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SPG-VTON: Semantic Prediction Guidance
for Multi-pose Virtual Try-on

Bingwen Hu, Ping Liu, Member, IEEE, Zhedong Zheng, and Mingwu Ren

Abstract—Image-based virtual try-on is challenging in fitting
a target in-shop clothes onto a reference person under diverse
human poses. Previous works focus on preserving clothing
details (e.g., texture, logos, patterns ) when transferring desired
clothes onto a target person under a fixed pose. However, the
performances of existing methods significantly dropped when
extending existing methods to multi-pose virtual try-on. In this
paper, we propose an end-to-end Semantic Prediction Guidance
multi-pose Virtual Try-On Network (SPG-VTON), which can
fit the desired clothing into a reference person under arbitrary
poses. Specifically, SPG-VTON is composed of three sub-modules.
First, a Semantic Prediction Module (SPM) generates the desired
semantic map. The predicted semantic map provides more
abundant guidance to locate the desired clothing region and
produce a coarse try-on image. Second, a Clothes Warping
Module (CWM) warps in-shop clothes to the desired shape
according to the predicted semantic map and the desired pose.
Specifically, we introduce a conductible cycle consistency loss
to alleviate the misalignment in the clothing warping process.
Third, a Try-on Synthesis Module (TSM) combines the coarse
result and the warped clothes to generate the final virtual try-
on image, preserving details of the desired clothes and under
the desired pose. In addition, we introduce a face identity loss
to refine the facial appearance and maintain the identity of the
final virtual try-on result at the same time. We evaluate the
proposed method on the most massive multi-pose dataset (MPV)
and the DeepFashion dataset. The qualitative and quantitative
experiments show that SPG-VTON is superior to the state-of-the-
art methods and is robust to data noise, including background
and accessory changes, i.e., hats and handbags, showing good
scalability to the real-world scenario.

Index Terms—YVirtual Try-on, Multi-pose, Semantic Prediction,
End-to-end

I. INTRODUCTION

Image-based virtual try-on systems aim at fitting a target in-
shop clothes into a reference person, which is a branch of the
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Fig. 1. Visual results of multi-pose virtual try-on by the proposed method.

field of image synthesis. Driven by the rapid development of
image synthesis [ |]-[4], the topic of image-based virtual try-on
has attracted more interest and has vast potential applications
in virtual reality and human-computer interaction. Despite
significant progress in previous works [5]-[16] for virtual try-
on, the multi-pose virtual try-on has not been well studied.
Concretely, for a given person image, the virtual fitting system
could generate realistic images of this person in different
poses while preserving the desired clothes’ appearance. The
multi-pose virtual fitting system is more in line with practical
application scenarios. The existing works on multi-pose virtual
fitting tasks are insufficient, and there are problems such
as mismatch between the target clothes and the given pose,
distortion of the clothes region in the try-on result, and loss
of details that need to be further explored. To solve these
problems, we propose a method to build a robust multi-pose
virtual try-on system based on 2D images (as shown in Fig. 1).

Most of the previous works [5], [6], [8], [9], [11], [12] focus
on swapping clothes in a fixed pose without considering the
body’s changing posture. However, in realistic scenarios, users
would like to intuitively see the results of wearing the given
clothes in different poses. Recently, MG-VTON [7] made the
first attempt at a virtual fitting system guided by multiple
poses. MG-VTON is a multi-stage framework that includes
a human parsing network, a warping generative adversarial
network, and a refinement render network. Although MG-
VTON takes a significant stride in virtual fitting system
construction under arbitrary posture, it still has some limi-
tations that restricts its further applications: (1) An end-to-
end mechanism is missing in the MG-VTON training process.
In MG-VTON, modules designed with different purposes are
utilized to generate the desired clothing deformation under
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different postures, a coarse result, and a refined result step
by step. Each module/step is optimized independently and
cannot collaborate with others bidirectionally, which might
cause a sub-optimal result. (2) In the inference process, MG-
VTON requires multiple steps to generate the final results,
which might cost more human interventions and cause error
accumulations. (3) MG-VTON only focuses on manipulation
of body parts while ignoring the other parts, for example,
faces. The absence of a mechanism to process non-body
parts makes their generated results unpleasant in nature and
appearance.

To address the limitations mentioned above, we present
a new multi-pose virtual try-on network that can work in
an end-to-end manner. To make our method able to handle
variations introduced by arbitrary postures, we propose to
introduce semantic prior knowledge into our network, mak-
ing the learning process receive additional guidance from
semantic prior knowledge. We name our designed method
Semantic Prediction Guidance-Virtual Try On system, a.k.a.,
SPG-VTON. As shown in Fig. 2, the SPG-VTON consists
of three major modules, including the Semantic Prediction
Module (SPM), the Clothes Warping Module (CWM), and
the Try-on Synthesis Module (TSM). The purpose of the
designed SPM is to predict the semantic map for target images,
which is utilized to provide additional spatial and semantic
guidance during the learning process. Given the semantic map
for source images, the in-shop clothes, the target pose, and the
predicted semantic map for the target image, a coarse result
and corresponding predicted clothing mask are generated by
the SPM. The CWM is introduced to warp the in-shop clothes
to the desired shape according to the semantic map predicted
by the SPM. To alleviate the misalignment between the desired
in-shop clothes and the target human posture, we propose
utilizing a conductible cycle-consistency constraint in our
network learning. Given the target pose, the coarse result
generated by the SPM, and the warped clothes generated by
the CWM, the TSM generates the final try-on image with high
precision and realism. Furthermore, to make the generated
results photo-realistic, we introduce a global discriminator and
a local discriminator to control the global shape and local
texture of the generated results; to make the generated image
visually pleasant, we utilize a face identity constraint to keep
the synthesis face region realistic.

Extensive experiments on the MPV dataset [7] show that
our method achieves superior performance to several existing
approaches [5]-[7]. It is worth noting that what we studied
in this work is currently the largest dataset for the multi-
pose virtual try-on task. Since all images are collected from
the internet, the dataset inevitably contains unexpected label
noise”, such as misalignment and different backgrounds. The
noise existing in web collected data inevitably compromises
the training process in the dataset, making it challenging to
train a robust virtual try-on system based on these noisy
images. The proposed method is robust to noisy data through
the mutual cooperation of the introduced various losses and the
end-to-end model frameworks. The specific mechanism can be
summarized as follows: (1) In the training process, the end-to-
end approach allows the modules to be integrated, dynamically

adjusts the network parameters of each module, and encour-
ages the model to generate better results. Meanwhile, the end-
to-end generation could , in turn, correct inaccurate predicted
semantic maps to guide the model with more accurate semantic
information. (2) This paper introduces global-oriented losses,
i.e., reconstruction loss and perceptual loss, to make the
generated result consistent with the ground-truth image at both
the pixel level and perceptual level to resist the interference
of noisy data. In addition, this paper also introduces local-
oriented losses, i.e., the conductible cycle consistency loss and
the face identity loss, to ensure that the clothing area and
facial area of the generated image retain more characteristic
information of face regions. Moreover, introducing global and
local adversarial loss can also ensure that the generated image
is close to the real image and prevent the negative impacts
from noisy input. (3) One way of compression or denoising in
prior works [17]-[19] is to extract kernel information through
latent representation learning. The latent representation is
usually much smaller in dimension than the original input data,
making it easier to control and analyze. In this work, the role
of prior semantic information (human semantic map) is similar
to that of latent representation. Specifically, the first process
of SPM predicts the semantic map of the target image, and the
second process of SPM predicts the mask of the target clothing
area. In this case, SPG-VTON can accurately locate the target
clothing area by combining the semantic map of the target
image and the target clothing mask, which could prevent the
generation of background noise. Benefiting from our designed
method and exploration, we experimentally observe that the
proposed method is still robust to such training noise, and
demonstrates good scalability to unseen test images during
inference. The main contributions of the proposed method are
summarized as follows:

o We propose an end-to-end image-based multi-pose virtual
try-on system called SPG-VTON, which can synthesize
high-quality try-on images. Compared to previous works,
the proposed method could fit the desired clothing into a
reference person under arbitrary poses while preserving
details of the desired clothes.

« We conduct extensive explorations and locate effective
strategies for learning a robust and accurate virtual try-
on network for multi-pose inputs. The novelty points of
the proposed method can be summarized as follows: (1)
We introduce a conductible cyclic consistency loss to al-
leviate the misalignment in the clothing warping process.
Concretely, the conductible cycle consistency loss could
match the shape of the deformed desired clothes with
the target person image and maintain the characteristics
of the desired clothes in the generated try-on image. (2)
We introduce both global and local adversarial losses
and face identity loss to refine the facial appearance and
maintain the identity of the final virtual try-on result at
the same time. Specifically, the role of global and local
adversarial losses encourages the generated image to be
close to the real image, whether it is the whole image
or part of the whole image. Moreover, the role of face
identity loss enforces that the identity of the generated
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image remains unchanged. (3) We apply an end-to-end
training strategy to boost the proposed method to generate
accurate semantic maps and improve the virtual try-on
results under pose transfer. Additionally, the end-to-end
manner can effectively reduce human interventions and
avoid error accumulations in the inference process.

o The qualitative and quantitative experiments on two pre-
vailing datasets, i.e., MPV [7] and DeepFashion [20],
demonstrate the advantages of our method in virtual
try-on, especially when given different postures with
heavy variations. The ablation studies also show that the
proposed method has good scalability to unseen test data
and is robust to label noise in the training set.

II. RELATED WORK
A. Pose-Guided Person Image Generation

Pose-guided person image generation is a practical yet chal-
lenging topic. In past years, Generative Adversarial Networks
(GANs) [21] and various extensions [1]-[4], [22]-[26] have
made significant progress in this research direction. However,
due to the high variations existing in human poses and human
appearance, these previous works [1]-[4], [22], [24], [25] still
suffer from their limited scalability in pose-guided person
image generation. To generate high-quality person images in
arbitrary poses, Ma et al. [27] proposed a two-stage gen-
eration framework. [27] first uses the U-Net-like network
to produce initial images with blur and then applies the
adversarial method to refine coarse results. To further improve
generated image qualities, Ma et al. proposes a disentangling
strategy [28], encoding a given person image into three factors:
pose, foreground, and background, which are decoded back to
an image space after editing a specific factor. It is believed that
manipulating those disentangled factors rather than treating
them as a whole can benefit generation quality improvement.
Zheng et al. disentangles the input pedestrian images into
structure and appearance embedding, and can easily exchanges
codes to generate source person with target clothes [29]. [30]
also adopts the disentanglement strategy. Specifically, they use
a conditional U-Net architecture that combines the appearance
decomposed from a variational autoencoder [3 1] with a given
shape to reconstruct a new image. Methods such as [27], [28],
[30] focus on the global pose deformation between the source
image and the target image, while ignoring the /ocal structure
of generated images. Therefore these methods have difficulty
maintaining the local details of the original image, especially
when there is a large pose discrepancy between the source
image and the target image. Recently, some works [9], [32]-
[35] have focused on the spatial deformation relationship in
pose changes. [32] uses an inpainting network to estimate the
coordinates in source images for elements of the body surface.
Def-GAN [33] designs deformable skip connections in the
generator to address the pixel-to-pixel misalignment caused by
the pose differences. [9], [34], [35] employ a specific module
to predict the human semantic map after the pose changes
to align the source image with the target pose to enforce the
module to generate high-quality images. In this work, we also
introduce a semantic map prediction model to produce the

semantic map under a given pose. The difference is that when
our method predicts the semantic map under a given pose,
the clothing region of the semantic map changes with the
given clothes. In contrast, the works mentioned above for pose-
guided person image generation do not involve this aspect.

B. Virtual Try-on

The image-based virtual try-on task is a particular case of
person generation. The core difference is that this task aims to
generate a person image while the clothes region is changed
to the desired clothes. The Thin-Plate Spline (TPS) [36] trans-
formation is a typical 2-D interpolation model that performs
geometric deformation between images by controlling a set of
registration points between two images. VITON [5] directly
applies shape context-based matching [37] to estimate TPS
transformation parameters between the mask of desired clothes
and the clothes mask of the target person. Furthermore, CP-
VTON [6] uses a learnable method to estimate the TPS
transformation parameters via convolutional neural networks
dynamically. In the image-based virtual try-on task, using
convolutional neural networks to learn the TPS transformation
parameters between the desired clothes and the given human
image is verified as a practical approach. The pioneering
works [6]-[8], [10]-[12] mainly use two ways to estimate
TPS transformation parameters. One way [6], [8], [10], is to
use the geometric matching network [38] to estimate the TPS
transformation parameters between the target clothing and the
person representation (embedding the body shape, the target
pose and reserved regions of the source image). In addition,
these methods directly use the pixel-wise £;-norm between
warped clothes and the clothing area extracted from the
target image to train the geometric matching network. Another
way [7], [11], [12] is to apply the geometric matching network
to estimate the TPS transformation parameters between the
clothing or clothing mask and the clothing area mask or the
body shape obtained from the predicted semantic map. Similar
to the first way, these methods also use the pixel-wise L;-
norm between warped clothes and the clothes region extracted
from the target person image to train the geometric matching
network.

Although the methods mentioned above can produce high-
quality fitting images to a certain extent, there is still a large
gap between the generated images and natural images. For
example, VITON [5] and CP-VTON [06] are state-of-the-art
virtual try-on approaches that adopt a multi-stage coarse-to-
fine strategy to tackle the virtual try-on task of a single pose.
However, neither of these two methods includes changes in
human pose. In this case, these methods cannot avoid distor-
tion and misalignment in the process of clothing deformation
(such as the distortion and misalignment of texture, patterns,
logos, and embroidery).

III. METHOD

We propose a novel image-based virtual try-on network
named SPG-VTON, which focuses on multi-pose virtual try-
on. Specifically, for a given source person image, a target in-
shop clothes, and a target pose, the proposed method aims to
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Fig. 2. The overview of our SPG-VTON. (a) The Semantic Prediction Model (SPM) consists of two processes. One is the target semantic map prediction,
and the other one is the target clothes mask prediction and coarse result generation. (b) The Clothes Warping Module (CWM) warps the in-shop clothes to the
shape of the clothes region of the target image, according to the Thin-Plate Spline (TPS) transformation parameters estimated between the mask of in-shop
clothes and the predicted clothes mask. The CWM is composed of two Geometric Matching Modules (GMM) [38]. In specific, the GMM 1 deforms the mask
of the in-shop clothes to the same shape with the predicted clothes mask, and then the GMM 2 is used to convert the warped clothes mask back to the mask
of the desired clothes. Note that we do not directly apply the £1-norm between the warped clothes mask and the predicted clothes, and £1-norm between the
reconstructed clothes and the original clothes mask to train GMM 1 and GMM 2. By contrary, we introduce a conductible cycle consistency loss to indirectly
constrain GMM 1 and GMM 2, respectively (see III-C for details). (¢c) The Try-on Synthesis Module (TSM) combines the incomplete coarse results, the target

pose, and the warped desired clothes to synthesis the final virtual try-on images. Also, the pre-trained SphereFaceNet [

] is applied to compare the distance

between the generated face region and the ground-truth face region, which enforces the generator G3 to generate realistic and natural faces.

generate a new person image such that the same person wears
the target in-shop clothes and preserves the target pose. That
is, given different poses, the proposed method can generate
high-quality virtual try-on images.

The SPG-VTON consists of three sub-modules, including
the Semantic Prediction Module (Section III-B), the Clothes
Warping Module (Section III-C), and the Try-on Synthesis
Module (Section III-D). We show the overview of SPG-VTON
in Fig. 2. Concretely, the SPM has two sequential processes.
The first process of SPM aims to predict the semantic map
of the target image according to the source semantic map, the
in-shop clothes, and the target pose. The predicted semantic
map provides precise guidance to locate the region of the
desired clothes and generate a coarse virtual try-on image.
Then, we combine the predicted semantic map, the in-shop
clothes, and the target pose as the input of the second process
of SPM to generate the coarse result and the predicted clothes
mask. Subsequently, the CWM warps the in-shop clothes to
the desired shape according to the predicted semantic map.

A. Person Representation

The diverse clothes and human poses struggle with the
performance of the virtual try-on system. During the training
process, the human pose and human body semantic map are
critical supervision information for understanding the human
geometric structure. For training images, we apply off-the-
shelf pose estimator [40] and human parser [41] to extract the
human body keypoints and semantic maps, respectively. The
detailed process is as follows:

Human pose embedding. Following several off-the-shelf
virtual try-on methods [5]-[], [ 1], we use the pose estima-

tor [42] to extract the pose of each person image. Then we
obtain the coordinates of 18 human body keypoints from each
person image and convert them to an 18-channel heatmap.
Each channel of the heatmap corresponds to a human pose
keypoint. We use each keypoint as the center of the circle
to draw a circle with a radius of 4 pixels. The values in each
circle are all ones, and the parts outside the circle are all zeros.
In this way, we obtain the representation of the human pose
embedding.

Human semantic map. Inspired by two semantic-guided
virtual try-on approaches [7], [8], we extract human seman-
tic maps of training images by using the existing human
parser [41]. Each semantic map contains 20 labels that corre-
spond to different parts of the human body. For intractable
human body parts, such as the head (including the face
and hair regions), it preserves characteristic personal identity
information. The extracted information provided an additional
supervision signal for training our network.

B. Semantic Prediction Module

To precisely locate the clothes region of the generated
person image and alleviate the mismatching between the
target clothes and the generated human body, we introduce
a Semantic Prediction Module (SPM). As shown in Fig. 2
a, SPM consists of two sequential processes and can be
optimized in one step. The first process is target semantic
map prediction, and the other is a target clothes mask and
coarse try-on result generation. First, given a source human
image I and its corresponding semantic map S, a target in-
shop clothes C, and a target human pose P, the first process
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of SPM aims to predict the target human semantic map S,
conditioned on the source semantic map S5, the target clothes
C, and the target pose P;. Second, we combine the predicted
semantic map S't with the desired clothes C, the target pose F;,
and the source image without clothes 7/°“, and then feed
it into the second process of SPM to generate the coarse try-
on image and the predicted clothes mask. Specifically, each
process of the SPM is based on the conditional Generative
Adversarial Network (cGAN) [22]. We adopt a ResNet-like
network to replace the U-Net [43] structure as the generator G,
and the multi-scale discriminator (PatchGAN) [3] is applied
as the discriminator D. SPM contains two generators (i.e.,
G4 and G5) and two discriminators (i.e., D1 and Ds). G,
produces the predicted semantic map of the target person that
makes discriminator D; indistinguishable from the real image.
Similarly, the role of generator GG is to generate the realistic
coarse result and the predicted clothes mask. At the same time,
discriminator D5 attempts to distinguish real images from the
results generated by G2. The network structure of generators
and discriminators can be found in Table I.

Target semantic map prediction. We first define the head
part as Ay = {MJ, M}, which is composed of the face mask
MY and the hair mask M. A means that all the masks
in A are obtained from the source semantic map S,. Next,
we remove the hair, face, and clothing areas from the source
semantic map Ss to obtain the reference semantic map S’.
Finally, we binarize the desired clothes image C to obtain
the mask of desired clothes M€. As shown in Fig. 2 (a),
we combine the head part A, with the reference semantic
map S’, the mask of desired clothes M ©. and the target
pose P, as the input of the target semantic map prediction.
Therefore, the predicted semantic map can be formulated
as S, = G1(S., Ay, M© P;). To encourage the generated
semantic map to be indistinguishable from the ground-truth
semantic map, we introduce the spatial matching adversarial
loss [21] as follows:

= E[lOng(StaS;7A57MC?Pt)]

+ Eflog(1—D1(G1(S%, A, MC,P,), S", A, M€, P,)].
(1)

In addition, to generate high-quality target semantic maps
S't, we utilize the focal loss [41] on pixel-wise segmentation.
Besides, following [7], [44], we also adopt the pixel-wise
L1-norm between the predicted semantic map and the target
semantic map to push the generator G; to produce smoother
results. Therefore, the objective function to generate the target
semantic map can be formulated as:

s
adv

Lseg = Ltsldv + AlL;l + Lf‘econ? 2

where L%, denotes the focal loss between S, and Sy, L con

denotes the pixel-wise £;-norm between the predicted seman-
tic map S, and the target semantic map S;, and the hyper-
parameter A\; control weights of the focal loss.

Target clothes mask prediction and coarse result gener-
ation. As shown in Fig. 2 (a), after obtaining the predicted
semantic map S, from the first process of SPM, we first
remove the clothe region of S, to obtain the incomplete

predicted semantic map S,, and then combine S, with the
target pose P;, the in-shop clothes C, and the source image
without clothes I’ /€ a5 the input of the second process of
SPM (i.e., the input of the generator G5 ). Then the generator
G4 produces both the coarse try-on image [, and the predicted
clothes mask M. To allow the generator to produce the photo-
realistic coarse try-on image I,,, we also define the adversarial
loss LY, as follows:

I, = Ellog Ds(Iy, S, C, Py, I¥/*C)]
+ E[log(l — Dz(Ip, S’h C’, Pt, I;U/O.C)]'

Following several start-of-the-art virtual try-on methods [5]—
[91, [11], [12], we also adopt the perceptual loss [45] to enforce
the generator G2 to synthesize photo-realistic try-on images.
The perceptual loss between I, and I; can be defined as:

3)

L2 = B[ ailléi(Lp) — ¢i(L)]1], 4)
1=0

where ¢;(I) denotes the i-th layer feature map of the image
I in the visual perception network ¢. We apply the pre-trained
VGG-19 [46] network as ¢. Here five activations are utilized to
calculate the perceptual loss. The hyper-parameters o; control
the weights of the i-th layer to the term in Eq. 4. We apply the
pixel-wise ¢ loss to guide the target clothes mask prediction
and the coarse result generation. Therefore, to minimize the
distance between the generated image and the ground-truth
image at the pixel level, we formulate the loss function as:

Lecon = Ellllp = Leln] + E[[|My = ML), (5)

recon

where MJ represents the predicted clothes mask, and My
denotes the clothes region mask extracted from the target
human image I;. The objective function to generate the coarse
try-on result and target clothes mask can be formulated as:

+>\2(L£econ+LZe7‘c)v (6)
where )y control weights of L? and L?_ . Then the full

recon perc'
objective function of the SPM can be defined as:

Lprd:Lp

adv

Lspm = Lseg + Lprd
= Ltszdv + /\1L§‘l + Lf‘econ )
+ Lgdv + )‘2 (Llr)econ + Lgerc)’

C. Clothes Warping Module

The Clothes Warping Module (CWM) aims to fit the desired
clothes into the target person according to the given pose while
preserving the texture of clothes. Most existing works [6]-[8],
[11] directly utilize a Geometric Matching Model (GMM) [38]
to estimate the parameters of the Thin-Plate Spline (TPS)
used to warp clothes. This strategy is applicable when the
texture of the clothes is monotonous, and the target pose is
fixed. However, when dealing with complex cases (e.g., the
desired clothes with complex texture and the target person
under diversity poses), it might lead to misalignment between
clothes and the human body, and blurred results. To address
the challenges mentioned above, we introduce the conductible
cycle consistency loss, which effectively aligns the desired
clothing with a given pose.
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As shown in Fig. 2 (b), we first apply the geometric
matching network [38] to estimate the TPS transformation
parameters #; between the mask of desired clothes M ¢ and
the predicted clothes mask M. The mask of desired clothes
M is then warped using the transformation parameters 6, to
align it with the predicted clothes mask M. We denote the op-
eration of TPS transformation as 7Ty, and then the warped mask
of desired clothes M can be represented as MS = To, (M©).
Next, the second geometric matching network is adopted to
estimate the TPS transformation parameters 6, between the
warped mask of desired clothes MS and the mask of desired
clothes M¢. We use the TPS transformation parameters 6
to warp MS back to the original mask of desired clothes
MC. We denote the output of the second geometric matching
network as M€ = T, (MS).

Conductible cycle consistency loss. A straightforward
solution is to train the geometric matching network by directly
applying the pixel-level £;-norm to encourage ME to approx-
imate M, and M C to approximate MC to obtain the TPS
transform parameters for the desired clothing deformation.
However, using the self-reconstruction approach to estimate
TPS parameters between the given clothes mask and the
target clothes mask can only roughly align the shape of the
given clothes mask with the target clothes mask. Applying
the estimated parameters to warp the desired clothes directly
cannot preserve the details of the clothes well. Based on these
observations, we introduce the conductible cycle consistency
loss for two goals. One is to match the shape of the deformed
desired clothes with the target person image. The other is
to maintain the characteristics of the desired clothes in the
clothing region of the generated try-on image. Specifically, we
adopt the estimated parameters #; to warp the desired clothes
C' to obtain the warped clothes C',, = Ty, (C), and then use the
estimated parameter 65 to warp C', to produce C= T, (Cw).
Thus, we formulate the conductible cycle consistency loss as:

Leona = E[||Cw — Ci|l1] + E[|C = O[], (8)

where C; denotes the ground-truth clothes region exacted from
the target image I;. Then the full objective function of the
CWM can be defined as:

Lcwm = /\3Lconda (9)

where A3 controls weights of the conductible cycle consistency
loss.

Discussion. The existing methods [5]-[8], [11] adopt a
separate clothing deformation module to calculate the TPS
transformation parameters between the desired clothing and
the target person image. The TPS transformation parameters
are given by the pre-trained clothing deformation module,
which cannot be dynamically adjusted for these parameters
and leads to error stacking. In contrast to previous works [5]-
[8], [1 1], we adopt an indirect approach to train the geometric
matching network. Concretely, we first fed the mask of desired
clothes and the predicted clothes mask of the target person
image into the geometric matching network, then used the
estimated TPS transformation parameters to warp the desired
clothes. The pixel-wise £; loss between the warped desired

clothes and the ground-truth clothes extracted from the target
person image is the constraint of the geometric matching net-
work. Furthermore, we adopt the pixel-wise £1-norm between
C and the desired clothes C' to encourage the warped mask of
desired clothes MS to return to the original mask of desired
clothes M©. This indirect constraint strategy can not only
achieve accurately geometric deformation between the desired
clothes and the target person image under an arbitrary pose,
but also preserve rich details of the clothing in the generated
person image. The ablation study verifies the effectiveness of
the conductible cycle consistency loss.

D. Try-on Synthesis Module

After producing the coarse try-on result I, by SPM, we first
randomly erase a part of I, to obtain the incomplete coarse
result I;, and then we combine I;), and the deformed desired
clothes C, obtained by CWM and the target pose P;. Next,
we directly fed them into the TSM to generate the final virtual
try-on image I,. As shown in Fig. 2 (c), we use the generator
('3 to produce a rendered result I, and a composition mask
M at the same time. The final virtual try-on result can be
formulated as follows:

L =CobOM+I1,06(1-M), (10)

where (I, M) = G3(IZI,7 Cy, P;). © represents the element-
wise matrix multiplication, and the clothes part in the final
try-on image can be denoted as C, = C,, ® M. The value of
each element in M is between 0 and 1. Following several start-
of-the-art virtual try-on methods [6], [8], [1 1], [12], we apply
both the self-reconstruction loss and the perceptual loss [45]
to enforce the generated image I, to approximate the target
image I;. We define the full reconstruction loss as:

Lyceon = B[l = I|1]) + azE[1 = M1}, (D)

where we adopt the second term in Eq. 11 as the regularization
to constrain the generation of composition mask M. We set
a1 = 2 and ay = 0.5. Additionally, the perceptual loss
between ft and I; can be formulated as follows:

Lhere =B aillgi(T) — ¢i(1)|1]- (12)
i=0

Global and local adversarial loss. In the real scenario,
it is difficult to obtain images of the same person wearing
the desired clothes in arbitrary poses. Therefore, we cannot
retain parts outside the clothing area following many existing
virtual try-on methods based on a fixed pose. In this case,
to generate the photo-realistic try-on image, we employ a
global adversarial loss and a local adversarial loss in TSM.
The diagram of global and local discriminators is shown in
Fig. 3. Specifically, we apply the global adversarial loss LY,
to enforce the generator G3 to synthesize sharp virtual try-
on images with global consistency. Furthermore, the local
adversarial loss Lfldv is adopted to refine the face area of
the final result with local consistency. The global and local
adversarial loss can be formulated as follows:

LY, = Ellog Dy(I;,Cy, P, I/°9)]

adv ooy . (13)
+ E“Og(l - DQ(IMCt;PtaI;D/a )}7
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Fig. 3. The diagram of global and local discriminators. More details can be
found at Table 1.
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Ladv

= E[log D;(I], I, Cy, Py, 1/°€)]

a o (14)
+ Ellog(1 — Dy(I/, 1}, Cy, Py, I2/2C)],

where we extract the face region Iif and the hair region Iif
from the ground-truth image [;. In the same way, we also

extract the face region I, f , and the hair region Ith from ft.
D, denotes the global discriminator, and D; denotes the local
discriminator. Dy and D; share the same structure.

Face identity loss. After adopting the global and local
adversarial loss, our method can produce high-quality fitting
images while making the face region look natural. Further-
more, to enforce that the face region cropped from the gener-
ated images remains similar to the face region of the related
ground-truth images, we introduce the face identity loss.

Lia = E[|F(IF) = F(I)IW], (15)
where F denotes the pre-trained SphereFaceNet [39]. I}
represents the face region extraction guided by the predicted
semantic map, including the face part and the hair part. Then
we formulate the full objective function of the TSM as:

Lism = A (Liecon + L;erc) + Lgdv + Lfld’u + AsLiq, (16)

where the hyper-parameter A4 controls weights of the recon-
struction loss L, ., and the perceptual loss Lyere(It, 11)),

and A5 controls weights of the face identity loss L;g.

E. Optimization

Objective function. Taking all of the above loss functions
into consideration, we formulate the total objective function
as:

szdv +)‘1L}l +L:econ +L2d7j +)‘2 (Lgecon +Lgerc)
Liotal =
SPM
)\BLcond >‘4 (Liecon +L;erc) +Lgdv +szdv +)‘5Lid
=t :
CWM TSM
17

Our ultimate goal is to solve:
G*,T" = arg

ax Ltotal-

min 1m (18)
G1,G2,To,,Te,,G3 D1,D2,Dg,D;

End-to-end training. In this article, we divide the training
process of the proposed method into three steps: (1) We first
separately train the semantic prediction network to obtain the
preliminary semantic prediction map, and this process corre-
sponds to the first process of the semantic prediction module.
(2) Then, we use the semantic prediction map generated from
the fixed pre-trained semantic prediction network as guidance
for the subsequent steps, including rough result generation,
clothing area prediction, target clothing deformation, and
refined try-on generation. (3) Finally, we jointly train three
sub-modules of the proposed method to synthesize the final
virtual try-on image. This step can alleviate the impact of
inaccurate semantic maps and improve the quality of the
generated results.

Differences from MG-VTON [7]. There are significant dif-
ferences between MG-VTON. (1) MG-VTON adopts a multi-
stage framework, and each stage independently implements a
distinct task. In particular, MG-VTON applies different mod-
ules to achieve the desired clothing deformation, coarse result
generation, and final result refinement separately. Instead,
we employ end-to-end training to encourage the generator
to produce realistic virtual try-on results. Specifically, we
dynamically update the parameters of each process including
the desired clothing deformation, the coarse result generation,
and the final result refinement. (2) Both MG-VTON and SPG-
VTON use a semantic prediction model to predict the target
semantic map (i.e., the first process of SPM in SPG-VTON
and the conditional human parsing network in MG-VTON).
However, unlike MG-VTON, SPM in SPG-VTON contains
one extra clothes mask prediction. Therefore, SPG-VTON can
accurately locate the target clothing area by combining the
predicted target semantic map, and the predicted target clothes
mask. (3) MG-VTON divides the coarse result generation and
the composition mask production into two independent steps.
In contrast to this technique, we concatenate the coarse result,
the warped clothes, and the target pose as the input of G3
to produce a rendered result and a composition mask at the
same time. Then, we combine the warped clothes, the rendered
result, and the composition mask to synthesize the final
result. These differences make our method generate images
with improved qualities in both qualitative and quantitative
evaluations, which is demonstrated in Fig. 5, TABLE II and
TABLE III.

IV. EXPERIMENTS
A. Dataset

We perform experiments on the MPV dataset [7], which
is the largest multi-pose virtual fitting dataset available. The
MPV dataset consists of 35,687 person images and 13,524
clothes images collected from the internet, with a resolution
of 256 x 192. For each in-shop item of clothes, the dataset
contains multiple images of the same person wearing the given
in-shop clothes in different poses. The MPV dataset contains
62,780 three-tuples, including 52,236 training sets and 10,544
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Fig. 4. Examples of noisy images in the training set and the test set. We
observe the three typical kinds of noise existing in the training set and the
test set, including interference of unrelated appearance attributes (e.g., hats,
bags, glasses), mismatching of clothes in paired person images with the same
identity, and mismatching between the target clothes and the clothes in the
source image. These noise demands strong robust ability of the proposed
algorithm during both training and testing.

5

N

test sets. Each input data point is a three-tuple composed of
two human images and one clothes image. The two person
images wear the clothes in the clothes image but with different
poses. Moreover, we also conduct experiments on the Deep-
Fashion dataset (In-shop Clothes Retrieval Benchmark) [20] to
verify the effectiveness of the proposed method. Following the
setting in MG-VTON [7], we collect 10,000 pairs (the same
person in different poses) from DeepFashion, and randomly
select in-shop clothes from the test set of the MPV dataset.

Noise in the training set and the test set. For the
virtual try-on task, the input three-tuple consists of two paired
person images and one in-shop clothes image. When one
of the following conditions occurs, the input three-tuple can
be regarded as “noise data.” (1) One person image contains
attributes that do not exist in the other person image, and these
attributes are limited to glasses, bags, hats, scarves, necklaces,
gloves, coats, upper clothes, and background; (2) The given
clothes are different from the clothes in the paired person
images. Since MPV does not provide labels for the noise
data, in this case, to accurately obtain the noise data in the
training set, we manually filter it and obtain 8,740 sets of noise
data, accounting for approximately 16.73% of the training set.
We show three typical kinds of noise in both the training set
and the test set in Fig. 4, including interference of unrelated
appearance attributes (e.g., hats, bags, glasses), mismatching
of clothes in paired person images with the same identity, and
mismatching between the target clothes and the clothes in the
source image. It is challenging to train a robust virtual fitting
system based on these noisy images.

B. Evaluation Metrics

Structural SIMilarity (SSIM). SSIM [47] is widely used
to evaluate the similarity of generated images in GAN-based
methods. In this work, we adopt the SSIM metric to measure
the similarity between the generated image and the real image.
Higher scores indicate that the generated image is closer to the
ground-truth image.

TABLE I
THE NETWORK ARCHITECTURE OF OUR GENERATORS AND
DISCRIMINATORS, WHERE K, S, P, AND A DENOTE THE KERNEL SIZE,
STRIDE SIZE, PADDING SIZE, AND THE ACTIVATION FUNCTION,
RESPECTIVELY. IN REPRESENTS THE INPUT CHANNELS, AND OUT
DENOTES THE OUTPUT CHANNELS.
[ Generator G, |

Layer Input Output K&S&P&A
Convl IN x256x192 | 64x256x192 3x3, 1, 1, ReLU
Conv2 64256192 128 X256 %192 3x3, 1, 1, ReLU
Conv3 128 X256 X192 128 X 128 X 96 3x3, 2, 1, ReLU
Resblock 128 x 128 96 128x128%x96 [3x3,3x3, 1, I, ReLU
Conv4 128 x 128 96 256 X 64 x48 3x3, 2, 1, ReLU
Resblock 256 X 64 x 48 256x64x48 |3x3,3x3, 1, 1, ReLU
Conv5 256 X 64 x48 512x32x24 3x3, 2, 1, ReLU
Resblock x 4| 512x32x24 512x32x24 |3x3,3x3, 1, 1, ReLU
Upsample 512x32x24 512x64x48 -

Convo 512x64x48 256 X 64 <48 3x3, 1, 1, ReLU
Upsample 256 X 64 x48 256x 128 %92 -

Conv7 256%x128x92 128 x 128 %92 3x3, 1, 1, ReLU
Upsample 128 x 128 x92 128256192 -

Conv8 128x256x192 | 64x256x192 3x3, 1, 1, ReLU
Conv9 64x256x192 |OUT x256x192| 3x3, 1, 1, ReLU
Conv10 OUT x256x192|OUT x256x192 3%3, 1, 1, Tanh
Convll OUT x256x192|OUT x256x192 1x1, 1, 0, None

[ Discriminator D |
Layer Input Output K&S&P&A
Convl IN x256x192 | 32x256x192 [3x1, 1, 0, LeakyReLU
Conv2 32%x256x192 32%x256x192 [3x3, 1, 1, LeakyReLU
Conv3 32%x256x192 32x128x96 |3x3, 2, 1, LeakyReLU
Conv4 32x128%x96 32%x128%x96 [3x3, 2, 1, LeakyReLU
Conv5 32x128%x96 64x64x48 [3x3, 2, 1, LeakyReLU
Conv6 64 x 64 x48 1 xX64x48 I1x1, 1, 0, None

Inception Score (IS). IS [48] is a general metric used to
estimate the quality of the synthesis image. In this work, we
apply IS to evaluate the quality of generated images by our
method. Notably, all generated images used to calculate IS
have no corresponding ground-truth images. To evaluate the
quality of specific regions (i.e., clothing regions, face regions)
in the final virtual try-on image, we also calculate Mask-SSIM
and Mask-IS for the extracted regions.

C. Implementation Details

Architecture. Here we provide details about the network
architecture of three sub-modules in SPG-VTON. In specific,
generators (G, G2, and G3 adopt the same structure, which is
a ResNet-like architecture. The generated result of G5 and G5
is a 4-channel tensor that could be split into a 1-channel mask
and a 3-channel RGB image. We show the detailed network
structure of generators and discriminators in TABLE I. In
addition, all the discriminators in the proposed method apply
the multi-scale structure from pix2pixHD [3]. Additionally,
we use instance normalization [49] both in generators and
discriminators. We employ ReLU and LeakyReLU activation
functions in the generator and discriminator, respectively.
Following existing works [29], [50], we adopt LSGAN [51] for
all adversarial losses in our method, and a gradient punishment
strategy [52] is also used to stabilize the training process.

Setting. In this work, we use the Adam optimizer [53] to
optimize generators and discriminators in SPG-VTON, and set
the initial learning rate to 0.0002, weight decay to 0.0005, and
exponential decay rates (31, S2) = (0,0.999). For training, we
set hyper-parameters A\; = 10, (i = 1,2,4,5), and A3 = 20.
Additionally, we set the batch size of semantic map prediction
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Fig. 5. Visualized comparison between MG-VTON [7] and several variants of our method on the MPV dataset. To make the comparison clearer, we use
the green dashed box and the yellow dashed box to cut out the local areas of generated images by MG-VTON and SPG-VTON, respectively. Then, they are

enlarged to 3.5 times the original size.

TABLE 11
QUANTITATIVE RESULTS. COMPARISON RESULTS IN TERMS OF SSIM
AND IS ON BOTH MPV AND DEEPFASHION. T DENOTES THAT HIGHER
SCORES ARE BETTER.

Method | MPV | DeepFashion
| SSIM 1 st | ISt
Real data | 1.000  3.391 + 0.024 | 3.332 + 0.126
VITON [5] 0.639 2.394 4+ 0.205 | 2.302 £ 0.116
CP-VTON [6] 0.705 2.519 &+ 0.107 | 2.459 £ 0.212
MG-VTON [7] 0.744 3.154 + 0.142 | 3.030 £ 0.057
SPG-VTON (Ours) | 0.752  3.243 £ 0.127 | 3.124 + 0.027
TABLE III

SPG-VTON v.s. MG-VTON [7]. QUANTITATIVE COMPARISON RESULTS
IN TERMS OF MASK-SSIM AND MASK-IS ON THE PART OF MPV. 1
DENOTES THAT HIGHER SCORES ARE BETTER.

Method | Mask-SSIM 1 | Mask-IS 1

| Face | wio Clothes | Face | Clothes
Real data | 1000 | 1000 | 1848 & 0.137 [3.711 + 0.237
MG-VTON [7] 0.717 + 0.094 | 0.722 + 0.045| 1.419 £ 0.061 | 3.270 £ 0.409
SPG-VTON (Ours) | 0.737 + 0.091 | 0.745 + 0.042 | 1.584 + 0.053 | 3.660 + 0.327

(first process of SPM, generator (G1) to 16, and the batch
size of subsequent steps (generators G, and ('3, geometric
matching models GMM 1 and GMM 2) to 8, and the batch
size for joint training is set to 8. In end-to-end training, we
train the semantic map prediction network for 70k, and then
with the fixed pre-trained semantic map prediction network,
the subsequent network is trained for 70k. Finally, we jointly
train the whole model for 100k.

D. Quantitative Results

We compare the proposed method with several start-of-
the-art virtual try-on methods, including VITON [5], CP-
VTON [6], and MG-VTON [7]. VITON and CP-VTON adopt
a coarse-to-fine strategy to tackle the virtual try-on task of the
single pose, and neither of these two methods includes the
change of human pose. To make a fair comparison, we first
enrich the input of VITON and CP-VTON by adding the target
pose. We report the quantitative results based on the SSIM and
IS metrics (higher scores are better) to evaluate the realism of

Source
image

Target
clothes

Target s
pose (who (\(It) (Vv/l(\(,) 1»/(w1() (u/(w/) lu/(\(l()

‘H=-0: =0k

Fig. 6. Qualitative visual results with/without the cycle consistency constraint.

Ours
(w/o Cyele)

the synthesized virtual try-on images. As shown in TABLE
II, our method achieves the maximum SSIM scores, and the
maximum IS score on the MPV dataset. In addition, our
method also obtains the highest IS scores on the DeepFashion
dataset. The results verify the effectiveness of the proposed
method on generating high-fidelity virtual try-on images.
Comparison with MG-VTON [7]. The multi-pose virtual
try-on task aims to fit the desired clothes onto the target
person image, according to the source image and the given
pose. Unlike the pose fixed virtual try-on issue, the multi-pose
virtual try-on task is much more challenging to synthesize the
whole try-on image, which does not preserve the original body
parts. Since the existing methods (such as VITON [5] and
CP-VTON [6]) are based on the fixed pose and cannot find
the spatial deformation relationship in pose change, directly
applying these methods is inappropriate. MG-VTON is the
first method to address the multi-pose virtual fitting issue.
Hence, to further verify the effectiveness of this method, we
conduct additional experiments to compare our method with
MG-VTON on the MPV dataset. Consequently, we evaluate
both the global metrics SSIM and IS and the local indicators
Mask-SSIM and Mask-IS, which estimate the local (i.e., face
region and clothes region) similarity and local realism between
the generated image and the ground-truth image. Without the
official code of MG-VTON, we calculate the results of MG-
VTON from the try-on images provided by the original author.
Note that these try-on images are generated from part of the
test set. To make a fair comparison, we obtain our results
from the same test images. Each test sample consists of a
three-tuple, including source images, target poses, and desired
clothes. The source image and target pose in each tuple in the
test set have the same identity, so we calculate the Mask-SSIM
value between the generated image and the image correspond-
ing to the target pose. Specifically, we calculate Mask-SSIM
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TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT VARIANTS OF SPG-VTON ON THE MPV DATASET. WE HIGHLIGHT THE BEST AND THE SECOND-BEST
PERFORMANCES. T DENOTES THAT HIGHER SCORES ARE BETTER. THE VARIANT OURS W/ St REPRESENTS THAT OUR METHOD USES THE
GROUND-TRUTH SEMANTIC MAP S; OF THE TEST IMAGES TO REPLACE THE PREDICTED SEMANTIC MAP S.

Method | SSIM 1 | 1S 4 | Mask-SSIM 1 | Mask-IS 1
‘ ‘ ‘ Face ‘ Clothes ‘ Face ‘ Clothes
Real data ‘ 1.000 ‘ 3.391 £ 0.024 ‘ 1.000 ‘ 1.000 ‘ 2.255 £ 0.030 ‘ 5.094 £ 0.084
Ours (full) ‘ 0.752 £ 0.084 ‘ 3.243 £ 0.127 ‘ 0.801 £ 0.127 ‘ 0.872 £ 0.076 ‘ 1.982 + 0.024 ‘ 5.057 £ 0.064
wlo E2E 0.747 £ 0.087 2.968 £ 0.031 0.795 £ 0.130 0.869 + 0.081 1.976 £ 0.013 4.854 4+ 0.019
w/o Cycle 0.739 £ 0.086 2.745 £ 0.036 0.794 £ 0.127 0.867 £ 0.080 1.801 £ 0.016 4.841 £ 0.096
w/o Sy 0.736 £ 0.088 2.647 £ 0.017 0.794 £ 0.129 0.861 £ 0.083 1.856 &+ 0.009 4.796 £+ 0.027
w/o Lq 0.732 £ 0.085 2.909 + 0.069 0.780 £ 0.135 0.866 + 0.080 1.969 + 0.045 4.601 £+ 0.070
w/o Lfldv 0.700 £ 0.079 3.358 + 0.022 0.786 £ 0.132 0.866 £ 0.080 1.830 £ 0.017 4.546 £+ 0.047
w/o Lpere 0.724 £ 0.086 3.474 £+ 0.052 0.798 £ 0.129 0.866 £ 0.081 2.056 + 0.015 5.373 + 0.077
w/o M; 0.747 £+ 0.086 2.845 £ 0.012 0.800 £ 0.127 0.869 £ 0.079 1.866 £ 0.016 4.958 + 0.047
w/o Noise 0.756 + 0.087 3.254 £ 0.019 0.802 + 0.127 0.874 + 0.079 1.989 + 0.017 5.066 £ 0.057
w/ Sy ‘ 0.788 £ 0.080 ‘ 3.165 £ 0.028 ‘ 0.893 + 0.081 ‘ 0.923 £ 0.063 ‘ 2.070 £+ 0.013 ‘ 5.186 + 0.071
TABLE V

QUANTITATIVE RESULTS OF THE EFFECTIVENESS OF FIVE HYPER-PARAMETERS. WE HIGHLIGHT THE BEST PERFORMANCES. T DENOTES THAT HIGHER
SCORES ARE BETTER.

N | SSIM 1 | IS 4 | Mask-SSIM 1 | Mask-IS
| | | Face | Clothes | Face | Clothes
A1 =0 0.714 £ 0.078 2.983 &+ 0.042 0.781 £ 0.131 0.852 + 0.086 1.796 + 0.006 4916 £ 0.090
A2 =0 0.554 £ 0.105 3.985 + 0.052 0.784 £ 0.136 0.859 + 0.081 2.121 + 0.032 4.771 £ 0.048
Az =0 0.739 + 0.085 2.581 £+ 0.016 0.792 £ 0.130 0.869 + 0.078 1.836 £ 0.018 4.151 £ 0.024
A2 =0 0.420 £ 0.015 3.526 + 0.059 0.775 £ 0.136 0.857 £ 0.083 2.028 £ 0.013 4.858 £ 0.042
As =0 0.732 + 0.085 2,909 + 0.069 0.780 + 0.135 0.866 % 0.080 1969 + 0.045 4.601 % 0.070
Ours (full) ‘ 0.752 + 0.084 ‘ 3.243 + 0.127 ‘ 0.801 + 0.127 ‘ 0.872 £ 0.076 ‘ 1.982 + 0.024 ‘ 5.057 £+ 0.064
TABLE VI
QUANTITATIVE RESULTS. WE HIGHLIGHT THE BEST PERFORMANCES. T DENOTES THAT HIGHER SCORES ARE BETTER.
A3 | SSIM 1 | IS 1 \ Mask-SSIM 1 \ Mask-IS 1
| | | Face | Clothes | Face | Clothes
A3 =0 0.739 + 0.085 2.581 + 0.016 0.792 £ 0.130 0.869 £ 0.078 1.836 £+ 0.018 4.151 4+ 0.024
As =1 0.747 £ 0.087 2.865 £ 0.017 0.795 £ 0.131 0.869 =+ 0.081 1.905 £ 0.019 4.869 £+ 0.069
A3 =5 0.745 £ 0.087 2.929 + 0.081 0.794 + 0.131 0.869 =+ 0.081 2.008 + 0.022 4.749 £+ 0.097
Az =10 0.744 £ 0.086 2.959 + 0.033 0.793 £ 0.129 0.868 £ 0.082 2.003 £ 0.020 4.849 £+ 0.097
Az =20 0.752 + 0.084 3.243 + 0.127 0.801 £+ 0.127 0.872 £+ 0.076 1.982 + 0.024 5.057 £+ 0.064
As = 40 0.746 + 0.087 2918 + 0.026 0.795 + 0.140 0.868 + 0.081 1.963 + 0.017 4.809 4+ 0.087
Az = 80 0.746 £ 0.086 2.910 £ 0.028 0.794 £ 0.131 0.869 + 0.080 1.952 £ 0.030 4.934 4+ 0.012

of the facial area and the area unrelated to clothes between
the generated image and the original image that provides the
target pose. As shown in TABLE III, the proposed method
achieves higher Mask-SSIM scores and Mask-IS scores than
MG-VTON, suggesting that our method is better at fitting
desired clothes onto the target human image.

E. Qualitative Results

We present visualized comparisons between MG-VTON and
several variants of our method on the MPV dataset in Fig. 5.
We observe that our method achieves higher-quality try-on
results than MG-VTON. In particular, our method generates
realistic and natural face regions while preserving the details
of desired clothes.

FE. Ablation Studies

To study the effectiveness of each component in our method,
we compare seven variants of SPG-VTON on the MPV dataset

as follows: (1) w/o E2E: our method without end-to-end train-
ing. Specifically, we train our method in a two-stage manner.
We first separately train the semantic prediction network to
obtain the preliminary semantic prediction map. Next, we use
the semantic prediction map generated from the fixed pre-
trained semantic prediction network to guide the subsequent
steps; (2) w/o Cycle: our method uses £ loss between MS
and My to replace the conductible cycle consistency loss
in the CWM. In this case, Leong = E[||Cw — Cill1]; (3)
w/o S, : our method without the predicted semantic map
Sy. In the training process, we use the predicted target body
shape MII,’ to replace the predicted semantic map Si; (4) wio
L;q: our method removes the face identity loss. In this case,
Lism = Ma(Llpeon + Lbore) + L2y, + Ll gy: (5) wio Ly,
our method without the local adversarial loss. In this case,
Lism = M(Liceon+Lhere) + L3 gy +As Lias (6) W/o Liper.: our

adv

method without the perceptual loss L? .. and the perceptual
loss L. In this case, Lopm = L34, + M L3 + Liceon +

Lgdv+>‘2L$econ’ and Ltsm = /\4Lf"econ+Lgdv+szd'u+)‘5Lid;
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Source image

Target clothes

Target pose

M=0

Source image

Target clothes

{
i

Target pose

SPG-VTON
(Ours)

Fig. 8. Examples of try-on results based on noisy images in the test set. For
real-world applications, bags, sunglasses and Yoga mat are not desirable in
the generated results. In this work, we view these objects as noise for the
virtual try-on, and our method is still robust for such obstacles. The model
has not seen the source inputs, which are all from the test set.

(7) wlo sz: our method without the predicted clothes mask
M. In the training process, we use the ground-truth clothes
mask My to replace the predicted clothes mask M. Accord-
ingly, the TPS transformation parameters theta; are calculated
between the mask of desired clothes M ¢ and the ground-truth
clothes mask M¢; (8) w/o Noise: we use filtered noise free data
to train the proposed method; (9) w/ S;: our method uses the
ground-truth semantic map S; of the test images to replace
the predicted semantic map S,.

We show the qualitative results of several variants in Fig. 5.
We observe that without end-to-end training, our method can
still produce plausible results. However, some artifacts existed

Ours (full )

o

near the hair regions and the neck regions in the generated
images, suggesting that the end-to-end training manner could
alleviate the impact of incorrect semantic maps on the gener-
ated results. We also find that without the cycle consistency
constraint, the clothes regions in the generated images are
deformed, which shows that the conductible cycle consistency
loss could alleviate the mismatching between the desired
clothes and the target person image. In Fig. 6, we show the
ablation study on the effect of conductible cycle consistency
loss Lconq. Additionally, we observe artifacts in the non-
clothing regions of the generated results after replacing the
predicted target semantic map with the predicted target body
shape. This result indicates that without the guidance of
the predicted semantic map, our method cannot accurately
distinguish between regions of the human body. Moreover, we
note that the facial regions in the generated results look less
realistic after removing the global and local adversarial loss
and the face identity loss, which suggests that introducing the
global and local adversarial loss and the face identity loss
can encourage the model to generate realistic and natural face
regions. Additionally, we observe that removing the perceptual
loss causes the model to generate blurred results with artifacts,
suggesting that introducing the perceptual loss can synthesize
sharper and clearer images. In addition, we find that when our
method does not employ the predicted clothes mask, some
artifacts appear in the generated image, and distortion exists
in the clothing region. These results show that the process
of target clothes mask prediction can encourage the model
to accurately locate the clothing region and can alleviate the
distortion between the desired clothes and the target pose.

We present the quantitative ablation study results of nine
variants in TABLE IV. We observe that the full model ob-
tains higher SSIM scores and Mask-SSIM scores than seven
different ablation methods except for the training set without
noisy data and apply the ground-truth semantic map to replace
the predicted semantic map. We also note that without the
perceptual loss, IS/Mask-IS scores are higher than those of the
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whole model. This is due to the perceptual loss with deeper
supervision (leveraging the activation of deeper layers), which
focuses on semantic patterns. Therefore, the full model with
the perceptual loss will improve the SSIM matching quality to
the ground-truth in terms of multiple scales, but fail to hold
better global matching IS. We surmise that this alternative is
still open to the readers whether in considering to use the
perceptual loss and that choices depend on the application,
which emphasizes the pair matching performance or the global
comparison with the whole dataset. The qualitative visual
results with/without the perceptual loss are also provided in
Fig. 5. Additionally, we find that all indicators are decreased
when our method does not implement the predicted clothes
mask, suggesting that combining global semantic information
with local semantic information could guide the proposed
method to generate higher quality fitting results. More im-
portantly, ablation studies also show that the conductible
cycle consistency loss could match the shape of the deformed
desired clothes with the target person image and maintain the
characteristics of the desired clothes in the generated try-on
image. We present the qualitative visual results with/without
the cycle consistency constraint in Fig. 5 and Fig. 6. The
ablation studies also point out that using real semantic maps
to replace predicted semantic maps at test time yields higher
metric scores, suggesting that the semantic maps obtained by
the semantic prediction networks still have a gap with real
semantic maps. However, we find that all metrics increase
with an end-to-end training manner. In particular, the IS/Mask-
IS scores were superior. This result indicates that adopting
an end-to-end training manner can enhance the accuracy of
predicted semantic maps and lead the model to generate
realistic fitting images.

Impact of the introduced five hyper-parameters. To
clarify the role of the five hyper-parameters introduced in the
objective function (i.e., Eq. 17), we first show the qualitative
visual results for the full model with five variants in Fig. 7.
We observe that when A\; = 0, our method can still generate
plausible fitting images, but artifacts appear. The main reason
is that when \; = 0, the focal loss is invalid. Therefore, the
quality of the semantic map generated by SPM only maintains
the rough body outline but cannot precisely locate the position
of each body component. In addition, when A2 = 0, our
method cannot generate reasonable fitting images. The main
reason is that when A\p = 0, both L%, and L}, are invalid,
which leads to the inability of SPM to generate coarse results
and predicted clothing masks, which are critical inputs for
TSM and CWM, respectively. Meanwhile, when A3 = 0, we
find that the details of the desired clothes are entirely lost in the
generated images, which indicates that the conductible cycle
consistency loss plays a vital role in the process of clothes
deformation. Additionally, when A\, = 0, we notice that even
though the details of the facial and clothing regions in the
generated image are well maintained, the entire quality of the
generated image is poor due to the lack of global constraints.
We also observe that when A5 = 0, the face identity loss is
invalid, resulting in less realistic facial regions in the generated
results. Furthermore, we report the quantitative results of
the effectiveness of five hyper-parameters in TABLE V. The

full model obtains the highest SSIM/Mask-SSIM scores and
the highest Mask-IS scores for the clothing regions in the
generated images. Combining the results of qualitative and
quantitative experiments, we consider it necessary to introduce
these five hyper-parameters. In addition, to determine the op-
timal value of the hyper-parameter A3, we conduct additional
experiments and present the quantitative results in TABLE VI.
We first set the values of A3 to 0, 1, 5, 10, 20, 40, and 80,
and then the experimental results show that when A3 = 20 ,
the highest scores are obtained for all indicators except for the
Mask-IS scores for facial regions.

Impact of noisy images in the training set and the test
set. We conduct quantitative experiments to verify the impact
of noisy data in the training set. As shown in Table IV, we
observe that all indicators (i.e., SSIM/Mask-SSIM, 1S/Mask-
IS) of the proposed method trained by noisy data are slightly
lower than the variant trained with noise-free data. These
results confirm that noisy training data cause the performance
of our method to decrease, but the degree of decrease is still
within an acceptable range. Notably, the test set still contains
noisy data. Moreover, we provide qualitative visual results
based on noisy images (i.e., source images with interference
from attributes unrelated to the fitting task, such as bags,
glasses, and complicated backgrounds). As shown in Fig. §,
we observe that the proposed method is robust to such training
noise and shows good scalability to the unseen test images
during inference.

V. CONCLUSION

In this paper, we propose a novel multi-pose virtual try-
on framework (SPG-VTON) based on semantic prediction
guidance, which focuses on producing photo-realistic try-on
results while fitting the desired clothes onto an arbitrary pose
of the same person. SPG-VTON consists of three sub-modules,
including the semantic map prediction module, the clothes
warping module, and the try-on synthesis module. On the
one hand, we introduce a conductible cycle consistency loss
that can alleviate the mismatching between the desired clothes
and the target image. On the other hand, we also apply a
face identity loss to make the face region of the final virtual
try-on image look natural and to preserve the identity of
the source image. Extensive qualitative and quantitative ex-
periments demonstrate that the proposed method outperforms
previous state-of-the-art methods and has good scalability to
the training data noise as well as the unseen test images
during inference. In the future, we will continue to explore
the application of the proposed method to new fields, such
as vehicle appearance design [54] and language-based cloth
generation [55], and new modalities [56], [57].
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