751 identities, and the testing set contains 19,732
cropped images of 750 identities and distractors. They are directly detected by the deformable part
model (DPM) instead of using hand-drawn bounding boxes, which is closer to the realistic setting.
For each query, we aim to retrieve the ground-truth images from the 19,732 candidate images.

The searching pool (gallery) is important to person re-ID. In the realistic setting, the scale of the
gallery is usually large. The distractor dataset of Market1501 provides an extra 500,000 bounding
boxes, consisting of false alarms on the background as well as the persons not belonging to any
of the original 1,501 identities [52]. When testing, we add the 500k images to the original gallery,
which makes the retrieval more difficult.

CUHK03. The CUKH03 dataset [18] contains 14,097 cropped images of 1,467 identities collected
in the CUHK campus. Each identity is observed by two camera views and has 4.8 images on average
for each view. The author provides two kinds of bounding boxes. We evaluate our model on the
bounding boxes detected by DPM, which is closer to the realistic setting. Following the setting of
the dataset, the dataset is partitioned into a training set of 1,367 persons and a testing set of 100
persons. The experiment is repeated with 20 random splits. Both the single-shot and multiple-shot
results will be reported.

Oxford5k. Oxford Buildings [27] consists of 5,062 images collected from the Internet and corre-
sponding to particular Oxford landmarks. Some images have complex structures and may contain
other buildings. The images corresponding to 11 Oxford landmarks are manually annotated, and
a set of 55 queries for 11 different landmarks are provided. This benchmark contains many high-
resolution images, and the mean image size of this dataset is 851 × 921.

We use the rank-1 accuracy and mAP for performance evaluation on Market1501 (+100k) and
CUHK03, whereas on Oxford, we use mAP.

4.2 Person Re-ID Evaluation

Comparison with the CNN baseline. We train the baseline networks according to the conven-
tional fine-tuning method [56]. The baseline networks are pretrained on ImageNet [30] and fine
tuned to predict the person identities. As shown in Table 3, we obtain 50.89%, 65.02%, and 73.69%
rank-1 accuracy by CaffeNet [17], VGG16 [31], and ResNet-50 [12], respectively, on Market1501.
Note that using the baseline alone exceeds many previous works. Our model further improves
these baselines on Market1501. The improvement can be observed on three network architectures.
To be specific, we obtain 11.25%, 5.14%, and 5.82% improvement, respectively, using CaffeNet [17],
VGG16 [31], and ResNet-50 [12] on Market1501. Similarly, we observe 35.8%, 49.1%, and 71.5%
baseline rank-1 accuracy on CUHK03 in single-shot setting. As show in Table 4, these baseline
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Table 3. Comparison With the State-of-the-Art Results on the

Market1501 Dataset

Single Query Multiple Query
Method Rank-1 mAP Rank-1 mAP
BoW + KISSME [52] 44.42 20.76 — —
Multiregion CNN [36] 45.58 26.11 56.59 32.26
CAN [21] 48.24 24.43 — —
Fisher Network [42] 48.15 29.94 — —
SL [6] 51.90 26.35 — —
S-LSTM [39] — — 61.6 35.3
DNS [48] 55.43 29.87 71.56 46.03
Gate Reid [38] 65.88 39.55 76.04 48.45

CaffeNet Baseine [17] 50.89 26.79 59.80 36.50
Ours (CaffeNet) 62.14 39.61 72.21 49.62
VGG16 Baseline [31] 65.02 38.27 74.14 52.25
Ours (VGG16) 70.16 47.45 77.94 57.66
ResNet-50 Baseline [12] 73.69 51.48 81.47 63.95
Ours (ResNet-50) 79.51 59.87 85.84 70.33

Note: We also provide the results of the fine-tuned CNN baseline. The mAP and rank-1

precision are listed. SQ and MQ denote single query and multiply queries, respectively.

Table 4. Comparison With the State-of-the-Art Results Reported on the

CUHK03 Dataset Using the Single-Shot Setting

Method Rank-1 Rank-5 Rank-10 mAP
KISSME [16] 11.7 33.3 48.0 —
DeepReID [18] 19.9 49.3 64.7 —
BoW+HS [52] 24.3 — — —
LOMO+XQDA [19] 46.3 78.9 88.6 —
DNS [48] 54.7 80.1 88.3 —

CaffeNet Baseline 35.8 65.3 77.96 42.6
Ours (CaffeNet) 59.8 88.3 94.2 65.8
VGG16 Baseline 49.1 78.4 87.2 55.7
Ours (VGG16) 71.8 93.0 97.1 76.5
ResNet-50 Baseline 71.5 91.5 95.9 75.8
Ours (ResNet-50) 83.4 97.1 98.7 86.4

Note: The mAP and rank-1 accuracy are listed.

results exceed some previous works as well. We further get 14.0%, 22.7%, and 11.9% improvement
on the baseline by our method.

These results show that our method can work with different networks and improve their results.
It indicates that the proposed model helps the network learn more discriminative features.

Cross entropy loss vs. contrastive loss. We replace the cross-entropy loss with the con-
trastive loss as used in DeepID network. However, we find a 4.39% and 6.55% drop in rank-1 and
mAP. The ResNet-50 model using the contrastive loss has 75.12% rank-1 accuracy and 53.32%
mAP. We speculate that the contrastive loss tends to overfit on the re-ID dataset because no

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 1, Article 13. Publication date: December 2017.



A Discriminatively Learned CNN Embedding for Person Reidentification 13:13

Table 5. Comparison With the State-of-the-Art Methods on the CUHK03

Dataset Under the Multishot Setting

Method Rank-1 Rank-5 Rank-10 mAP
S-LSTM [39] 57.3 80.1 88.3 46.3
Gate-SCNN [38] 68.1 88.1 94.6 58.8

CaffeNet Baseline 43.3 63.5 76.8 37.2
Ours (CaffeNet) 67.2 86.2 92.3 61.5
VGG16 Baseline 58.8 80.2 87.3 51.0
Ours (VGG16) 78.8 91.8 95.4 73.9
ResNet-50 Baseline 77.1 89.6 93.9 73.1
Ours (ResNet-50) 88.3 95.7 97.8 85.0

Note: The multishot setting uses all images in the other camera as the gallery. The mAP

and rank-1 accuracy are listed.

regularization is added to the verification. Cross-entropy loss designed in our model can work
with the dropout function and avoid the overfitting.

Comparison with the state of the art. As shown in Table 3, we compare our method to
other state-of-the-art algorithms in terms of mAP and rank-1 accuracy on Market1501. We report
both single- and multiple-query evaluation results. Our model (CaffeNet) achieves 62.14% rank-1
accuracy and 39.61% mAP, which is comparable to the state-of-the-art 65.88% rank-1 accuracy and
39.55% mAP [38]. Our model using ResNet-50 produces the best performance—79.51% in rank-1
accuracy and 59.87% in mAP—which outperforms other state-of-the-art algorithms.

For CUHK03, we evaluate our method in the single-shot setting as shown in Table 4. There is
only one right image in the searching pool. In the evaluation, we randomly select 100 images from
100 identities under the other camera as the gallery. The proposed model yields 83.4% rank-1 and
86.4% mAP and outperforms the state-of-the-art performance.

As shown in Table 5, we also report the results in the multishot setting, which uses all images
from the other camera as the gallery, and the number of the gallery images is about 500. We
believe that this setting is much closer to image retrieval and alleviates the unstable effect caused
by the random searching pool under single-shot settings. Figure 7 presents some re-ID samples on
the CUHK03 dataset. The images in the first column are the query images. The retrieval images are
sorted according to the similarity scores from left to right. Most ground-truth candidate images
are correctly retrieved. Although the model retrieves some incorrect candidates in the third row,
we find that it is a reasonable prediction since the man with the red hat and blue coat is similar
to the query. The proposed model yields 88.3% rank-1 and 85.0% mAP and also outperforms the
state-of-the-art performance in the multishot setting.

Results between camera pairs. CUHK03 [18] only contains two camera views. Thus, this ex-
periment is evaluated on Market1501 [52] since it contains six different cameras. We provide the
re-ID results between all camera pairs in Figure 6. Cross-camera variations lay difficulties in finding
the queried pedestrian. In our work, the lowest cross-camera result obtained by our method still
achieves about 45% rank-1 accuracy, which demonstrates the robustness of the proposed method.
Note that Cam-6 is a 720 × 576 low-resolution camera. Although low resolution usually compro-
mises the cross-camera re-ID accuracy, we still achieve relatively high results between Cam-6 and
the other cameras. We also compute the cross-camera average mAP and average rank-1 accu-
racy: 48.42% and 54.42%, respectively. Compared to the results reported previously (i.e., 10.51%
and 13.72% in Zheng et al. [52]), our method largely improves the performance and observes a
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Fig. 6. Re-ID performance between camera pairs on Market1501: mAP (a) and rank-1 accuracy (b). Cameras

on the vertical and horizontal axis correspond to the probe and gallery, respectively.

smaller standard deviation between cameras. It suggests that the discriminatively learned embed-
ding works under different viewpoints.

Further, Figure 4 shows the Barnes-Hut t-SNE visualization [37] on the learned embeddings
of our model. By the clustering algorithm, the persons wearing the similar-color clothes are quit
clustered together and are apart from other persons. The learned pedestrian descriptor pays more
attention to the color, and it is robust to some illusion and viewpoint variations. In the realistic
setting, we believe that color provides the most important information to figure out the person.

Large-scale experiments. The Market1501 dataset also provides an additional distractor set
with 500k images to enlarge the gallery. In general, more candidate images may confuse the
image retrieval. The re-ID performance of our model (ResNet) on the large-scale dataset is pre-
sented in Table 6. As the searching pool gets larger, the accuracy drops. With the gallery size of
500, 000 + 19, 732, we still achieve 68.26% rank-1 accuracy and 45.24% mAP. A relative smaller drop
of 24.4%(1 − 45.24%/59.87%) on mAP is observed, compared to a drop of 37.88%(1 − 8.66%/13.94%)
in our previous work [52]. In addition, we compare our result to the performance of the ResNet
baseline. As shown in Figure 8, it is interesting that the re-ID precision of our model decreases
more quickly compared to the baseline model. We speculate that the Market1501 training set is
relatively small in covering the pedestrian variations encountered in a much larger test set. We
note that the extra 500k dataset was collected in a different time (the same location) with the
Market1501 dataset, so the transfer effect is large enough that the learned embedding is inferior
to the baseline on the scale of 500k images. Our method has higher learning ability on a dataset in
which the training and testing sets are randomly drawn from the same distribution, whereas the
baseline has lower accuracy on the dataset itself while having higher generalization ability on a
different dataset. Our result also reflects important future issues in the community of person re-ID
that the scalability/generalization ability is critical in a person re-ID system. Through this work,
we call upon attention from the community for this problem. In the future, we will look into this
interesting problem and design more robust descriptors for the large testing dataset.

4.3 Instance Retrieval

We apply the identification-verification model to the generic image retrieval task. Oxford5k [27]
is a testing dataset containing buildings in the Oxford University. We train the network on an-
other scene dataset proposed in Radenović et al. [29], which comprises some buildings without
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Fig. 7. Pedestrian retrieval samples on the CUHK03 dataset [18] in the multishot setting. The images in the

first column are the query images. The retrieval images are sorted according to the similarity scores from

left to right. The correct matches are in the green rectangles, and the false matching images are in the red

rectangles.

Table 6. Impact of Data Size on the Market1501+500K Dataset

Method Gallery Size 19,732 119,732 219,732 519,732

ResNet Baseline
Rank-1 73.69 72.15 71.55 70.67
mAP 51.48 48.72 47.57 46.05

Ours (ResNet)
Rank-1 79.51 73.78 71.50 68.26
mAP 59.87 52.28 49.11 45.24

Note: As the dataset gets larger, the accuracy drops.

overlapping with Oxford5k. Similarly, the model is trained to not only tell which building the im-
age depicts but also determine whether the two input images are from the same architecture. The
training data is high resolution. To obtain more information from the high-resolution building
images, we modify the final pooling layer of our model to a MAC layer [35], which outputs the
maximum value over the whole activation map. This layer helps us handle large images without
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Fig. 8. Impact of data size on the Market1501+500 K dataset. As the dataset gets larger, the accuracy drops.

Table 7. Comparison of State-of-the-Art Results on the

Oxford5k Dataset

Method CaffeNet mAP VGG16 mAP
mVoc/BoW [28] 48.8 —
CroW [14] — 68.2
Neural Codes [2] 55.7 —
R-MAC [35] 56.1 66.9
R-MAC-Hard [29] 62.5 77.0
MAC-Hard [29] 62.2 79.7

Fine-Tuned Baseline 60.2 69.8
Ours 66.2 76.4

Note: The mAP is listed.

resizing them to a fixed size and output a fixed-dimension feature to retrieve the images. During
training, the input image is randomly cropped to 320 × 320 from 362 × 362 and mirrored horizon-
tally. During testing, we keep the original size of the images that are not cropped or resized and
extract the feature.

In Table 7, many previous works are based on CaffeNet or VGG16. For a fair comparison, we
report the baseline results and the results of our model based on these two network structures,
respectively. The state-of-the-art method [29] uses an extra 3D model to conduct hard sampling,
whereas our method does not. Our model based on VGG16 is not higher than that of Radenović
et al. [29], but it is still competitive (76.4% vs. 79.7%). Our model, which uses CaffeNet as a pre-
trained model, outperforms Radenović et al. [29]. We mainly seek to investigate the effect of the
combination of the two losses. The primary concern of our work is to prove that the verif+identif
model is superior to the fine-tuned baseline (76.4% vs. 69.8%). The proposed method shows a 6.0%
and 6.6% improvement over the baselines based on CaffeNet and VGG16, respectively. We visual-
ize some retrieval results in Figure 9. The images in the first column are the query images. The
retrieval images are sorted according to the similarity scores from left to right. The main difficulty
in the image retrieval is the various object sizes in the image. In the first row, we use the roof (part
of the building) to retrieve the images, and the top five images are correct candidate images. The
other retrieval samples also show that our model is robust to the scale variations.
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Fig. 9. Example retrieval results on the Oxford5k dataset [27] using the proposed embedding. The images

in the first column are the query images. The retrieval images are sorted according to the similarity scores

from left to right. The query images are usually from the part of the architectures.

5 CONCLUSION

In this work, we propose a Siamese network that simultaneously considers identification loss and
verification loss. The proposed model learns a discriminative embedding and a similarity measure-
ment at the same time. It outperforms the state of the art on two popular person re-ID benchmarks
and shows the potential ability to apply it on the generic instance retrieval task.

Future work includes exploring more novel applications of the proposed method, such as car
recognition and fine-grain classification. In addition, we will investigate how to learn a robust
descriptor to further improve the performance of the person re-ID on a large-scale testing set.
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