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Abstract—People live in a 3D world. However, existing works
on person re-identification (re-id) mostly consider the semantic
representation learning in a 2D space, intrinsically limiting the
understanding of people. In this work, we address this limitation
by exploring the prior knowledge of the 3D body structure.
Specifically, we project 2D images to a 3D space and introduce
a novel parameter-efficient Omni-scale Graph Network (OG-
Net) to learn the pedestrian representation directly from 3D
point clouds. OG-Net effectively exploits the local information
provided by sparse 3D points and takes advantage of the
structure and appearance information in a coherent manner.
With the help of 3D geometry information, we can learn a
new type of deep re-id feature free from noisy variants, such
as scale and viewpoint. To our knowledge, we are among
the first attempts to conduct person re-identification in the
3D space. We demonstrate through extensive experiments that
the proposed method (1) eases the matching difficulty in the
traditional 2D space, (2) exploits the complementary information
of 2D appearance and 3D structure, (3) achieves competitive
results with limited parameters on four large-scale person re-
id datasets, and (4) has good scalability to unseen datasets. Our
code, models and generated 3D human data are publicly available
at https://github.com/layumi/person-reid-3d.

Index Terms—Person re-identification, 3D human representa-
tion, Image retrieval, Point cloud, Graph convolutional networks.

I. INTRODUCTION

PERSON re-identification is usually regarded as an im-
age retrieval problem of spotting the person in non-

overlapping cameras [1]–[6]. Due to the rising demand of
public safety and the fast development of camera network,
person re-id has received increasing interests. These studies
aim to save the human resource and efficiently find the person
of interest, e.g., lost child in the airport, from thousands of
candidate images. In recent years, the advance of person re-
id is mainly due to two factors: 1) the availability of large-
scale datasets and 2) the deeply-learned person representation.
On one hand, deeply-learned models are usually data-hungry.
The large-scale datasets [7]–[10] facilitate the data-driven
approaches. On the other hand, the development of Convo-
lutional Neural Network (CNN) also provides the technical
breakthrough of the pedestrian representation learning. Many
efforts have been paid to improve the CNN-based model ca-
pability [11]–[14]. Recently, some researchers and companies
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Fig. 1. Our brain generally associates the 2D appearance with prior
knowledge of the 3D body shape. In this work, we intend to simulate this
process and explore robust pedestrian representation with a lightweight model.
(Dash arrows are missing in prevailing re-id methods.)

also claim that the model can surpass the human performance
[15].

However, one inherent problem still remains: does the
model really understand the person? People live in a 3D
world. In contrast, we notice that most prevailing person re-
id methods ignore the prior knowledge that human is a 3D
non-rigid object, and only focus on learning the representation
in 2D space. Although some pioneering works [16], [17]
consider the 3D human structure, the pedestrian representation
is still learned from the projected 2D images. For instance, one
of the existing works, PersonX [17], has applied the game
engine to build 3D person models. However, representation
learning is conducted in the 2D space by projecting the 3D
model back to 2D images. This line of works is effective in
data augmentation but might be sub-optimal in representation
learning. It is because the 2D data space intrinsically limits
the model to understand the 3D geometry information of the
person.

Inspired by the human ability of associating the 2D ap-
pearance with the 3D geometry structure (see Figure 1), we
argue that the key to learning an effective and scalable person
representation is to consider the complementary information
of 2D human appearance and 3D geometry structure. With the
prior knowledge of 3D human geometry information, we could
learn a depth-aware model, thus making the representation
robust to real-world scenarios. As shown in Figure 2, we map
the visible surface to the human mesh, and make the person
free from the 2D space. The intuition is that after mapping to
the 3D space, the appearance information is correlated/aligned
with the human structure. Without the need to worry about
the part matching from two different viewpoints, the 3D data
structure eases the matching difficulty in nature. The model
could concentrate on learning the identity-related features, and
dealing with the other intra-class variants, such as illumination
conditions.

To fully take advantage of the 3D structure and 2D ap-
pearance, we propose a novel Omni-scale Graph Network
for person re-id in the 3D space, called OG-Net. OG-Net is
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Fig. 2. Person is a 3D non-rigid object. In this work, we conduct the
person re-identification in the 3D space, and learn a new type of robust re-id
feature. Given one 2D image (a), we first (b) estimate the 3D pose via the
off-the-shelf model [18], followed by (c) mapping the RGB color of visible
surfaces to corresponding points. The invisible parts are made transparent for
visualization. (d) The appearance information is aligned with the human
structure. We make the person free from the 2D space, and thus ease
the matching difficulty.

a parameter-efficient model based on graph neural network
(GNN) to communicate between the discrete cloud points
of arbitrary locations. Given the 3D point cloud and the
corresponding color information, OG-Net predicts the person
identity and outputs the robust human representation for
subsequent matching. Following the spirit of the conventional
convolutional neural network (CNN), we utilize 3D points
to build the location topology, and deploy the corresponding
RGB color to extract appearance information. In particular,
we propose Omni-scale module to aggregate the feature
from multiple 3D receptive fields, which leverages multi-
scale information in 3D data. Even though the basic OG-
Net only consists of four Omni-scale modules, it has achieved
competitive performance on four person re-id datasets.

Contribution. Our contributions are as follows. (1) We
study person re-identification in the 3D space - a realistic
scenario which could better reflect the nature of the 3D non-
rigid human. To our knowledge, this work is among the early
attempts to address this problem. (2) We propose a novel
Omni-scale Graph Network to learn the feature from both
human appearance and 3D geometry structure in a coherent
manner. OG-Net leverages discrete 3D points to capture the
multi-scale identity information. (3) Extensive experiments on
four person re-id benchmarks show the proposed method could
achieve competitive performance with limited parameters. A
more realistic transfer learning setting is also studied in this
paper. We observe that OG-Net has good scalability to the
unseen person re-id dataset.

II. RELATED WORK

A. Semantic Space for Person Re-id

Recent years, convolutional neural network (CNN) models
have been explored to map the pedestrian inputs, e.g., images,
into one shared semantic space, where the data of the same
identity is close and the data of different identities is apart
from each other [2], [19]. Different optimization objectives
have been studied. For instance, the contrastive loss is widely-
used to discriminate different identities [4], [20], [21], while
the identification loss deploys the identity classification as
the pretext task [3], [22], [23]. To simultaneously minimize
the intra-class difference and maximize the inter-class gap,

the triplet loss with different hard sampling strategies are
also widely-studied [24]–[28]. Xiao et al. [29] propose the
online instance matching loss to view the unlabeled data as
negative samples, while Zheng et al. [9] design one label
smooth loss to take advantage of synthetic data. Besides,
several works [30]–[34] utilize person attributes, e.g., gender,
to help the model learning intermediate features. Some works
also explore the post-processing approaches to further build the
relation between the instances [35], [36]. This line of works is
orthogonal to our work - any semantic spaces or optimization
objectives can be used in our work and better ones can benefit
our approach. In this work, we do not intend to pursue the best
semantic space, but focus on verifying the effectiveness of the
3D space and the proposed OG-Net. We, therefore, deploy the
basic identification loss for a fair comparison.

B. Part Matching for Person Re-id

To obtain the discriminative pedestrian representation, one
line of research works resorts to mining local patterns, such as
bodies, legs and arms, on 2D image inputs. The part matching
is usually conducted on two different levels, i.e., the pixel
level [37]–[39] and the feature level [40]–[43]. The pixel-
level part matching directly transforms the input image to one
unified form. For instance, Su et al. [37] and Zheng et al. [39]
deploy the off-the-shelf pose estimator [44] to predict the
human key points, followed by cropping and resizing body
parts for representation learning. Similarly, Zhang et al. [38]
utilize the semantic segmentation predictor to crop and align
body parts densely. Instead of cropping body parts, Saquib
et al. [45] concatenate the RGB input with key point heatmap
as input, and let model to learn the part attention by itself.
In contrast, another line of works align the parts coarsely on
the feature level, given that pedestrians usually stand in the
image and are horizontally aligned in nature. Based on this
assumption, Sun et al. [40], [46] propose to split feature maps
horizontally and learn the part feature in a relatively large
receptive field. Taking one more step, MGN [41] explores
more partition strategies as multiple knowledge representa-
tion [47] and fuses different loss functions, further improving
the performance. Zhao et al. [48] harness the salience map to
learn the discriminative harshing code for fast person re-id.
To obtain more fine-grained information, several works [49]–
[53] introduce one extra human parsing branch to provide part
matching information in the feature level. Some pioneering
works also explore the neural architecture search to learn fine-
grained visual representation [54]–[56]. Besides, to address
the misdetection of the input image, Zheng et al. [57] apply
the spatial transformer network [58] to re-align feature maps.
Different from existing works on part alignment in 2D space,
the proposed method explores the 3D body structure, which is
more close to the prior knowledge of human - a 3D non-rigid
object.

C. Learning from Synthetic Data

Another active research line is to leverage the synthetic
human data. Although most datasets [7], [59] provide more
training data in recent years, the number of images per person
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is still limited [9]. Therefore, the intra-class variants of every
training pedestrian are limited, which largely compromise
the model learning and hurt the model scalability to real-
world scenarios. To address the data limitation, one line of
existing works leverages the generative adversarial network
(GAN) [60] to synthesize more high-quality training images,
and let the model “see” more appearance variants to learn
the robust representation [9], [22], [61]–[66]. Zheng et al. [9]
first propose a new label smooth regularization for outliers to
leverage imperfect generated images. In a similar spirit, Huang
et al. [67] deploy the pseudo label learning to assign refined
labels for synthetic data. Qian et al. [64] modify the generation
model and add pedestrian images with different poses into
training set, yielding the pose-invariant features. Inspired by
the conventional encoder-decoder manner, Ge et al. [62]
propose FD-GAN to learn one pose-invariant feature when
encoding the input image. Zhao et al. [68] propose a generative
occlusion block to dynamically simulate the occlusion in real-
world applications. DG-Net [61] disentangles the pedestrian
image to two embeddings, i.e., appearance code and structure
code, to generate diverse and realistic synthetic images. With
the high-quality synthetic data, more discriminative feature can
be learned, in turn, improving re-id performance. Furthermore,
several works [10], [22], [69]–[71] also apply GAN, i.e.,
CycleGAN [72], to cross-domain person re-identification by
training the model with the target-style synthetic data. In
contrast, another line of works [17], [73], [74] is close to
our work, which applies the game engine to build 3D models.
Sun et al. [17] build a large number of 3D person models, and
map models to 2D plane for generating more 2D training data.
Yao et al. [74] and Tang et al. [73] manipulate the generation
setting and leverage attributes, e.g., color and pose, to enable
multi-task learning on 2D synthetic data. Lin et al. [75] also
leverage the synthetic data to learn the common knowledge
of human structure, improving the model scalability on real
data. However, different from our work, the above-mentioned
studies are mostly investigated in the 2D space, and neglect the
3D geometry information of human bodies. In this work, we
argue that the 3D space with the geometry knowledge could
help to learn a new type of feature free from several intra-class
visual variants, such as viewpoints.

D. Learning from Point Clouds

The point cloud is a flexible geometric representation of
3D data structure, which could be obtained by most 3D data
acquisition devices, such as radar. The point cloud data is
usually unordered, and thus the conventional convolutional
neural network (CNN) could not directly work on this kind of
data. One of the earliest works, i.e., PointNet [76], proposes
to leverage the multi-layer perceptron (MLP) networks and
max-pooling layer to fuse the information from multiple
points. PointNet++ [77] takes one more step by introducing
the sampling layer to distill salient points. To address the
limitation in decoding, FoldingNet [78] adds one constant 2D
plane to simulate the surface of 3D objects. However, the
communication between the 3D points is still limited, and each
point is treated independently most of the time. Therefore,

Wang et al. [79] propose to leverage Graph Neural Network
(GNN) [80] to enable the information spread between the k-
nearest points. Li et al. [81] take one more step and propose
to deploy a deeper graph neural network structure, further
boosting the performance. Similarly, in this work, we regard
every person as one individual graph, while every RGB pixel
and the corresponding location are viewed as one node in the
graph. More details are provided in Section III.

III. METHOD

We show a schematic overview of our framework in Fig-
ure 3. We next introduce some notations and assumptions,
followed by the details of how to learn from 3D points, and
how to take advantage of 2D appearance information and 3D
structure in one coherent manner.

A. Preliminaries and Notations

To conduct person re-identification in the 3D space, we
first change the data structure of inputs. In particular, given
one person re-id dataset, 2D images are mapped to the 3D
space via the off-the-shelf 3D pose estimation [18]. We apply
this mapping function to every image in the dataset to obtain
3D point clouds aligned with the 2D appearance. We denote
the generated point sets and identity labels as S = {sn}Nn=1

and Y = {yn}Nn=1, where N is the number of samples
in the dataset, yn ∈ [1,K], and K is the number of the
identity categories. We utilize the matrix format to illustrate
the point cloud sn ∈ Rm×6, where m is the number of
points, and 6 is the channel number. The former 3 channels
contain 3D coordinates XYZ, while the latter 3 channels
contain the corresponding RGB information. Given one 3D
data sn ∈ Rm×6, our work intends to learn a mapping
function F which projects the input sn to the identity-aware
representation fn = FΘ(sn) with learnable parameters Θ.
Unlike the conventional image format, the 3D point clouds
are unordered and discrete. We can not directly apply the
traditional 2D convolutional layer on m×6 to capture the local
information, e.g., one 3 × 3 receptive field, since unordered
neighbor points may have limited connections to the center
point. To address the limitation, we follow the idea of graph
neural networks [80] to build the graph G based on the distance
between points. Next we illustrate one basic component, i.e.,
dynamic graph convolution, to learn from the graph G.

B. Dynamic Graph Convolution

To model the relationship between neighbor points, we
adopt the k-nearest neighbor (KNN) graph G = (V, E),
where V denotes the vertex set, and E denotes the edge set
(E ⊆ V × V). The KNN graph is directed, and includes self-
loop, meaning (i, i) ∈ E . It is worth to noticing that the
selection of the k-nearest neighbors is based on the value of
vertexes (points) rather than the initial input order, evading
the problem of unordered 3D point clouds. Besides, recent
works [79], [81] also show the dynamic graph is superior to
the fixed graph structure during training GCN, which alleviates
the over-smoothing problem and enlarges the receptive field
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Fig. 3. OG-Net Architecture. OG-Net is simply built via stacking Omni-scale Modules. (m′ × c) denotes the feature of m′ points with c-dim attribute.
Given the point cloud of (m×6), we split the geometry location b0 and the RGB color data a0. The 3D location information, i.e., (x,y,z), is to build the KNN
graph, while the RGB data is to extract the appearance feature as the conventional 2D CNNs. We progressively downsample the number of selected points
{m, 768, 384, 192, 96}, while increasing the appearance feature length {3, 64, 128, 256, 512}. For the last KNN Graph, we concatenate the position b3 and
the appearance feature a3 to yield a non-local attention (see the red dash arrow). Finally, we concatenate the outputs of average pooling and max pooling
layer, followed by one fully connected (FC) layer and one batch normalization (BN) layer. We adopt the conventional pretext task, i.e., identity classification
Lid, as the optimization objective to learn the pedestrian representation. When testing, we drop the last classifier and extract the compressed feature of 512
dimensions as the pedestrian representation for matching.
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Fig. 4. Visualization of Omni-scale Module. We provide the feature shape
as the format of (·). For instance, (m′ × c) denotes the feature of m′ points
with c-dim attribute. (a) We show the basic Omni-scale module without
downsampling. (b) We show the Omni-scale module with downsampling,
which is similar to the conventional pooling layer. The module distills the
number of the points and improves the training efficiency. The dash line
denotes the short-cut connection. Besides, we highlight two function types,
i.e., cross-point functions and per-point functions, in red. The cross-point
function aggregates the feature among neighbor points, while the per-point
function only considers the single-point feature. The proposed Omni-scale
module consists of these two kinds of functions.

of every node. Following the spirit of the dynamic graph, the
KNN graph used in our work is not fixed, and we re-build the
graph after every down-sampling layer. The down-sampling
layers are to progressively remove redundant points (vertexes),
and thus the computation cost of the proposed method is much
less than the conventional implementation in [79], [81].

To learn representation from the topology structure of the
graph, we follow the spirit of the traditional 2D CNN and
deploy one local convolutional layer based on neighbor points
with connected edges. In particular, given one node feature
xi, the output x′i of the dynamic graph convolution could be
formulated as:

x′i =
∑

j:(i,j)∈E, j 6=i

(θixi + θjxj) (1)

where xj is the feature of neighbor points in the graph, and
there is one edge from i to j. θ is the learnable parameter in
Θ. The main difference with the traditional convolution is the
definition of the neighbor set. In this work, we combine
two kinds of neighbor choices, i.e., position similarity
and feature similarity. If the graph G is based on the 3D
coordinate similarity, dynamic graph convolution equals to
the conventional 2D CNN to capture the local pattern based
on the position. We note that this operation is translation
invariant, since the global translation, such as ShiftX, ShiftY
and Rotation, could not change the connected neighbors in E .
On the other hand, if the graph G is built on the appearance
feature, the dynamic graph convolution works as the non-local
self-attention as [82], [83], which ignores the local position but
pays attention to the area with similar appearance patterns. We
next take advantage of the dynamic graph convolution function
to build the basic module - Omni-scale module.

C. Omni-scale Module

To leverage the rich multi-scale information as the pre-
vailing 2D CNNs, we propose one basic Omni-scale module,
which could be easily stacked to form the whole network. The
module treats the 3D location and the RGB input differently
(see Figure 4 (b)). We denote l ∈ [0, L−1] as the layer index.
The RGB input is the first appearance feature a0 of m × 3,
while the initial 3D position is b0 of m × 3. Different from
the conventional graph CNN, the local k-nearest graph Gl is
dynamically generated according to the input location bl or
the concatenation of al and bl. Given the appearance feature
al of m′× c, the location bl of m′×3 and the KNN graph Gl,
the Omni-scale module outputs the appearance feature al+1

and the selected locations bl+1. From the top to the bottom
of the module, we first apply Dynamic Graph Convolution
to aggregate the k-nearest neighbor features, which is simi-
lar to the conventional convolutional layer. Dynamic Graph
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Convolution does not change the number of points, and thus
the shape of the output feature is m′ × c′. If down-sampling
points is not applied, we will remain the channel number
c′ = c following the conventional residual learning [84] to
obtain al+1 followed by one batch normalization layer and one
ReLU (see Figure 4 (a)). If down-sampling points is applied,
we generally set c′ = 2c to enlarge the feature channel before
downsampling. Then we downsample the location according
to the farthest point sampling (FPS) [77]. FPS selects the most
distinguish points in the 3D space. We note that only the 3D
position bl is used to calculate the distance and decide the
selected points when downsampling. According to the selected
location, we also downsample the appearance feature, and only
keep the feature of the selected location. Therefore, the shape
of the selected location is 1

2m
′× 3, while the selected feature

shape is 1
2m
′×c′. Next we deploy three branches with different

grouping rates r = {8, 16, 32}, and the three branches do not
share weights. In this way, we could capture the information
with different receptive fields as the conventional 2D CNNs,
i.e., InceptionNet [85]. Each branch consists one grouping
layer, two linear layers, two batch normalization (BN) layers,
one squeeze-excitation (SE) block [86] and one group max
pooling layer to aggregate the local information. Specifically,
grouping-r layer is to sample and duplicate the r nearest
points for each point, followed by the linear layers, batch
normalization and the SE block. We introduce SE-block [86]
as one adaptive gate function to re-scale the weight of each
branch before the summarization of three branches. Group
max pooling layer is to maximize the feature within each
group. Finally, we adopt the ‘add’ to calculate the sum of
three branches rather than concatenation, so that the different
scale pattern of the same part, such as cloth logos, could be
accumulated. The shape of the new appearance feature al+1

is 1
2m
′ × c′, and the shape of the corresponding 3D position

bl+1 is 1
2m
′ × 3. Alternatively, we could add the short-cut

connection to take advantage of the identity representation as
ResNet [84].

To summarize, the key of Omni-scale Module is two cross-
point functions. The cross-point function indicates the function
considers the neighbor points, while the pre-point function
only considers the feature of one point itself. One cross-
point function is the dynamic graph convolution before down-
sampling, which could be simply formulated as

∑
h(xi, xj),

where h denotes a linear function. It mimics the conventional
2D CNN to aggregate the local patterns according to the
position. The other is the max group pooling layer in each
branch, which could be simply formulated as maxh(xi). It
maximizes neighbor features in each group as the new point
feature. Now we have the Omni-scale module to learn from
both of the appearance and the geometry structure information
in a coherent manner, and next we will utilize Omni-scale
modules to build the Omni-scale Graph Network (OG-Net).

D. OG-Net Architecture

The structure of OG-Net is as shown in Figure 3, consist-
ing four Omni-scale modules. We progressively decrease the
number of selected points as the conventional CNN. Every

time the point number decreases, the channel number of the
appearance feature is doubled. After four Omni-scale modules,
we could obtain 96 points with 512-dim appearance feature.
Similar to [79], we apply the max pooling as well as average
pooling to aggregate the point feature, and concatenate the
two outputs, yielding the 1024-dim feature. We add one fully-
connected layer and one batch normalization layer to compress
the feature to 512 dimensions as the pedestrian representation.
When inference, we drop the last linear classifier for the
pretext classification task, and extract the 512-dim feature to
conduct image matching.
Training Objective. We adopt the conventional identity clas-
sification as the pretext task to learn the identity-aware feature.
The vanilla cross-entropy loss could be formulated as:

Lid = E[−log(p(yn|sn))] (2)

where p(yn|sn) is the predicted possibility of sn belonging
to the ground-truth class yn. The training objective demands
that the model could discriminate different identities according
to the input points. Besides, other training objectives are
orthogonal to our work. 1) In this work, we intend to show
the strong potential ability of the 3D space and the proposed
OG-Net. We, therefore, only deploy the basic identification
loss for a fair comparison with other networks. 2) We deploy
the new-released circle loss [87] to show that our work can be
fused with better loss functions for further performance boost.
Relation to Existing Methods. The main difference with
existing GNN-based networks [78], [79] is three-fold: (1)
We extract the multi-scale local information via the proposed
Omni-scale Block, which can deal with the common scale
variants in 3D person data; (2) We split the XYZ position
information and RGB color information, and treat them dif-
ferently. RGB inputs are used to extract appearance features,
while the geometry position is to build the graph for local
representation learning; (3) Due to a large number of points in
3D person, we progressively reduce the number of nodes in the
graph, facilitating efficient training for 3D person data. On the
other hand, compared with PointNet [76] and PointNet++ [77],
the proposed OG-Net contains more cross-point functions, and
provides topology information, enriching the representation
power of the network. The graph could be built on the two
kinds of neighbor choices, i.e., position similarity or feature
similarity.

IV. EXPERIMENT

A. Implementation Details

OG-Net is trained with a mini-batch of 36. We deploy Adam
optimizer [88] with amsgrad [89] and the initial learning rate
is set to 8e−4. We gradually decrease the learning rate via the
cosine policy [90], and the model is trained for 1000 epochs.
To regularize the training, we transfer some traditional 2D
data augmentation methods, such as random scale and position
jittering, to the 3D space. For instance, position jittering is to
add zero-mean Gaussian noise to every point. Following the
setting in DGCNN [79], we set the neighbor number of KNN-
graph to k = 20. The dynamic graph convolution in OG-Net
can be any of the existing graph convolution operations, such
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as EdgeConv [79], SAGE [91] and GAT [92]. In practise, we
adopt EdgeConv [79]. Dropout with 0.7 drop probability is
used before the last linear classification layer. Since the basic
OG-Net is shallow, we do not use the short-cut connection. For
the person re-id task, the input image is resized to 128× 64,
and there are 8192 points with RGB color information. After
mapping to the 3D space, we uniformly sample half points to
train the OG-Net, and thus the number of input m in Figure 3
equals to 4096. We note that, for other competitive 2D CNN
methods, we still follow the common setting, and the 2D image
input is resized to 256×128 [40], [61] for a fair comparison.
OG-Net. The channel number of the four Omni-scale Module
in OG-Net is {64, 128, 256, 512}. The parameter number is
1.95M , which is much less than the prevailing CNN structure
ResNet-50 (24.56M ).
OG-Net-Small. To compare with lightweight models, we also
introduce OG-Net-Small with fewer channel numbers, i.e.,
{48, 96, 192, 384}. The parameter number of the model is
1.20M , which is less than both widely-adopted mobile models,
i.e., ShuffleNetV2 (1.78M ) and MobileNetV2 (4.16M ).
OG-Net-Deep. We build one deep OG-Net with more Omni-
scale Modules. The channel numbers are {48, 96, 96, 192,
192, 384, 384}. The short-cut connection is enabled. Further
discussion on short-cut connection is provided in Table V. The
parameter number is 2.47M .

The models are trained from scratch on 3D point clouds.
The whole training process costs about 2 days, with one
NVIDIA 2080Ti. During testing, we extract the 512-dim
feature before the classifier as the pedestrian representation.
The feature is L2-normalized. Given one query image, we
calculate the cosine similarity between the query feature and
the candidate features of gallery images. We sort gallery
images and return the ranking list according to the cosine
similarity. 3D Reconstruction Details. The pre-processing 3D
body reconstruction is modified from the 3D pose estimation
code in [18]. We modify the code and make our code publicly
available at 1. In particular, we obtain the 3D human body
mesh as [18], and get the XYZ coordinate for every body
vertex. It is worth noting that some XYZ vertex may share
the same XY coordinate after projecting to the pixels. It is
because some visible foreground overlaps the invisible parts.
For instance, the XY coordinates for the human back and chest
are usually shared after projection. Therefore, the denoising
process is necessary. We map the color of the RGB pixel to
the most close 3D vertex according to the XY coordinate.
Then we harness the Z coordinate (depth) to remove the wrong
mapping for invisible parts. In this way, only the vertex close
to the camera has the RGB color and it also ensures that one
RGB pixel is only mapped to one corresponding foreground
vertex. One output sample is shown in Figure 5(b).

The pixel of the background does not find any matched
human body vertex. We directly map such pixels to the XYZ
coordinates via setting the Z as the mean depth of all existing
body points. In this way, every RGB pixel has the XYZ
coordinate. We can obtain the output sample with the 2D
background as shown in Figure 5(c).

1https://github.com/layumi/hmr

B. Datasets

We verify the effectiveness of the proposed method on
four large-scale person re-id datasets, i.e., Market-1501 [7],
DukeMTMC-reID [9], [59], MSMT-17 [10], and CUHK03-
NP [35], [93].
Market-1501 [7] is collected in a university campus by 6
cameras, containing 12, 936 training images of 751 identities,
3, 368 query images and 19, 732 gallery images of the other
750 identities. There are no overlapping identities (classes)
between the training and test set. Every identity in the training
set has 17.2 photos on average. All images are automatically
detected by the DPM detector [94].
DukeMTMC-reID [9], [59] consists 16, 522 training images
of 702 identites, 2, 228 query images of the other 702 identities
and 17, 661 gallery images, which is mostly collected in winter
by eight high-resolution cameras. It is challenging in that most
pedestrians are in the similar clothes, and may be occluded by
cars or trees.
MSMT-17 [10] is one of the newly-released large-scale
datasets, including 126, 441 images collected in both indoor
and outdoor scenarios with 15 cameras. It contains 32, 621
images of 1, 041 identities for training, 11, 659 query images
with 82, 161 gallery images.
CUHK03-NP [93] is one of the early person re-identification
datasets. We follow the new protocol in [35] to split 767
identities as the training set, and the rest 700 identities are
deployed to verify the model. We utilize the pedestrian images
detected by DPM [94] for training and testing, which is more
close to real-world scenarios.
Evaluation Metrics. We report Rank-1 accuracy (R@1) and
mean average precision (mAP). Rank-i denotes the probability
of the true match in the top-i of the retrieval results, while AP
denotes the area under the Precision-Recall curve. The mean of
the average precision (mAP) for all query images reflects the
precision and recall rate of the retrieval performance. Besides,
we also provide the number of model parameters (#params).
Data Limitation. Before the experimental analysis, we would
like to illustrate several data limitations. It is mainly due to
lossy mapping in the 2D-to-3D process. Due to the restriction
of the 3D human model, we could not build the 3D model
for several body outliers, such as hair, bag, dress. However,
these outliers contain discriminative identity information. For
instance, as shown in Figure 5 (a) and (b), the 3D model based
on the visible part drops some part of hair and dress of the girl,
which is not ideal for representation learning. We think it could
be solved via the depth estimation devices, such as Kinect [95],
or more sophisticated human models in the future. In this
paper, we do not solve the 3D human reconstruction problem,
but focus on the person re-identification task. Therefore, as a
trade-off, we still introduce the 2D background, and project
the corresponding pixel to the XY plane (see Figure 5 (c)).

C. Quantitative Results

Comparisons to the 2D Space. We compare the results on
three kinds of inputs, i.e., 2D input, 3D Visible Part and 3D
Visible Part with 2D Background. For a fair comparison, the
grid of the 2D input is also transformed to the point cloud

https://github.com/layumi/hmr
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Fig. 5. (a,b) Visualization of lossy compression in the 2D-to-3D mapping,
which drops the body outliers, e.g., hair and dress. (c) We still introduce the
2D background to 3D space.

TABLE I
ABLATION STUDY OF DIFFERENT INPUTS ON MARKET-1501,

DUKEMTMC-REID AND CUHK03-NP. †: FOR A FAIR COMPARISON, THE
MODEL IS TRAINED ON THE TRADITIONAL 2D IMAGE INPUTS WITH

EXTRA 3D COORDINATES (x,y,0).

Inputs Market-1501 DukeMTMC-reID CUHK03-NP
R@1 mAP R@1 mAP R@1 mAP

3D Visible Part 77.64 54.52 59.52 37.25 42.79 38.29

2D Image† 85.72 67.28 75.49 55.98 40.14 36.33

3D Visible Part 86.79 67.92 77.33 57.74 43.07 38.06+ 2D Background

format as (x,y,0), while z is set to 0. We train OG-Net on
three kinds of input data with the same hyper-parameters. As
shown in Table I, we observe that the retrieval result of the
pure 3D Visible Part input is inferior to that of 2D Image.
As discussed in Section IV-B, we speculate that it is due to
the lossy 2D-to-3D mapping, which drops several discrim-
inative parts, such as hair, dress, and carrying. In contrast,
the 3D Visible Part + 2D Background has achieved superior
performance 86.79% Rank@1 and 67.92% mAP to the result
of 2D Image (85.72% Rank@1 and 67.28% mAP), which
shows that the 3D position information is complementary to
2D color information. Similar results also can be observed on
the DukeMTMC-reID dataset and the CUHK03-NP dataset.
The 3D information yields consistent accuracy improvements,
i.e., +1.84% Rank-1 and +1.76% mAP on DukeMTMC-reID,
and +2.93% Rank-1 and +1.73% mAP on CUHK03-NP.

We add one experiment on CUHK03-NP and find that Only
3D Visible Part also works well. We notice that, except for
the loss in 2D to 3D conversion, the dataset bias is another
important reason. For instance, some identities of Market-
1501 only appear in several cameras with the playground
background. In this case, 2D background biases are shortcut to
recognize one people. The model usually leans to over-fit the
2D background shortcuts and achieves a high performance. To
minimize the background bias, we add the ablation study on
CUHK03-NP. The CUHK03-NP is collected in the subway
station, and the 2D background is almost same (with white
wall). Therefore, the background bias plays a limited role.
We could observe that the 3D Visible Part can achieve similar
Rank@1 and mAP with the 3D Visible Part + 2D Background
on CUHK03-NP, surpassing the result on 2D image.
Person Re-id Performance. We compare the proposed
method with three groups of competitive methods, i.e., prevail-

ing 2D CNN models, light-weight CNN models, and popular
point classification models. We note that the model pre-trained
on the large-scale datasets, e.g., ImageNet [99], could yield the
performance boost. For a fair comparison, models are trained
from scratch with the same optimization objective, i.e., the
cross-entropy loss. Since the proposed method is orthogonal
to different metric learning losses, we also run experiments
with the prevailing circle loss [87]. As shown in Table II, we
can make the following observations:

(1) OG-Net has achieved competitive results of 69.02%
mAP, 57.92% mAP, 21.57% mAP, and 39.28% mAP on
four large-scale person re-id benchmarks with limited training
parameters 1.95M . The mobile OG-Net-Small of less channel
width also achieves a close result only with the cross-entropy
loss.

(2) Comparing with the point-based methods, such as Point-
Net++ [77] and DGCNN [79], both OG-Net and OG-Net-
Small have surpassed this line of works by a clear margin,
which validates the effectiveness of the proposed Omni-scale
module in capturing multi-scale neighbor information on point
clouds.

(3) Comparing with light-weight 2D CNN models, i.e.,
ShuffleNetV2 [96] and MobileNetV2 [97], OG-Net-Small
has achieved competitive performance with fewer parameters
(1.20M ).

(4) We apply the same setting to train the model with
Circle loss. The strong supervision mechanism of Circle loss
sometime compromises the training process. The training
process is quite challenging, especially when the class number
largely increases in the MSMT-17 dataset. We observe that the
proposed model is shallow and relatively easy to converge, so
Circle loss generally works well with the proposed structure,
and yields performance boost.

(5) Comparing with prevailing 2D CNN models, i.e.,
ResNet-50 [84] and DenseNet-121 [98], the proposed OG-
Net surpasses these models. Furthermore, OG-Net-Deep with
deeper structure has achieved better Rank@1 and mAP ac-
curacy. Besides, we also observe that OG-Net is more robust
than 2D CNNs, when facing the unseen data. We will discuss
this aspect in the following section.
Transferring to Unseen Datasets. To verify the scalability
of OG-Net, we train the model on dataset A and directly test
the model on dataset B (with no adaptation), which is close
to the real-world deployment. We denote the direct transfer
learning protocol as A → B. Three groups of related works
are considered. We observe that the modern CNN models are
typically over-parameterized, which is prone to over-fit the
training dataset. As shown in Table III, both ResNet-50 and
DenseNet-121 do not perform well given more parameters.
The 3D point cloud-based methods are competitive to the
conventional 2D methods. It is worth noting that the proposed
OG-Net has outperformed the point-based methods as well as
prevailing 2D networks. The results suggest that the proposed
method has the potential to adapt one new re-id dataset of
unseen environments.
Comparison with Existing Methods. Some existing works
[45], [46], [49], [53] harness large backbone models and en-
large input sizes to mine more detailed information, while the
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TABLE II
WE MAINLY COMPARE THREE GROUPS OF MODELS TRAINED FROM SCRATCH ON FOUR LARGE-SCALE PERSON RE-ID DATASETS, i.e., MARKET-1501 [7],

DUKEMTMC-REID [9], [59], MSMT-17 [10] AND CUHK03-NP [35], [93]. WE REPORT RANK1(%), MAP(%) AND THE NUMBER OF MODEL
PARAMTERS (M). THE FIRST GROUP CONTAINS THE POINT-BASED METHODS THAT WE RE-IMPLEMENTED. THE SECOND GROUP CONTAINS THE

LIGHTWEIGHT CNN MODELS. THE THIRD GROUP CONTAINS PREVAILING 2D CNN MODELS WITH MORE PARAMETERS.

Method Input Loss #params(M) Market-1501 DukeMTMC-reID MSMT-17 CUHK03-NP
Type Function R@1 mAP R@1 mAP R@1 mAP R@1 mAP

DGCNN [79] point clouds CE 1.37 28.89 13.33 29.17 15.16 2.84 1.19 3.4 3.6
PointNet++ (SSG) [77] point clouds CE 1.59 61.79 37.89 55.70 35.16 22.94 9.61 14.57 13.97
PointNet++ (MSG) [77] point clouds CE 1.87 72.51 47.21 60.23 39.36 28.99 12.52 21.14 19.79
PointNet++ (MSG) [77] point clouds CE + Circle 1.87 76.04 52.44 64.23 44.19 22.57 9.55 21.36 19.86
ShuffleNetV2 [96] images CE 1.78 79.75 56.80 68.81 48.09 36.80 15.70 25.29 22.90
ShuffleNetV2 [96] images CE + Circle 1.78 79.78 58.50 69.34 49.04 33.16 14.00 25.43 23.56
MobileNetV2 [97] images CE 4.16 81.95 59.28 71.05 50.45 42.53 18.62 29.57 26.45
MobileNetV2 [97] images CE + Circle 4.16 79.39 57.40 69.70 49.75 29.19 11.79 29.14 25.46
OG-Net-Small point clouds CE 1.20 86.79 67.92 77.33 57.74 42.44 20.31 43.07 38.06
OG-Net-Small point clouds CE + Circle 1.20 87.38 70.48 77.15 58.51 43.84 21.79 46.43 41.79
OG-Net point clouds CE 1.95 86.82 69.02 76.53 57.92 44.27 21.57 44.00 39.28
OG-Net point clouds CE + Circle 1.95 87.80 70.56 78.37 60.07 45.28 22.81 48.29 43.73
DenseNet-121 [98] images CE 8.50 83.14 63.36 73.16 55.08 46.32 21.50 33.64 29.45
DenseNet-121 [98] images CE + Circle 8.50 84.26 65.79 74.28 55.75 41.06 18.46 36.21 33.52
ResNet-50 [84] images CE 24.56 84.59 65.31 73.20 55.96 46.88 22.25 35.43 32.09
ResNet-50 [84] images CE + Circle 24.56 85.27 67.55 74.15 56.83 37.35 16.98 37.29 34.12
OG-Net-Deep point clouds CE 2.47 88.36 71.27 76.97 59.23 44.56 21.41 45.71 41.15
OG-Net-Deep point clouds CE+Circle 2.47 88.81 72.91 78.50 60.70 47.32 24.07 49.43 45.71

proposed method intends to provide one parameter-efficient
choice for re-id task. We note that the proposed OG-Net is
trained from scratch, while most existing method is based on
the ImageNet pretrained backbone. As shown in Table VI, the
proposed method is still competitive with limited parameters
and small input shape. In particular, the proposed method
even achieves the close performance with the searched ar-
chitectures [55], [100] with less parameters. We hope that
the proposed method could provide one parameter-efficient
alternative choice between the parameter and performance.

D. Qualitative Results

Visualization of Retrieval Results. As shown in Figure 6,
we provide the original query, the corresponding 3D query and
the top-5 retrieved candidates. Two different cases are studied.
One is the typical case that the 3D human reconstruction is
relatively good. OG-Net can successfully retrieve the true-
matches of different viewpoints (see Figure 6 (a)). On the
other hand, we also show the challenging case, including
the partially detected query and occlusion. Thanks to the
prior knowledge of the human geometry structure, OG-Net
can still provide reasonable retrieval results with large scale
variants (see Figure 6 (b)). It also verifies the robustness of
the proposed approach.

V. FURTHER ANALYSIS AND DISCUSSIONS

Effect of Different Components. In this section, we intend
to study the mechanism of the Omni-scale Module. First,
we compare the OG-Net without KNN Graph, i.e., k = 1.
For a fair comparison, we apply one linear layer to replace
the dynamic graph convolution. As shown in the second and
the third column of Table IV, the performance of OG-Net
without leveraging the KNN neighbor information drops from
69.33% mAP to 65.50% mAP. The result suggests that the
dynamic graph captures effective local information, which
could not be replaced by pre-point function, e.g., linear layer.

On the other hand, if we include too many neighbors, e.g.,
k = 64, the model loses the discriminative feature of local
patterns, thus compromising the retrieval performance as well.
To validate this points, we evaluate the sensitivity analysis
on k = {4, 8, 16, 32, 64} (see Figure 7). The observation
is consistent with the conventional k nearest neighbor algo-
rithms [108] on the neighbor number.

Next, we intend to verify the effectiveness of the last non-
local graph. The last graph is built on the k-nearest neighbor
of the appearance feature. (In practice, we append the 3-
channel position to the appearance feature for building the
graph, which prevents duplicate nodes with the same node
attribute in the graph.) For a fair comparison, we replace the
last non-local graph with the graph based on 3D position only.
As shown in the third and the fourth column of Table IV, OG-
Net with the last non-local block has surpassed the model with
position graph +1.15% mAP, indicating that the last non-local
graph provides effective long-distance attention.

Finally, we study two alternative components, i.e., SE block
and short-cut connection. By default, Omni-scale Module
deploys SE block but does not add the short-cut connection.
As shown in the first and second column in Table IV, we can
observe that SE Block improves about +0.85% mAP from
64.65% to 65.50%. On the other hand, the short-cut connec-
tions do not provide significant improvement or performance
drop on OG-Net, since OG-Net is relatively shallow with four
Omni-scale blocks. As shown in Table V, we deploy the OG-
Net-Deep to further validate this point. The observation is
consistent with ResNet [84]. The short-cut connection works
well on the relatively deep network structure. The performance
is improved from 68.49% mAP to 72.91% mAP, and the short-
cut connections help the model optimization.
Sensitivity Analysis on the Point Density. Our model is
trained with 50% points, i.e., 4096, and thus the best per-
formance is achieved with 50% points remaining. In practice,
different depth estimation devices may provide different scan
point density. To verify the robustness of the proposed OG-
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TABLE III
TRANSFERRING TO UNSEEN DATASETS. HERE WE DIRECTLY DEPLOY THE MODEL TRAINED ON THE DATASET A TO THE UNSEEN DATASET B. WE

DENOTE THIS SETTING AS A→ B, WHICH COULD REFLECT THE SCALABILITY OF THE MODEL IN DIFFERENT SCENARIOS. WE OBSERVE THAT OGNET IS
GENERALLY SUPERIOR TO THE RESNET-50 AND DENSENET-121 AS WELL AS LIGHTWEIGHT MODELS, SUCH AS SHUFFLENETV2 AND MOBILENETV2.

Method Input Loss Market→Duke Duke→Market Market→MSMT MSMT→Market Duke→MSMT MSMT→Duke
Type Function R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP

DGCNN [79] point clouds CE 7.4 2.9 13.4 4.4 1.4 0.4 10.0 3.7 1.8 0.5 7.3 2.7
PointNet++ (SSG) [77] point clouds CE 18.6 8.4 28.8 11.3 3.9 1.2 32.4 13.3 5.5 1.7 29.0 15.4
PointNet++ (MSG) [77] point clouds CE 23.2 11.0 32.8 12.6 5.0 1.5 30.6 12.9 6.5 1.9 24.3 12.4
PointNet++ (MSG) [77] point clouds CE + Circle 25.4 12.2 35.1 14.5 5.4 1.7 35.6 15.1 6.4 1.9 31.4 17.3
ShuffleNetV2 [96] images CE 17.2 7.2 36.4 13.9 2.8 0.8 36.5 14.1 5.8 1.5 29.3 15.3
ShuffleNetV2 [96] images CE + Circle 18.7 8.5 36.2 13.7 3.4 1.0 36.4 14.4 6.0 1.6 29.4 15.1
MobileNetV2 [97] images CE 16.7 7.1 34.3 12.4 3.2 0.9 35.9 14.2 5.5 1.4 30.6 15.4
MobileNetV2 [97] images CE +Circle 18.5 8.0 34.1 13.3 3.5 0.9 32.1 13.3 5.3 1.4 30.3 15.5
DenseNet-121 [98] images CE 11.7 5.0 32.7 11.6 2.9 0.8 34.2 13.0 5.3 1.5 27.8 13.6
DenseNet-121 [98] images CE + Circle 12.3 5.3 32.6 11.9 2.6 0.8 31.9 12.0 5.3 1.4 25.2 12.8
ResNet-50 [84] images CE 12.1 5.2 34.3 13.5 2.7 0.7 34.7 13.5 5.4 1.5 28.1 14.4
ResNet-50 [84] images CE + Circle 15.5 6.9 35.7 13.9 2.9 0.8 32.4 12.2 6.1 1.6 24.3 12.0
OG-Net point clouds CE 26.5 13.1 35.9 14.5 5.9 1.7 40.1 17.6 6.8 1.9 35.2 19.3
OG-Net point clouds CE + Circle 26.4 13.7 36.4 14.7 5.3 1.6 38.8 16.9 6.3 1.9 35.3 19.3

Fig. 6. Visualization of Retrieval Results. (a) Given one 3D query, we show the original 2D images and the top-5 retrieval results. (b) We also show the
challenging case, such as occlusion and the partially detected query. The green index indicates the true-matches, while the red index denotes the false-matches.

TABLE IV
EFFECTIVENESS OF DIFFERENT COMPONENTS. WE COMPARE THE

NETWORK VARIANTS, INCLUDING SQUEEZE-EXCITATION (SE), THE
USAGE OF KNN GRAPH AND THE LAST NON-LOCAL ATTENTION IN THE

MODEL.

Method Performance
with Squeeze-excitation? X X X
with KNN Graph? X X
with Last Non-local? X
Rank@1 83.35 84.38 86.43 87.38
mAP(%) 64.65 65.50 69.33 70.48

TABLE V
EFFECTIVENESS OF THE SHORT-CUT CONNECTION. WE OBSERVE A

SIMILAR RESULT WITH [84] THAT THE IMPROVEMENT FROM THE
SHORT-CUT CONNECTION IS NOT SIGNIFICANT ON THE “SHALLOW”

NETWORK, WHILE IT WORKS WELL ON THE RELATIVELY DEEP NETWORK
STRUCTURE.

Method Short-cut R@1 mAP
OG-Net × 86.82 69.02
OG-Net X 84.00 65.04
OG-Net-Deep × 86.28 68.49
OG-Net-Deep X 88.81 72.91

Fig. 7. Sensitivity analysis on the different number of neighbors k. We provide
the corresponding re-id performance on Market-1501 in terms of Rank@1(%)
and mAP(%).

Net on point density, we synthesize the data similar to that
in Figure 8 (left) and conduct the inference. When 25%
points remain, OG-Net still could arrive at 84.95% Rank@1
and 65.91% mAP. When 100% points are used, OG-Net
arrives at 84.77% Rank@1 and 66.14% mAP. It is because
too low/high density impacts the distribution of the k-nearest
neighbors, compromising the retrieval performance. Despite
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TABLE VI
THE RE-IDENTIFICATION PERFORMANCE ON MARKET-1501 [7] AND DUKEMTMC-REID [9], [59]. WE NOTE THAT THE PROPOSED OG-NET IS
TRAINED FROM SCRATCH, WHILE MOST EXISTING METHOD IS BASED ON THE IMAGENET PRETRAINED BACKBONE. THE PROPOSED METHOD IS

COMPETITIVE WITH LIMITED PARAMETERS AND SMALL INPUT SHAPE. WE HOPE THAT THE PROPOSED METHOD COULD PROVIDE ONE
PARAMETER-EFFICIENT ALTERNATIVE CHOICE BETWEEN THE PARAMETER AND PERFORMANCE. † : TRAINED WITH EXTRA DATA (SPREID [49] IS
TRAINED ON 10 RE-ID DATASETS TOGETHER). ∗ : THE MODEL DOES NOT HAVE PRE-TRAINNING ON IMAGENET, AND IS LEARNED FROM SCRATCH.

Method Backbone #params(M) Input Shape Market-1501 DukeMTMC-reID
R@1 mAP R@1 mAP

PSE [45] ResNet-50 + extra attention > 24.6 224× 224 87.7 69.0 79.8 62.0
PBR [50] Inception-V1 + CPM 7 + 3 160× 80 90.2 76.0 82.1 64.2
SPReID [49]† 2 × Inception-V3 > 48.0 748× 246 92.54 81.34 84.43 70.97
PCB + RPP [46] ResNet-50 + extra attention 27.2 384× 128 93.8 81.6 84.5 71.5
MagnifierNet [53] ResNet-50 + triple attentions 69.1 384× 192 95.8 89.6 90.0 80.7
AACN [101] Inception-V1 + GCN > 7 448× 192 85.90 66.87 76.85 59.25
DARTS∗ [54], [100] - 11.8 164× 64 88.3 69.7 79.5 61.3
Auto-ReID∗ [55] - 13.1 384× 128 90.7 74.6 - -
OG-Net-Small∗ - 1.20 4096 87.38 70.48 77.15 58.51
OG-Net∗ - 1.95 4096 87.80 70.56 78.37 60.07
OG-Net-Deep∗ - 2.47 4096 88.81 72.91 78.50 60.70

Fig. 8. Sensitivity analysis on the point density. (left) We visualize point
clouds with different proportion of the point number. (right) We provide the
corresponding re-id performance in terms of Rank@1(%) and mAP(%) against
the point number variants.

TABLE VII
FURTHER ANALYSIS ON THE IMPACT OF DIFFERENT LOSSES. THE

PROPOSED NETWORK CAN BE ACCOMPANIED WITH DIFFERENT
OPTIMIZATION OBJECTIVES. TO VERIFY THIS POINT, WE FURTHER TRAIN

THE OG-NET-SMALL MULTIPLE TIMES WITH WIDELY-USED LOSSES,
INCLUDING CONTRAST LOSS [4], TRIPLET LOSS [24], LIFTED

LOSS [102], CIRCLE LOSS [87], AND EVALUATE THE IMPACT OF THESE
LOSSES ON THE MARKET-1501 DATASET. CE DENOTES THE

CROSS-ENTROPY LOSS.

Method R@1 mAP
CE 86.79 67.92
CE + Lifted [102] 85.99 68.22
CE + Contrast [4] 86.61 68.89
CE + Triplet [24] 86.40 69.28
CE + Contrast + Triplet 86.58 69.72
CE + Circle [87] 87.38 70.48
CE + Triplet + Circle 87.20 70.88

the density changes, the relative performance drop is small.
The result verifies OG-Net is robust to different point density
(see Figure 8 (right)).
Different 3D Reconstruction Methods. We try other three
existing methods, including ROMP [109], PIFu [110] and
PIFuHD [111], to reconstruct the human (see Figure 9). 1)
ROMP is similar to hmr [18], which is based on the body
template from SMPL [113]. Therefore, the body outliers, such
as dress, hair and bags, are still missing. The modified code

TABLE VIII
CLASSIFICATION RESULTS ON MODELNET [103]. WE DO NOT FOCUS ON

THE POINT CLOUD CLASSIFICATION PROBLEM, BUT SHOW THE
FEASIBILITY OF THE PROPOSED OG-NET. † : WE PROVIDE RESULTS

BASED ON OUR RE-IMPLEMENTATION, WHICH IS SLIGHTLY HIGHER THAN
THE REPORTED RESULT IN [77].

Method #params(M) Mean-class Overall
Accuracy Accuracy

3DShapeNets [103] - 77.3 84.7
VoxNet [104] - 83.0 85.9
PointNet [76] 3.50 86.0 89.2
SpecGCN [105] 2.05 - 91.5
PointNet++(SSG)† [77] 1.62 89.5 92.0
PCNN by Ext [106] 1.40 - 92.2
PointNet++(MSG)† [77] 1.89 90.1 92.7
DGCNN [79] 1.81 90.2 92.9
Point Cloud Transformer [107] 2.88 - 93.2
OG-Net-Small 1.22 90.5 93.3

Fig. 9. Visualization of 3D body reconstruction via other three methods,
including ROMP [109], PIFu [110] and PIFuHD [111]. We observe that
1) ROMP is based on the body template and close to the hmr [18]. The
reconstruction performance is relatively robust but the reconstructed human
still misses body outliers, such as dress, hair and bags. 2) The reconstruction
body of both PIFu and PIFuHD lack body parts and are not robust to the re-id
images. In the future, we think that unsupervised fine-tuning via 2D projection
is possible to solve the domain gap [112]. On the other hand, combining these
methods, such as PIFu and hmr, is one potential way to make the garment
mapping more reliable and accurate. The discussion on better 3D mapping is
out of the scope of this paper and we leave these reconstruction choices to
the future work.

is available at 2. We modify the code and add the color
mapping. We train the OG-Net-Small baseline on the data
generated by ROMP, and achieve 82.42% R@1 and 62.68%
mAP on Market-1501, 75.85% R@1 and 56.50% mAP on
DukeMTMC-reID. We observe that the performance is slightly
lower than the model trained on the data generated by hmr. It
is because hmr is trained with in-the-wild images with better

2https://github.com/layumi/ROMP

https://github.com/layumi/ROMP
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scalability to low-resolution re-id images. 2) PIFu is from 3.
The input is the RGB image with the foreground mask. We
leverage the human parsing code to obtain the mask first via
the state-of-the-art model on [114] 4. Then we find that some
body parts are missing. Therefore, we skip this method. 3)
PIFuHD is from 5 . However, we find that the trained model
is not scalable to low-resolution images (in issue 6 ), which is
common in re-id datasets. Therefore, we first use the super-
resolution tool ESRGAN [115] to enlarge the image, and then
go through the pipeline. The result is as shown in Figure 9(c),
which is not satisfied. Similar to drawbacks on PIFu [110],
some body parts are missing. Therefore, we skip this method.
As a result, we observe that the default mapping method used
in this work, i.e., hmr [18], is simple yet reliable to re-id
datasets. In the future, we think that unsupervised fine-tuning
via 2D projection is possible to solve the domain gap [112].
On the other hand, combining these methods, such as PIFu and
hmr, is one potential way to make the garment mapping more
reliable and accurate. The discussion on better 3D mapping is
out of the scope of this paper and we leave these reconstruction
choices to the future work.
Different Loss Functions. The proposed network is compat-
ible with existing optimization objectives, including Contrast
Loss [4], Triplet Loss [24], Lifted Loss [102], Circle Loss
[87]. We apply OGNet-Small to evaluate the impact of these
losses on the Market-1501 dataset. We report more results in
Table VII. It shows that different metric learning losses can
be combined with the basic cross-entropy loss (CE) to further
improve the performance of learned models.
Evaluation of Point Cloud Classification Task. We also
evaluate the proposed OG-Net on the traditional point cloud
classification benchmark, i.e., ModelNet [103]. The ModelNet
dataset contains 12,311 meshed CAD models of 40 categories.
Following the train-test split in [79], 9,843 models are used
for training, while the rest 2,468 models are for evaluation.
Note that the ModelNet dataset does not provide RGB
information. To verify the effectiveness of OG-Net, we du-
plicate the xyz input as the appearance input to train OG-Net.
Following other competitive approaches [76], [77], [79], the
number of input points is fixed as 1024. As shown in Table
VIII, we compare with prevailing models in terms of mean-
class accuracy and overall accuracy. Although the proposed
method is not designed for cloud point classification task,
OG-Net-Small has achieved a competitive result of 90.5%
mean-class accuracy and 93.3% overall accuracy with 1.22M
parameters.

VI. CONCLUSION

In this work, we provide an early attempt to learn the
pedestrian representation in the 3D space, easing the part
matching on 2D images. The 3D assumption is aligned with
the human visual system of associating the 2D appearance
with the 3D geometry structure. Different from existing CNN-
based approaches, the proposed Omni-scale Graph Network

3https://github.com/shunsukesaito/PIFu
4https://github.com/PeikeLi/Self-Correction-Human-Parsing
5https://github.com/facebookresearch/pifuhd
6https://github.com/facebookresearch/pifuhd/issues/60

(OG-Net) takes the advantage of 3D prior knowledge and
2D appearance information in an end-to-end manner, starting
from 3D human point clouds. Given 3D points and the
nearest neighbour graph, the basic Omni-scale module can
aggregate different-scale neighbor information in the topology,
enriching the representation ability. This allows the proposed
OG-Net efficiently learns discriminative feature via limited
network parameters. Extensive experiments suggest that OG-
Net exploits the complementary information of 3D geometry
information and the 2D appearance, yielding the competitive
performance on four person re-id benchmarks. The 3D prior
knowledge also benefits the model generalizability on the
unseen pedestrian data, which is close to the application in
real-world scenarios.

The proposed OG-Net still has room for futher improve-
ments. In experiment, the proposed method learns the rep-
resentation from the generated 3D point clouds mapping
from 2D images. Although it works, the original 2D images
are usually resized and compressed in most person re-id
datasets, compromising the body shape, e.g., body height.
We may consider collecting a new 3D dataset in the future.
Furthermore, the proposed method has the potential to many
related fields. Similar graph-based models can be employed to
other potential fields, e.g., objects with a rigid structure like
vehicles [116]–[118] and products [119], [120]. Besides, the
efficiency of the 3D mapping process also could be further
improved. The 3D mapping time is about 0.008 seconds per
image on one Nvidia 2080Ti. The whole Market-1501 dataset
can be prepared in about 4 minutes (without consideration of
the saving time). The efficiency of 3D mapping may be out of
the scope of our paper. Therefore, to our knowledge, we just
provide several naı̈ve solutions to improve the efficiency. 1).
It is necessary to choose one better backbone. Actually, some
recent works also show the improvement on both performance
and efficiency by harnessing HRNet [109] or Transformer-
based models [121]. In the future, the light-weighted variants,
e.g., Lite-HRNet [122] and Swin Transformer [123], could
be a strong and efficient alternative. 2). In the real-world
scenarios, we may consider the distributed calculation, like
federated learning [124], to release the burden of the server.
For instance, the 3D mapping can be further bundled with the
pedestrian detection [125] on the edge devices.
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