
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Self-supervised Point Cloud Representation
Learning via Separating Mixed Shapes

Chao Sun, Zhedong Zheng, Xiaohan Wang, Mingliang Xu and Yi Yang, Senior Member, IEEE

Abstract—The manual annotation for large-scale point clouds
costs a lot of time and is usually unavailable in harsh real-
world scenarios. Inspired by the great success of the pre-training
and fine-tuning paradigm in both vision and language tasks, we
argue that pre-training is one potential solution for obtaining a
scalable model to 3D point cloud downstream tasks as well. In
this paper, we, therefore, explore a new self-supervised learning
method, called Mixing and Disentangling (MD), for 3D point
cloud representation learning. As the name implies, we mix two
input shapes and demand the model learning to separate the
inputs from the mixed shape. We leverage this reconstruction
task as the pretext optimization objective for self-supervised
learning. There are two primary advantages: 1) Compared to
prevailing image datasets, e.g., ImageNet, point cloud datasets
are de facto small. The mixing process can provide a much
larger online training sample pool. 2) On the other hand, the
disentangling process motivates the model to mine the geometric
prior knowledge, e.g., key points. To verify the effectiveness of the
proposed pretext task, we build one baseline network, which is
composed of one encoder and one decoder. During pre-training,
we mix two original shapes and obtain the geometry-aware
embedding from the encoder, then an instance-adaptive decoder
is applied to recover the original shapes from the embedding.
Albeit simple, the pre-trained encoder can capture the key points
of an unseen point cloud and surpasses the encoder trained
from scratch on downstream tasks. The proposed method has
improved the empirical performance on both ModelNet-40 and
ShapeNet-Part datasets in terms of point cloud classification
and segmentation tasks. We further conduct ablation studies to
explore the effect of each component and verify the generalization
of our proposed strategy by harnessing different backbones.

Index Terms—Point cloud, Pre-training, Self-supervised learn-
ing, Graph Neural Network, Representation learning.

I. INTRODUCTION

POINT clouds, as one perception of the 3D world, have
wide applications, e.g., autonomous driving [2]–[4] and

virtual reality [5]. With recent developments of deep learn-
ing technology, deep learning-based approaches [6]–[9] on
point cloud processing gradually surpass traditional statistical
processing methods [5], [10]. However, these deeply-learned
models are data-hungry. Although the point cloud data can be
collected by laser sensors and other equipment, the point-wise
point cloud annotation still costs a lot of human resources and

Chao Sun, Xiaohan Wang and Yi Yang are with School of Computer
Science, Zhejiang University, Zhejiang, China. E-mail: c sun@zju.edu.cn,
xiaohan.wang@zju.edu.cn, yangyics@zju.edu.cn

Zhedong Zheng is with Sea-NExT joint lab, School of Computing, National
University of Singapore, Singapore 118404. E-mail: zdzheng@nus.edu.sg

Mingliang Xu is with Zhengzhou University, 100 Kexue Ave, Zhongyuan
District, Zhengzhou, Henan, China. Email: iexumingliang@zzu.edu.cn

This work is supported by National Key R&D Program of China
(No.2020AAA0108800) and Fundamental Research Funds for the Central
Universities (No. 226-2022-00087).

Fig. 1. Visualized results of mixed point clouds. We select seven types of
point clouds from ShapeNet-Part [1]. Each row and column corresponds to
the original point clouds and the intersection corresponds to the mixed point
cloud. M denotes the number of samples in the training set. In theory, we
can generate O(M×M) different point clouds by sampling various cloud
pairs, resulting in a much larger online generated training sample pool.

unaffordable expenses [1], [11]–[13]. In this work, we argue
that pre-training is one potential way to relieve data limitation.
We are inspired by successes in image recognition, where the
pre-training model on ImageNet can efficiently adapt to vari-
ous computer vision tasks, including image segmentation [14]–
[17] and image retrieval [18]–[22]. We also note that pre-
training on point cloud is still under-explored. To fill this
gap, in this work, we resort to model pre-training via self-
supervised learning to reduce the demand for annotated data.

Most existing works [23], [24] focus on designing pretext
tasks by exploring the spatial characteristics of the single point
cloud, which does not solve the problem of data limitation
in current open-source datasets [1], [11]. To address this
limitation, we introduce a simple solution Mixing to combine
two point clouds as a new mixed point cloud. Benefiting
from the batch training of deeply-learned models, each point
cloud can be mixed with a large number of point clouds
during the whole training process to enlarge the training data
pool. The proposed approach is memory and resource-efficient,
which can directly process point clouds in a single pass.
Compared with texture, which is important in 2D images,
shape information is critical for point cloud representation.
The human can easily figure out the two 3D models, i.e.,
chair and airplane, in mixed point clouds, according to the
prior knowledge of shape (see Fig. 1). Inspired by the work on
2D clothes changing [25], we propose a novel self-supervised
task, Mixing and Disentangling (MD) for point clouds. As

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the name implies, our intuition underpinning the proposed
MD is encouraging the network to mine geometric knowledge,
i.e., shape-aware features, and such knowledge can be easily
transferred to various tasks. As shown in Fig. 2, the pretext
task of self-supervised learning is designed to separate original
point clouds from the mixed one. Given two input point clouds
A of N points and B of N points, the mixing progress outputs
mixed point cloud C of N points sampled from A and B.
In particular, we adopt a random sampling strategy in each
input point cloud and select N

2 points in A and B respectively.
After the sampling stage, we concatenate 2 sampled N

2 points
together as a new point cloud C with N points, and we also
disrupt the indices of these points again to prevent over-fitting
the point order. The disentangling process demands the model
to mine the key points of both two original point clouds from
the mixed point cloud. The decoder output 2 tensors shape
of N × 3, and each reconstructs one input point cloud. In
particular, the decoder disentangles a specified point cloud
based on its conditional coordinates shown in Fig. 3 as the
decoder input. For instance, two generated point clouds shown
in Fig. 2 demands two decoding process (the model should
forward twice while the sum loss of two results backward
once), one for the plane, and another for the chair. Briefly,
our contributions are as follows:
• Different from most existing pre-training works on image

recognition, there do not exist large-scale datasets like
ImageNet [26] for 3D point cloud pre-training. To address
this problem, we leverage the mixing process to generate
large-scale mixed data for 3D point cloud training;

• Inspired by the human ability to figure out two shapes
from one mixed object, we propose a new self-supervised
learning method on the point cloud, called Mixing and
Disentangling (MD) to learn the geometric prior knowl-
edge without the requisite of annotations;

• As one minor contribution, we implement one basic
pipeline to verify the effectiveness of the proposed self-
supervised learning strategy. It contains one encoder
with the learnable aggregation function and one instance-
adaptive decoder, to learn from the mixed point cloud and
conduct the disentanglement.

• Albeit simple, experimental results on two benchmarks,
i.e., ModelNet-40 [11] and ShapeNet-Part [1], show that
the self-supervised learning model can effectively and
efficiently improve the accuracy of classification and
segmentation tasks by the pre-training and fine-tuning
paradigm. Self-supervised learning on the point cloud
also can reduce the network dependence on labeled data.

The rest is organized as follows. We introduce existing
works in Section II. Section III describes the proposed method
with details. Quantitative and qualitative experiments verify
the effectiveness of MD pre-training in Section IV, followed
by the conclusion in Section V.

II. RELATED WORK

A. 3D Point Cloud Processing

In recent years, deep learning-based approaches [27]–[30]
facilitate the development of point cloud processing. Due to

Fig. 2. A schematic overview of our method. The two original point clouds are
mixed and input into encoder E to obtain the embedding vector of the mixed
point cloud. A coordinate extracting operation, Erase, is used to extract
partial information from the original point cloud for instance disentanglement.
Then the embedding vector and instance information are input to the decoder
D and the denoising module to generate the original point cloud, as shown
in the red line and the blue line, respectively. The reconstruction loss, i.e.,
LChamfer , between the generated point cloud and the original point cloud
is used as the self-supervision during training.

the irregular and disordered characteristics of point clouds, the
traditional neural networks in the 2D field, i.e., convolutional
neural network (CNN), cannot be directly applied to point
clouds. Therefore, researchers resort to various methods as
follows. (1). Some methods are voxel-based. The voxel-based
methods [11], [31] voxelize the point cloud to obtain a cube
with a grid structure, which can be directly processed by
3DCNN. However, the accuracy of this method is limited
by the resolution during voxelization. (2). Some methods
are projection-based. The projection-based methods [32]–[34]
project the point cloud on multiple planes. The existing 2D
CNN is used to extract the projected point cloud features
on different planes. After fusing multiple features, the de-
scriptor of the point cloud is obtained, which can be used
in downstream tasks. (3). Some methods are point-based.
PointNet [35] proposed a neural network structure that directly
processes the raw point cloud data. PointNet++ [36] further
considers both the global feature and the local feature. Point-
based approaches can be divided into the graph-based method
and the convolution-based method. The graphed-based method
treats the point set as a graph [37]–[39]. The convolution-based
method [40], [41] introduces the concept of the convolution
kernel in 2D CNN to the point cloud. Taking one step
further, recent methods [42], [43] also explore attention and
transformer structures, yielding competitive performance.

B. Self-Supervised Learning

Self-supervised learning is a machine learning paradigm
that uses the structural information of the data itself to
generate labels required for training. (1). Some methods are
based on the transformation invariance. In particular, image
rotations [44], image jigsaw puzzle [45], random erasing [46]
, adaptive exploration [47] have been shown to be helpful. (2).
Some methods are based on the context of data. This type of
method learns the feature by image generation, e.g., image
colorizing [48], image inpainting [49] and super-resolution
methods [50]. [51] adopts a context reconstruction loss for
self-supervised temporal modeling. Generative Adversarial
Networks (GANs) are used for image generation [25], [52],
[53]. (3). Other methods are based on contrastive learning. The

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

type of method mines the structure information from data by
designing loss functions. These methods define positive and
negative samples firstly and then conduct metric learning by
narrowing the distance between positive pairs and widening
the distance between negative pairs. For instance, CPC [54]
introduces anti-noise estimation, while InfoNCE [54] proposes
a loss function based on mutual information. Following the
spirits of these works, researchers [55]–[59] further design
various model architectures and loss functions. Even worse
than 2D image datasets, the annotation of 3D point clouds is
usually unavailable due to the annotation time costs and human
expenses. In recent years, there are several self-supervised
learning methods [60]–[63], which explore the point cloud
pre-training. For instance, Sauder et al. [23] propose space
reconstruction, PointContrast [24] is based on multi-view con-
trastive learning, and DepthContrast [64] leverages contrastive
learning which can handle different input data formats. How-
ever, these methods usually require a relatively large dataset,
such as Scannet [13], and do not solve the data limitation in
real-world tasks. To fill this gap, we adopt a simple point cloud
mixing strategy to enlarge the small dataset. Some works have
already applied the mixing progress to supervised learning as
a data augmentation strategy. For example, PointMixup [30]
proposes the shortest path interpolation with EMD (Earth
Move Distance), while PointCutMix [65] searches the one-to-
one correspondence by EMD. Besides, RSMix [66] proposes
to replace some points by extracting subsets from another
point cloud. Differently, our method focuses on self-supervised
training of point clouds with the disentangling task while these
works only apply the mixing progress as a data augmentation
in supervised learning. From another point of view, our method
is complementary to the existing work. We can apply our
method to conduct self-supervised pre-training on the unla-
beled dataset and fine-tune the model on the downstream task
with the above data augmentation strategies. The main differ-
ence between the proposed method and existing works are:
1). We generate more “within-distribution” training point
clouds via Mixing, which have the same mean and variance
with the original data. This process largely increases the
training pool and lets the model “see” more inlier variants
during training. 2). The proposed pretext task is more
challenging. Separating original objects from mixed point
clouds is more difficult than extracting key points of a
single object. 3). We show that the learned models are
competitive in various downstream tasks and settings.

III. METHODOLOGY

In this section, we illustrate the pipeline and the basic
model, which simply contains two modules, i.e., encoder, and
decoder. Then we explain the training strategy of Mixing and
Disentangling, followed by the discussion on components.

A. Overview

Our model is to recover two 3D input point clouds
according to the corresponding 2D projections from the
mixed point cloud. This challenging task motivates the
model to learn shape-related geometric knowledge, which

Fig. 3. The left part represents a point cloud of N points, and each point
has 3D coordinates. After erasing, the random one-dimensional coordinate of
each point is set to zero which intends to make the pre-training process more
challenging. The right part is the visualization of an erased point cloud of
the plane and its three-view drawing after erasing. The erasing process equals
randomly set about 1

3
N points to the corresponding projection surface.

benefits downstream tasks. As shown in Fig. 2, the structure
is mainly composed of one encoder and one decoder. The
encoder is to extract the embedding vector of the mixed
point cloud. Given the output features from the encoder, the
decoder is used to restore the original point clouds based on
the embedding vector and the conditional input from partial
coordinates of the original point cloud (see Fig. 3). After
pre-training, the encoder can be utilized to extract discrim-
inative features for subsequent tasks, e.g., classification, and
segmentation. As shown in Fig. 4, the black arrows denote the
fine-tuning workflow for recognition, while the blue arrows are
the segmentation workflow. We denote the input point cloud
as a set of points S = {s1, s2, ..., sn}, si ∈ R3 and each point
has 3D coordinates. However, the point cloud does not have
a regular spatial structure as 2D images, we can not apply the
convolutional neural network (CNN) directly. Therefore, we
apply K-Nearest Neighbor (KNN) algorithm to construct the
graph structure G in the feature space. The KNN algorithm
based on the feature inputs can efficiently and effectively find
two points with the most similar semantics, i.e., the points on
the two legs of the chair with similar semantics. The graph
can be expressed as G = (V, E), where V represents the set
of vertices and E ⊆ V × V represents the edge set.

B. Encoder

As shown in Fig. 4, the backbone of the encoder is
composed of three EdgeConv layers and three learnable
aggregation (LA) layers. Specifically, we deploy EdgeConv
layers to leverage the graph information. Given the input of
N ×Hin and the corresponding graph G, the EdgeConv layer
performs feature transformation on the N points and outputs
the updated point features of N × Hout. The input features
can be represented as X = {x1, x2, ..., xn}, xi ∈ RHin

where xi represents the feature of point i. The relation feature
rki ∈ RN×Hout can be formulated via an EdgeConv layer as:

rki =MLP (concat(xi, xi − xk)), k : (i, k) ∈ E , k 6= i, (1)

explicitly encodes the relationship between xi and xk, where
xk is one neighbor of xi and MLP notes a linear function
with ReLU [67]. To consider all the neighbor of xi, we apply
Learnable Aggregation (LA) to the local neighbor relation rki .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 4. Pipeline. The model is mainly composed of one encoder (left) and one decoder (right). Encoder: The encoder takes N points as input and aggregates
the special features of each point and its corresponding points in the neighborhood at an EdgeConv layer. The classification network (top branch) contains
three EgdeConv layers and three learnable aggregation (LA) layers. The output of the encoder is the embedding vector f of the input point cloud. In the
segmentation network, to concatenate with the point-wise feature from the shallow layers, the corresponding embedding vector f is repeated N times for point
segmentation, where N is the number of points. The feature maps from shallow layers are concatenated with the embedding vector to obtain the multiple-scale
feature map as the output of the encoder. Different from the classification branch, the category vector representing the type of point cloud is fused into the
embedding vector for the part segmentation. Decoder: The decoder is composed of Instance-aware Residual Block (InsResBlock), 1× 1 Convolution Layers
and one DenoiseBlock to refine the final reconstructed point cloud. The structure of InsResBlock and DenoiseBlock is shown in a) and b). The random
two-dimensional coordinates of the original point cloud are used as conditional information to be fused with the backbone features in three different layers.

We notice that the current widely-used aggregation methods
applied in the point cloud include both max pooling and
average pooling. It is usually challenging to decide which
pooling function should be used. As one minor contribution,
we involve Learnable Aggregation (LA), which is a learnable
pooling layer, and let the model learn the adaptive weight:

LA(xi) = α× max
(i,k) ∈E,k 6=i

(rki)+(1−α)× avg
(i,k) ∈E,k 6=i

(rki), (2)

where the interpolation ratio α is a learnable parameter of the
network. Finally, the encoder backbone outputs the point cloud
feature map by combining intermediate features from multiple
layers as [68] to enhance the representation capability.For the
classification downstream tasks, we add the max pooling layer
to compress the feature map to the vector, which is sent to
the decoder. When fine-tuning the downstream classification,
we simply add one linear classifier to this learned vector.
As for the segmentation downstream task, which is a dense
point-level task, the vectorization compromises the spatial
representation. Therefore, we concatenate the intermediate
feature maps to keep the same structure for fine-tuning. We
also add the extra category vector to specify part predictions,
because different objects contain different semantic parts. For
instance, the plane contains the aircraft nose, plane body, plane
tail, and wings while the chair has legs, the seat, and the back.
When fine-tuning, similarly, we only need to add one linear
classifier to the learned feature map.

Discussion. By using the proposed mixing mechanism, we
can generate more “within-distribution” point cloud samples,
which largely enriches training samples. The previous meth-
ods [23] use ShapeNet-Part for pre-training and it can only

generate O(M) training samples, where M is the number of
point clouds. In theory, our method can generate O(M ×M)
different point clouds by sampling various cloud pairs, result-
ing in a much larger online generated training sample pool.
The encoder can mine more prior knowledge from data, which
improves downstream tasks. Besides, to extract the features
more efficiently, we propose a new feature aggregation method
LA in the point cloud. Most existing works [36], [39] apply
max pooling to aggregate the neighboring features, which
leads to much information loss. LA leverages a learnable pa-
rameter to dynamically adjust the aggregation method, which
can effectively retain the local structure. More ablation studies
on LA are provided in the experiment.

C. Decoder
We propose an instance-adaptive decoder, which can restore

the input point cloud from the embedding vector according
to the conditional coordinates adaptively. The decoder treats
the embedding vector as the structure representation of the
mixed point cloud and aims to disentangle key points from
different objects. In our network, the decoder is utilized as a
selective filter, which gradually enhances the feature of points
belonging to one object and weakens the feature of the rest
points of another object. After several transformations, the
feature mainly contains the key points of one object, which
can be transformed to the recovered point cloud by the final
linear layers. As shown in Fig. 4, the decoder is composed
of Instance-aware Residual Block (InsResBlock) [69], 1 × 1
Convolution Layers and one denoising module i.e., Denoise-
Block. There are two inputs to the decoder: the mixed point
cloud embedding vector f , the conditional coordinates Ccoord

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

of size N × 3. To recover the original point cloud from the
mixed feature, the 2D projection Ccoord of each point cloud
is given during training. We use the random two-dimensional
coordinates of the original point cloud as partial information.
As shown in Fig. 3, we randomly erase [46] one of the three
coordinates of each point cloud. For each point in a point
cloud, the erased dimensions are randomly generated instead
of taking a certain dimension. Since the direct erasing of a cer-
tain dimension will cause the point cloud to change from N×3
to N × 2, the neural network cannot distinguish the specific
dimensions of the remaining two coordinates. For instance,
the model can not foreknow the two coordinates are (X,Y)
or (X,Z) or (Y,Z). We choose to set the erasing coordinates
to zero instead of directly deleting the dimension. Instance-
aware Residual Block (InsResBlock) is a basic module used
to disentangle the mixed feature from f according to the
conditional coordinates Ccoord. The structure of InsResBlock
is shown in Fig. 4 (a), which is composed of two convolution
layers and instance normalization [70]. A pair of InsResBlock
and 1×1 convolution layer is regarded as a basic decoding unit.
Our decoder D is built with three sequential basic decoding
units, which are connected sequentially to reduce the feature
dimension layer by layer and finally output the generated point
cloud of 3 coordinate channels. For each basic encoding unit,
we concatenate the conditional coordinates and the feature
map from the previous unit to specify the reconstruction target.
To refine the generated point cloud, we further introduce a
denoising module as the last unit of decoder. As shown in
Fig. 4 (b), the denoising module is implemented via a self-
attention manner. The module leverages the context informa-
tion between neighbor points to assign different weights for
adjacent points and noisy points, which can ensure each point
will be optimized with the global information. Given the noisy
point cloud s̃, the denoising module outputs the denoising
point cloud ŝ = Denoise(s̃), s̃ = D(f, Ccoord), where D
represents the decoder. In particular, given the tensor s̃ of
N × 3, we perform average pooling in the dimension of N to
obtain an initial weight of N × 1 for every point. We apply
two convolution layers to aggregate the global information
from all points and normalize the weight of each key point
via the sigmoid function. Then the weight is multiplied by
the original point cloud to obtain the denoised point cloud.
The multiplication allows every point to refer to the neighbor
points and ignore outlier points with low scores.

Discussion. The choice of conditional disentanglement.
The choice of Ccoord has a large impact on the reconstruc-
tion results and downstream tasks. If the decoder can only
obtain little original point cloud information from Ccoord, the
reconstruction effect of disentanglement will be poor. On the
contrary, if the decoder obtains too much information from
the original point cloud, the decoder will restore the original
point cloud based on the conditional information directly. Then
the encoder cannot be well trained to fully mine the geometric
information. We think this choice is still open and in this paper,
we observe that using random two-dimensional coordinates is
a balanced choice, which guarantees the completeness of the
disentanglement and the challenge of the pre-training task.

D. Optimization

As the target of the proposed Mixing and Disentangling
task (MD), we supervise the model training via reconstruction.
Besides, we add the intermediate embedding loss for self-
supervision. There are many candidates for embedding loss. In
this work, without loss of generality, we select contrastive loss
to verify the compatibility of the proposed method instead of
pursuing the best loss. Next, we describe the two objectives.

Reconstruction loss. We apply Chamfer distance to mea-
sure the distance between the original point clouds s and the
reconstructed one ŝ. As Eq. 3 shows, the distance is a sym-
metric function. Since we could not know the exact matching
between two point sets, the Chamfer distance accumulates
one sub-optimal but effective distance between the closest
points in both the original and reconstructed point cloud. The
reconstruction loss can be formulated as:

LChamfer =
1

|ŝ|
∑
p̂∈ŝ

min
p∈s
||p− p̂||2 +

1

|s|
∑
p∈s

min
p̂∈ŝ
||p̂− p||2,

(3)
where p denotes the point position in s, and p̂ denote the

points in ŝ. || · ||2 denotes the L2 distance between two points
and | · | denotes the number of points. Specifically, we apply
the Chamfer distance as the reconstruction loss on s and ŝ.

Embedding loss. Inspired by contrastive loss [71], we
introduce it to our total loss function, which intends to widen
the distance between different categories. In particular, since
we apply a mix strategy, we view every sample as one
single category. Following the existing practise, e.g., Instance
loss [72] and MoCo [56], we encourage that these point
clouds should have different embeddings and deploy metric as
an optimization objective. Given a mini-batch of B different
mixed point clouds, we construct B ×B pairs of samples by
calculating the distance Gij between every pair (i and j). The
basic contrastive loss can be formulated as:

LCon =
1

B2

B∑
i=1

B∑
j=1

[yGij
2 + (1− y)max(0, 1−Gij)

2], (4)

We can transfer the distance into the similarity format.
Considering Qij = 1−Gij , Eq. 4 can be rewritten as:

LCon =
1

B2

B∑
i=1

B∑
j=1

[y(1−Qij)
2 + (1− y)max(0, Qij)

2], (5)

where y = 1 only if i == j, otherwise y = 0. In practise,
we adopt the cosine similarity Qij =

fi·fj
‖fi‖‖fj‖ . Following

the previous self-supervised work [56], we ignore the rare
case that i and j belong to the cloud of the same mixed
category. Moreover, we transfer Eq. 5 to the matric format for
better efficiency, and adopt L1 loss, which is relatively stable.
Considering Qij ∈ [−1, 1], we optimize the distance between
Q+1
2 and an identity matrix I , which can be formulated as:

LCon = |Q+ 1

2
− I|. (6)

Finally, to optimize parameters in both encoder and decoder,
we deploy the total loss as follows:

Ltotal = LChamfer + λLCon, (7)

where λ is the weight to control Contrastive loss. Actually,
Contrastive loss is an optional choice. In the ablation studies,
we also study the effect of Contrastive loss by setting λ = 0.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE I
RESULTS FOR OUR BASELINE AND BASELINE + PRE-TRAINING. WE CARRY

OUT TWO EXPERIMENTS OF CLASSIFICATION AND SEGMENTATION ON
MODELNET-40 AND SHAPENET-PART RESPECTIVELY AND COMPARE THE
ACCURACY WITH SEVERAL COMPETITIVE APPROACHES. THE BASELINE

MODEL WITH PRE-TRAINING ACHIEVES THE HIGHEST ACCURACY.

Methods Publication
ModelNet-40 ShapeNet-Part
Classification Segmentation

OA (%) mA (%) mIoU (%)
3DShapeNets [11] CVPR’15 84.7 77.3 -
VoxNet [31] IROS’15 85.9 83.0 -
PointNet [35] CVPR’17 89.2 86.0 83.7
PointNet++ [36] NeurIPS’17 91.9 - 85.1
SpecGCN [73] ECCV’18 91.5 - -
PCNN by Ext [74] SIGGRAPH’18 92.2 - 85.1
DGCNN [39] TOG’19 92.9 90.2 85.1
Point Trans. [43] ICCV’21 93.7 90.6 86.6
PAConv [41] CVPR’21 93.9 - 86.1
CurveNet [75] ICCV’21 94.2 - 86.8
Ours (from scratch) - 92.74 89.88 85.27
Ours (pre-training) - 93.39 90.26 85.50

OA: Overall Accuracy; mA: Mean Class Accuracy; mIoU: mean IoU

IV. EXPERIMENT

A. Implementation Details

Datasets. (1) ModelNet-40 [11] is sampled from the mesh
surfaces of CAD models, containing 40 categories, 12,311
models. 9,843 models are used for training and 2468 are
reversed for testing. Each point cloud contains 2048 points
and the coordinates of all points are normalized into the unit
sphere. Following existing works [39], [76], we sample 1024
points from each object and augment the data by randomly
scaling objects and perturbing point locations. (2) ShapeNet-
Part [77] is sampled on the CAD models, having a total of
16,881 point clouds, of which 12,137 point clouds are used
for training, 1870 point clouds are used for verifying, and
2874 point clouds are used for testing. Each point cloud is
composed of 2048 points, and the coordinates of all points
are normalized into the unit sphere. We sample 1024 points
from each object. Each point has 4 attributes including the 3D
coordinates of each point and the category label of each point.
(3) S3DIS [78] is a real-scan dataset composed of six large
scale indoor areas with 271 rooms. Each room is split with
1m× 1m area into blocks. We sample 4096 points from each
block. Each point has 9 attributes including 3D coordinates,
RGB channels and normalized 3D coordinates of each point.

Implementation. The pre-trained model is trained with
Adam optimizer (β1 = 0.9, β2 = 0.99) of a minibatch of
12 for 200 epochs. The initial learning rate is set to 1e-4. We
gradually decrease the learning rate via the cosine policy [79].
Following existing works [39], [76], we adopt position
jittering as data augmentation and set k = 20 for the KNN
algorithm to build the dynamic graph. In the classification
network, to fairly compare with other works, we deploy four
EdgeConv layers and the channel number is {64, 64, 128,
256} by default. In the segmentation network, we adopt three
EdgeConv layers and the channel number is {64, 64, 64}.
Two dropouts with 0.5 drop rate are used when fusing the
conditional coordinates and the embedding vector. We deploy
one Nvidia RTX 3090 by default. The pre-training time is

Fig. 5. The loss curve on ModelNet-40 test set during pre-training. We
observe that the proposed method can converge smoothly.

Fig. 6. Visualization of recovered point clouds after disentangling. The
experiment is performed on the Shapenet-Part. We observe that the proposed
method can successfully disentangle the mixed point cloud into two separate
point clouds. In line 5, the chair and the table have a similar structure. There
is a hole in the middle of the table and the model tends to fill this hole which
makes the disentangling more challenging.

about one day. FLOPs (Floating Point Operations) of the whole
model is 2.798 GFLOPs and the number of parameters is
2.070 M. The test time is about 0.0019 seconds per point cloud.
FLOPs and the number of parameters of the decoder are 0.729
GFLOPs and 0.712 M. It is worth noting that the complexity
of our model mainly depends on the encoder structure. Our
method is open to different encoder choices, which can be
selected according to the computing resource. The proposed
method can converge smoothly as shown in Fig. 5. In the fine-
tuning stage, we add a linear classifier for both classification
and segmentation tasks. The segmentation task demands extra
category vector (see Fig. 4). We keep a random category vector
during pre-training to hold the position and provide the real
category vector during fine-tuning.

B. Quantitative & Qualitative Results

The pre-training improves the baseline. We evaluate how
the pre-training affects the performance in Tab. I. For the
classification task, the model is pre-trained and fine-tuned on
ModelNet-40. We note that the pre-trained model gets an over-
all accuracy of 93.39%, which have +0.65% than the baseline
(92.74%). Similarly, the mean class accuracy also increases
from 89.88% to 90.26% with +0.38% accuracy improvement.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 7. Visualization of the distance between input point clouds PA and PB

in 3 layers of the decoder. We observe that the distance between PA and PB

becomes larger from the shallow layer to the deep layer in the decoder.

Fig. 8. Visualization of the key points of the mixed point cloud. a) is the
point cloud mixed by b) and c), and the key points of a) is indicated by red
points. The result shows that our encoder can successfully capture the key
points of two original point clouds after pre-training.

For the segmentation task, the model is pre-trained and fine-
tuned on ShapeNet-Part. The pre-trained model achieves a
competitive mean Intersection-over-Union (mIoU) of 85.50%.
Experimental results show that the accuracy of our baseline
surpasses three existing works, and pre-training can still bring
gains to the accuracy both in classification and segmentation
tasks, which verifies the effectiveness of our pretext task.

Visualization of the reconstructed point cloud. (1) As
shown in Fig. 6, we visualize original point clouds, mixed
point clouds, and generated point clouds on ShapeNet-Part.
Our method achieves good reconstruction results, recovering
the key geometry. (2) We further track the decoder activation
changes during reconstruction. Given one mixed embedding
(extracted from mixed PA and PB), we visualize the disentan-
gle process via Chamfer distance (see Fig. 7). There are three
layers in our decoder and the channel of each layer output
is 128, 64, and 3. We normalize the output feature in the
channel dimension and divide the Chamfer distance by the
channel dimension for distance calculation. We observe that
the distance between PA and PB becomes larger from the
shallow layer to the deep layer in the decoder. It indicates that
the decoder follows the conditional information and chooses
different features for reconstructing PA and PB respectively.

Visualization of key points. We visualize the top 25% key
points of the mixed point cloud, which has max activation after
the last pooling layer in the encoder (see Fig. 8). The result
shows that the key points of a) include the key points of both
b) and c), which verifies that the pre-trained embedding learns
the salient geometric information of both input point clouds.

TABLE II
THE PERFORMANCE OF OUR METHOD IN THE REAL-SCAN DATASET. WE

PRE-TRAIN THE MODEL ON S3DIS AND FINE-TUNE THE MODEL IN 3
DIFFERENT TASKS. THE RESULTS SUGGEST A CONSISTENT IMPROVEMENT.

Methods
ModelNet-40 ShapeNet-Part S3DIS
Classification Segmentation Segmentation

OA (%) mA (%) mIoU (%) mIoU (%)
Ours (from scratch) 92.74 89.88 85.27 50.78
Ours ∗ 92.78 90.06 85.37 51.74

OA: Overall Accuracy; mA: Mean Class Accuracy; mIoU: mean IoU;
∗ means pre-training on S3DIS

TABLE III
SEGMENTATION RESULTS ON PARTIAL LABELED DATA. THE

PERFORMANCE BOOST IS MORE SIGNIFICANT WHEN LABELED DATA IS
LIMITED, VERIFYING OUR INTUITION TO BENEFIT THE REAL-WORLD

MODEL TRAINING UNDER THE DATA LIMITATION.
Labeled Data Ratio (%) Pre-trained Average Accuracy (%) mIoU (%)

10 74.02 81.59
10 X 77.04 82.23
25 80.39 83.76
25 X 81.11 84.49
50 81.46 84.71
50 X 83.31 85.04

Visualization of embeddings. To verify the scalability of
learned embeddings, we extract embeddings of ShapeNet-Part
via the pre-trained model on ModelNet-40. We apply the T-
SNE [80] to reduce the dimension of the embedding vector
to R2 for plotting. As shown in Fig. 9, the distance between
intra-class samples is small and the distance between inter-
class is large. The above result supports the generalization of
the pre-trained encoder to unseen point clouds.

C. Ablation Studies and Further Discussion

Performance on the real-scan dataset. We further conduct
our pre-training process on S3DIS, a real-scan dataset. S3DIS
has 6 areas and we follow existing works [43] using area 5
for testing and others for training. We pre-train our model in
the training part and then we fine-tune the pre-trained model
on ModelNet-40 for the classification task, on ShapeNet-
part for the part segmentation task and on S3DIS for the
segmentation task. As shown in Tab. II, our method benefits
the performance both on ModelNet-40 and ShapeNet-part. It
verifies the scalability of the model pre-trained on the large
dataset. Furthermore, in the real-scan dataset, our model with
pre-training achieves better performance 51.74% mIoU than
the model trained from scratch (50.78%) by a clear margin.

Illustration of “within-distribution” data. The “within-
distribution” means that generated point clouds have similar
characteristic (e.g., mean and variance) with the original point
clouds. Some existing works apply GAN to generate 3D point
clouds. This line of works may change the data distribution
(mean and variance), since 3D point clouds are typically
generated from random Gaussian noise [81]–[83]. Compared
with these GAN-based methods, new point clouds generated
by our method are more similar to the original ones from a
statistics view. We sample 1000 point clouds from ModelNet-
40 and plot the distance between each point to its center
point. In Fig. 10, we observe that the distribution between the
original data and mixed 3D point clouds is almost identical.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE IV
SEMI-SUPERVISED SEGMENTATION RESULTS ON 10% LABELED DATA. WE
CAN OBSERVE TWO POINTS: (1) BOTH PSEUDO LABEL-BASED APPROACH
AND OUR METHOD CAN IMPROVE THE PERFORMANCE. (2) OUR METHOD
CAN BE COUPLED WITH OTHER SEMI-SUPERVISED LEARNING METHODS

TO IMPROVE THE PERFORMANCE.

Methods Pre-trained Average Accuracy (%) mIoU (%)
baseline 74.02 81.59
baseline X 77.04 82.23
pseudo label 72.39 82.50
pseudo label X 73.57 82.81

Fig. 9. The visualization of embeddings on ShapeNet-Part in the semantic
space via T-SNE [80]. The encoder is pre-trained on ModelNet-40 and is
applied to encode the point clouds on ShapeNet-Part directly. The results
show that the distance between intra-class samples is small while the distance
between inter-class data is large, which verifies that our encoder learns a
robust and general structure embedding vector.

Comparisons under the semi-supervised setting. In some
real scenarios, labeled data is inadequate. To simulate this
harsh situation, we divide the original dataset into two parts
A and B, and regard A as unlabeled data. We use A + B
to pre-train the model and use B to fine-tune the model.
(1) We set the percentages of labeled data as 10%, 25%,
and 50% respectively. We verify the effect of pre-training by
comparing the encoder trained from scratch with the encoder
pre-trained on ShapeNet-Part in Tab. III. The results show
that as the amount of labeled data increases, the accuracy of
segmentation gradually increases. The performance of the pre-
trained model generally surpasses that of the model trained
from scratch, especially when the labeled data is extremely
limited. This verifies that our method can successfully leverage
unlabeled data to improve the accuracy of the model with
limited annotated data. (2) Although our work is not designed
for the semi-supervised setting, it can nevertheless be coupled
with other semi-supervised learning methods. To verify this
point, we build a preliminary semi-supervised baseline based
on predicted pseudo labels. We adopt 10% labeled data to train
the baseline model. Pseudo labels for the rest 90% unlabeled
data are then predicted by this baseline model. We select
the unlabeled data with the pseudo label confidence greater
than 0.7 and the original 10% labeled data to form the new
training set, and then fine-tune the segmentation model. In
Tab. IV, the model trained on the pseudo-labeled data improves
the mIoU performance from 81.59% to 82.50%, but is suffer
from the label noise, which compromises average accuracy.
Our pre-training method can be coupled with the pseudo
label to relieve the negative impact from noisy annotations.
Specifically, initializing the model with our pre-training weight

Fig. 10. We sample 1000 point clouds and count the distance from each
point to the center of its point cloud. The X-axel means the distance from
each point to the center point and the Y-axel means the number of points
belonging to each distance interval. We observe that both the mean and std
by mixing 3D point clouds are identical to the original data distribution.

TABLE V
WE SELECT 20 CLASSES OF 40 CATEGORIES ON MODELNET-40 FOR
PRE-TRAINING, AND THE REST 20 CLASSES FOR FINE-TUNING AND

TESTING. THE ACCURACY OF OUR METHOD SURPASSES THE MODEL
TRAINED FROM SCRATCH BY A CLEAR MARGIN.

Methods OA (%) mA (%)
baseline 95.07 93.82
pre-training 96.65 94.14

can help to predict more robust pseudo labels. Therefore, semi-
supervised methods with our pre-training can arrive at better
average accuracy from 72.39% to 73.57% and mIoU from
82.50% to 82.81%. (3) We further study category-wise semi-
supervised setting. In particular, we select 20 classes of 40
categories on ModelNet-40 for pre-training, and the rest 20
classes for fine-tuning and testing, while the compared baseline
model is training and testing only on the remaining 20 classes.
We compare the performance of the model initialized ran-
domly (baseline) and initialized with our pre-training method
in Tab. V. The accuracy of our method surpasses the model
trained from scratch by a clear margin.

Scalability of learned embeddings. We apply a simple
linear classifier to directly classify learned embeddings. The
classifier consists of a linear layer, a batch norm layer and a
linear layer. We arrive at a competitive accuracy of 89.63%
with the fine-tuning result of 93.39% on ModelNet-40. Similar
to the observation in the large pre-training model CLIP [84],
fine-tuning helps the pre-trained model to achieve better per-
formance on specific sub-tasks, while directly using learned
features also is a sub-optimal but efficient choice.

Effect of the learnable aggregation. We deploy LA to
aggregate neighbor point features. We apply the same network
architecture to compare the accuracy of LA, max pooling, and
attentive pooling [38]. As shown in Tab. VI, regardless of pre-
training, the accuracy of using LA is higher than that of using
max pooling or attentive pooling. The observation verifies that
LA can better preserve the local context of the point cloud.
There are 3 LA modules in our model and concrete numbers
of learned α in each layer are 0.6996, 0.6503, and 0.5500 from
shallow layer to deep layer in the encoder. It means that in
shadow layers, max pooling plays an important role to reduce
the redundant points, and in deep layers, average pooling is
as important as max pooling to aggregate the feature.

Effect of the contrastive loss. We apply the contrastive loss
to narrow the distance between similar samples and widen the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 11. Visualization results of generated point clouds. The original point
cloud is shown in a). b) is the generated point cloud without denoising and c)
is the point cloud after denoising. The result shows that the denoise module
can help to remove the noise point circled in b).

TABLE VI
ABLATION STUDY ON DIFFERENT COMPONENTS DURING TRAINING. WE

VERIFY THE EFFECTS OF LA MODULE AND CONTRASTIVE LOSS.

Pooling Method Pre-trained Contrastive loss mIoU (%)
Max Pooling 85.17
Max Pooling X 85.34

Attentive Pooling [38] 85.12
Attentive Pooling X X 85.36

LA 85.27
LA X 85.40
LA X X 85.50

distance between different samples. The encoder can extract
more robust embedding from data, which can improve down-
stream tasks. We train two pre-trained models with or without
the contrastive loss and then fine-tune the two models on
ShapeNet-Part, and finally, compare the segmentation accuracy
of the two models in Tab. VI. We observe that the contrastive
loss can further improve the segmentation performance.

Effect of DenoiseBlock. The visualization results are shown
in Fig. 11. a) is the original point cloud, and b) is the
generated point cloud obtained by the network without the
denoising module. c) is the generated point cloud obtained by
the network with the denoising module. We can find that there
is a noise point circled in the red circle of b). The denoising
module successfully pulls the noise point back to the point
cloud by considering the global feature.

Compatibility with different backbone structures. To
verify that our pretext task is free from the choice of back-
bones, we further explore leveraging several widely-adopted
architecture as the backbone of the point cloud encoder, such
as PointNet++ [36], OGNet [76], PAConv [41], Point Trans-
former [43] and Point Cloud Transformer [42]. We compare
the accuracy of the model trained from scratch and initialized
with the pre-trained model. We carry out experiments of
classification respectively and results are shown in Tab. VII.
We observe consistent improvements with these backbones
which verifies the generality of the proposed method.

V. CONCLUSION

In this paper, we propose a new self-supervised learning
method, called Mixing and Disentangling (MD), for point
cloud pre-training. Different from existing works, we propose
to mix the original point clouds in the training set to form
“new” data and then demand the model to “separate” the
mixed point cloud. In this way, the model is asked to mine

TABLE VII
RESULTS OF USING DIFFERENT BACKBONES. WE CAN OBTAIN ONE

CONSISTENT RESULT THAT OUR METHOD IS COMPATIBLE WITH
DIFFERENT NETWORK STRUCTURES AND CAN STILL IMPROVE THE

ACCURACY OF CLASSIFICATION AND SEGMENTATION TASKS.

Methods Pre-trained
ModelNet-40
Classification

OA (%) mA (%)
Ours - 92.74 89.88
Ours ShapeNet-Part 92.79 90.10
Ours ModelNet-40 93.39 90.26
PointNet++ [36] ∗ - 92.07 88.89
PointNet++ ∗ + Ours ShapeNet-Part 92.19 89.63
PointNet++ ∗ + Ours ModelNet-40 92.57 89.96
OGNet∗ [76] - 93.23 89.82
OGNet∗ + Ours ShapeNet-Part 93.35 90.51
OGNet∗ + Ours ModelNet-40 93.31 90.71
PAConv∗ (PN) [41] - 92.50 -
PAConv∗ (PN) + Ours ShapeNet-Part 92.70 -
PAConv∗ (PN) + Ours ModelNet-40 92.79 -
PT∗ [43] - 91.47 89.32
PT∗ + Ours ShapeNet-Part 92.03 89.50
PT∗ + Ours ModelNet-40 92.07 89.58
PCT∗ [42] - 92.71 89.36
PCT∗ + Ours ShapeNet-Part 93.07 90.27
PCT∗ + Ours ModelNet-40 93.15 90.56

PT donates Point Transformer. PCT donates Point Cloud Transformer.
PAConv (PN) donates using PointNet as the backbone (without voting). OA:

Overall Accuracy; mA: Mean Class Accuracy; mIoU: mean IoU; ∗: We
re-implement the model, which achieves a slightly different performance.

the geometric knowledge, e.g., the shape-related key points
for reconstruction. To verify the effectiveness of the proposed
method, we build a simple baseline to implement our method.
We use an encoder to obtain the embedding of the mixed point
cloud and then an instance-adaptive decoder is harnessed to
separate the original point clouds. During the self-supervised
training, the encoder learns the prior knowledge of point cloud
structure, which is scalable and can improve the downstream
tasks. Experiments show consistent performance improvement
through classification and segmentation tasks and verify the
effectiveness of our method especially when the number of
labeled data is limited. We hope that our approach can benefit
the future point cloud works, and take one closer step to the
harsh real-world setting, i.e., limited annotations. In the future,
we will continue to study the point cloud pre-training method
on large-scale datasets, and focus on finding an efficient way
to take advantage of the large-scale point data.

REFERENCES

[1] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang,
A. Sheffer, and L. Guibas, “A scalable active framework for region
annotation in 3d shape collections,” ACM TOG, 2016.

[2] Y. Cui, R. Chen, W. Chu, L. Chen, D. Tian, Y. Li, and D. Cao, “Deep
learning for image and point cloud fusion in autonomous driving: A
review,” IEEE Transactions on Intelligent Transportation Systems, 2021.

[3] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and J. Li,
“Deep learning for lidar point clouds in autonomous driving: a review,”
TNNLS, 2020.

[4] A. Tampuu, T. Matiisen, M. Semikin, D. Fishman, and N. Muhammad,
“A survey of end-to-end driving: Architectures and training methods,”
TNNLS, 2020.

[5] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” TPAMI, 2020.

[6] T. Wan, S. Du, W. Cui, R. Yao, Y. Ge, C. Li, Y. Gao, and N. Zheng,
“Rgb-d point cloud registration based on salient object detection,”
TNNLS, 2021.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

[7] Y. Chen, H. Li, R. Gao, and D. Zhao, “Boost 3-d object detection via
point clouds segmentation and fused 3-d giou-l loss,” TNNLS, 2020.

[8] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang, “Pixel2mesh:
Generating 3d mesh models from single rgb images,” in ECCV, 2018.

[9] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “Learning semantic segmentation of large-scale point
clouds with random sampling,” TPAMI, 2021.

[10] X. Huang, G. Mei, J. Zhang, and R. Abbas, “A comprehensive survey
on point cloud registration,” arXiv:2103.02690, 2021.

[11] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shapes,” in CVPR,
2015.

[12] I. Armeni, S. Sax, A. R. Zamir, and S. Savarese, “Joint 2d-3d-semantic
data for indoor scene understanding,” arXiv:1702.01105, 2017.

[13] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in CVPR, 2017.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in MICCAI, 2015.

[15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015.

[16] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in CVPR, 2017.

[17] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in ECCV, 2018.

[18] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, “Deep image retrieval:
Learning global representations for image search,” in ECCV, 2016.

[19] H. Yao, S. Zhang, D. Zhang, Y. Zhang, and T. Qi, “Large-scale person
re-identification as retrieval,” in ICME, 2017.

[20] Z. Zheng, Z. Liang, and Y. Yi, “Unlabeled samples generated by gan
improve the person re-identification baseline in vitro,” in ICCV, 2017.

[21] L. Zhang, M. Luo, J. Liu, X. Chang, Y. Yang, and A. G. Hauptmann,
“Deep top-k ranking for image–sentence matching,” TMM, vol. 22,
no. 3, pp. 775–785, 2019, doi:10.1109/TMM.2019.2931352.

[22] Z. Zheng, T. Ruan, Y. Wei, Y. Yang, and T. Mei, “Vehiclenet: Learning
robust visual representation for vehicle re-identification,” TMM, vol. 23,
pp. 2683–2693, 2020, doi:10.1109/TMM.2020.3014488.

[23] J. Sauder and B. Sievers, “Self-supervised deep learning on point clouds
by reconstructing space,” NeurIPS, 2019.

[24] S. Xie, J. Gu, D. Guo, C. R. Qi, L. Guibas, and O. Litany, “Pointcontrast:
Unsupervised pre-training for 3d point cloud understanding,” in ECCV,
2020.

[25] Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz, “Joint
discriminative and generative learning for person re-identification,” in
CVPR, 2019.

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet Large Scale Visual Recognition Challenge,” IJCV, 2015.

[27] P. Wang, Y. Gan, P. Shui, F. Yu, Y. Zhang, S. Chen, and Z. Sun, “3d
shape segmentation via shape fully convolutional networks,” Computers
& Graphics, vol. 76, pp. 182–192, 2018.

[28] L. Yi, L. Shao, M. Savva, H. Huang, Y. Zhou, Q. Wang, B. Gra-
ham, M. Engelcke, R. Klokov, V. Lempitsky et al., “Large-scale
3d shape reconstruction and segmentation from shapenet core55,”
arXiv:1710.06104, 2017.

[29] Q. Meng, W. Wang, T. Zhou, J. Shen, Y. Jia, and L. Van Gool, “Towards
a weakly supervised framework for 3d point cloud object detection and
annotation,” TPAMI, 2021.

[30] Y. Chen, V. T. Hu, E. Gavves, T. Mensink, P. Mettes, P. Yang, and C. G.
Snoek, “Pointmixup: Augmentation for point clouds,” in ECCV, 2020.

[31] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network
for real-time object recognition,” in IROS, 2015.

[32] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in ICCV, 2015.

[33] Z. Li, H. Wang, and J. Li, “Auto-mvcnn: Neural architecture search for
multi-view 3d shape recognition,” arXiv:2012.05493, 2020.

[34] Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh,
“Polarnet: An improved grid representation for online lidar point clouds
semantic segmentation,” in CVPR, 2020.

[35] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in CVPR, 2017.

[36] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” NeurIPS, 2017.

[37] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[38] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “Randla-net: Efficient semantic segmentation of large-
scale point clouds,” in CVPR, 2020.

[39] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM TOG,
vol. 38, no. 5, pp. 1–12, 2019.

[40] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. J. Guibas, “Kpconv: Flexible and deformable convolution for point
clouds,” in ICCV, 2019.

[41] M. Xu, R. Ding, H. Zhao, and X. Qi, “Paconv: Position adaptive
convolution with dynamic kernel assembling on point clouds,” in CVPR,
2021.

[42] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu,
“Pct: Point cloud transformer,” Computational Visual Media, 2021.

[43] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,”
in ICCV, 2021.

[44] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations,” in ICLR, 2018.

[45] M. Noroozi and P. Favaro, “Unsupervised learning of visual represen-
tations by solving jigsaw puzzles,” in ECCV, 2016.

[46] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” in AAAI, 2020.

[47] Y. Ding, H. Fan, M. Xu, and Y. Yang, “Adaptive exploration for
unsupervised person re-identification,” ACM TOMM, vol. 16, no. 1, pp.
1–19, 2020, doi:10.1145/3369393.

[48] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in
ECCV, 2016.

[49] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in CVPR, 2016.

[50] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, and Z. Wang, “Photo-realistic single
image super-resolution using a generative adversarial network,” in IEEE
Computer Society, 2016.

[51] L. Zhu, H. Fan, Y. Luo, M. Xu, and Y. Yang, “Temporal cross-layer
correlation mining for action recognition,” TMM, pp. 1–1, 2021, doi:10.
1109/TMM.2021.3057503.

[52] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
NeurIPS, 2014.

[53] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in ICCV, 2017.

[54] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv:1807.03748, 2018.

[55] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in ICML.

[56] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in CVPR, 2020.

[57] T. Han, W. Xie, and A. Zisserman, “Self-supervised co-training for video
representation learning,” NeurIPS, 2020.

[58] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar et al.,
“Bootstrap your own latent-a new approach to self-supervised learning,”
NeurIPS, 2020.

[59] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins:
Self-supervised learning via redundancy reduction,” in ICML, 2021.

[60] L. Zhang and Z. Zhu, “Unsupervised feature learning for point cloud
understanding by contrasting and clustering using graph convolutional
neural networks,” in 3DV, 2019.

[61] Z. Han, X. Wang, Y.-S. Liu, and M. Zwicker, “Multi-angle point cloud-
vae: Unsupervised feature learning for 3d point clouds from multiple
angles by joint self-reconstruction and half-to-half prediction,” in ICCV,
2019.

[62] Y. Rao, J. Lu, and J. Zhou, “Global-local bidirectional reasoning for
unsupervised representation learning of 3d point clouds,” in CVPR, 2020.

[63] P.-S. Wang, Y.-Q. Yang, Q.-F. Zou, Z. Wu, Y. Liu, and X. Tong, “Un-
supervised 3D learning for shape analysis via multiresolution instance
discrimination,” 2021.

[64] Z. Zhang, R. Girdhar, A. Joulin, and I. Misra, “Self-supervised pretrain-
ing of 3d features on any point-cloud,” in ICCV, 2021.

[65] J. Zhang, L. Chen, B. Ouyang, B. Liu, J. Zhu, Y. Chen, Y. Meng,
and D. Wu, “Pointcutmix: Regularization strategy for point cloud
classification,” Neurocomputing, vol. 505, pp. 58–67, 2022.

[66] D. Lee, J. Lee, J. Lee, H. Lee, M. Lee, S. Woo, and S. Lee, “Regu-
larization strategy for point cloud via rigidly mixed sample,” in CVPR,
2021.

[67] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010.

10.1109/TMM.2019.2931352
10.1109/TMM.2020.3014488
10.1145/3369393
10.1109/TMM.2021.3057503
10.1109/TMM.2021.3057503

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

[68] Y. Yang, Y. Zhuang, and Y. Pan, “Multiple knowledge representation
for big data artificial intelligence: framework, applications, and case
studies,” Frontiers of Information Technology & Electronic Engineering,
vol. 22, no. 12, pp. 1551–1558, 2021, doi:10.1631/FITEE.2100463.

[69] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in ICCV, 2017.

[70] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” arXiv:1607.08022, 2016.

[71] R. Hadsell, S. Chopra, and Y. Lecun, “Dimensionality reduction by
learning an invariant mapping,” in CVPR, 2006.

[72] Z. Zheng, L. Zheng, M. Garrett, Y. Yang, M. Xu, and Y.-D. Shen, “Dual-
path convolutional image-text embeddings with instance loss,” ACM
Transactions on Multimedia Computing, Communications, and Appli-
cations (TOMM), vol. 16, no. 2, pp. 1–23, 2020, doi:10.1145/3383184.

[73] C. Wang, B. Samari, and K. Siddiqi, “Local spectral graph convolution
for point set feature learning,” in ECCV, 2018.

[74] M. Atzmon, H. Maron, and Y. Lipman, “Point convolutional neural
networks by extension operators,” ACM Transactions on Graphics, 2018.

[75] T. Xiang, C. Zhang, Y. Song, J. Yu, and W. Cai, “Walk in the cloud:
Learning curves for point clouds shape analysis,” in ICCV, 2021.

[76] Z. Zheng and Y. Yang, “Parameter-efficient person re-identification in
the 3d space,” arXiv:2006.04569, 2020.

[77] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv:1512.03012, 2015.

[78] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer,
and S. Savarese, “3d semantic parsing of large-scale indoor spaces,” in
CVPR, 2016.

[79] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” in ICLR, 2016.

[80] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” JMLR,
2008.

[81] J. Zhang, X. Chen, Z. Cai, L. Pan, H. Zhao, S. Yi, C. K. Yeo, B. Dai, and
C. C. Loy, “Unsupervised 3d shape completion through gan inversion,”
in CVPR, 2021.

[82] D. W. Shu, S. W. Park, and J. Kwon, “3d point cloud generative
adversarial network based on tree structured graph convolutions,” in
ICCV, 2019.

[83] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-gan: a point
cloud upsampling adversarial network,” in ICCV, 2019.

[84] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in ICML, 2021.

Chao Sun received the B.E. degree in software en-
gineering from Zhejiang University, China, in 2021.
He is currently a master student with the School of
Computer Science at Zhejiang University, China. His
current research interests include the 3D point cloud
and the generative models.

Zhedong Zheng received the Ph.D. degree from the
University of Technology Sydney, Australia, in 2021
and the B.S. degree from Fudan University, China, in
2016. He is currently a postdoctoral research fellow
at Sea-NExT joint lab, School of Computing, Na-
tional University of Singapore. He was an intern at
Nvidia Research (2018) and Baidu Research (2020).
His research interests include robust learning for
image retrieval, generative learning for data augmen-
tation, and unsupervised domain adaptation.

Xiaohan Wang received the Ph.D. degree in com-
puter science from University of Technology Syd-
ney, Australia, in 2021. He received the B.E. de-
gree from University of Science and Technology of
China, China, in 2017. He is currently a postdoctoral
researcher with the College of Computer Science
and Technology, Zhejiang University, China. His
research interest includes video analysis, egocentric
vision and multi-modal understanding.

Mingliang Xu is a professor in the School of
Information Engineering of Zhengzhou University,
China. He received his Ph.D. degree in computer
science and technology from the State Key Lab of
CAD&CG at Zhejiang University, Hangzhou, China,
and the B.S. and M.S. degrees from the Com-
puter Science Department, Zhengzhou University,
Zhengzhou, China, respectively.

Yi Yang received the Ph.D. degree in computer
science from Zhejiang University, Hangzhou, China,
in 2010. He is currently a professor with University
of Technology Sydney, Australia. He was a Post-
Doctoral Research with the School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA,
USA. His current research interest includes machine
learning and its applications to multimedia content
analysis and computer vision.

10.1631/FITEE.2100463
10.1145/3383184

