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Scale Up Composed Image Retrieval Learning
via Modification Text Generation
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Abstract—Composed Image Retrieval (CIR) aims to search
an image of interest using a combination of a reference image
and modification text as the query. Despite recent advancements,
this task remains challenging due to limited training data and
laborious triplet annotation processes. To address this issue, this
paper proposes to synthesize the training triplets to augment the
training resource for the CIR problem. Specifically, we commence
by training a modification text generator exploiting large-scale
multimodal models and scale up the CIR learning throughout
both the pretraining and fine-tuning stages. During pretraining,
we leverage the trained generator to directly create Modification
Text-oriented Synthetic Triplets (MTST) conditioned on pairs of
images. For fine-tuning, we first synthesize reverse modification
text to connect the target image back to the reference image.
Subsequently, we devise a two-hop alignment strategy to incre-
mentally close the semantic gap between the multimodal pair and
the target image. We initially learn an implicit prototype utilizing
both the original triplet and its reversed version in a cycle
manner, followed by combining the implicit prototype feature
with the modification text to facilitate accurate alignment with the
target image. Extensive experiments validate the efficacy of the
generated triplets and confirm that our proposed methodology
attains competitive recall on both the CIRR and FashionIQ
benchmarks. Codes and datasets will be made publicly accessible.

Index Terms—Composed image retrieval, Text generation,
Metric learning, Information retrieval.

I. INTRODUCTION

IN the context of Composed Image Retrieval (CIR), a given
reference image and the modification text (also known as

modifier) are utilized to amalgamate information across both
visual and textual modalities, to pinpoint the most congruous
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Fig. 1: Comparison of existing automatic modifier gen-
eration method and ours. Above: Existing methods utilize
indirect information, such as labels and captions of images
to generate modifiers, which often results in poorer notation
quality, limited text length, and a lack of diversity in textual
form. Below: Our proposed method combines the image pair
and instruction, mapping them into a frozen LLM for text
generation. This allows for a more flexible description of the
details between images and generates high-quality modifica-
tion text with controllable length.

target image within an image gallery. In contrast to the
conventional image retrieval tasks reliant solely on textual
information [1], [2] or tag information [3], the CIR model
demands superior feature extraction, fusion, and inference
capabilities. Images encapsulate rich visual information and
intuitive perceptions, while text provides precise descriptions
and semantic understanding of image content. The fusion of
these two modalities for retrieval purposes can support the
identification of the target image more accurately. As a result,
CIR is regarded as a meaningful and promising research area
and extensive efforts have been dedicated to this task [4]–[12].
Common practices typically utilize the well-annotated triplets
to train the models. However, the annotation of triplets requires
remarkable human efforts and triplets cannot be collected from
social web-like image-text pairs.

Motivated by the achievements of AIGC [13]–[21], a
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Fig. 2: An intuitive prototype example of the reference
image’s prototype reached by the modifier and the target
image’s prototype reached by the reversed modifier. The green
dashed line represents the content preserved in the image
based on the corresponding modification text. The blue dashed
line represents the modifications and additions made to the
prototype based on the corresponding modified text.

straightforward solution for this issue is the synthesis of
triplets. Predominantly, the procedure can be bifurcated into
two methodologies: (1) One might resort to leveraging image
editing models [16] to manipulate the reference images based
on the provided modification text. However, there is a domain
gap between the real image and the synthesized one. (2) Some
alternative approaches [22]–[24] utilize labels or captions of
two related images and combine that information with some
delicate prompts or templates as input to large language
models to generate modification texts indirectly (see Figure 1).
This approach often results in poorer notation quality, limited
text length, and a lack of diversity in textual form.

With the above considerations, we resort to generating the
modification text using the reference and target image as
input. This solution, on the one hand, produces the textual
modality, whose gap is smaller than the visual modality.
On the other hand, sufficient triplets can be generated by
simply feeding two images, which is similar to the manual
labeling process. To generate reliable modification text, we
leverage the annotated triplets as the training source and train
a modification text generator by tuning the multimodal large-
scale models. Subsequently, we mine a substantial number of
relevant image pairs using similar labels or image sets. With
the trained generator and image pairs, we can freely generate
the Modification Text-oriented Synthetic Triplets (MTST) to
augment the original benchmarks, supporting a large scale
pretraining. The final model can be harvested by following the
standard CIR learning protocol for fine-tuning, which merges
query pairs and aligns the queries with target images.

Nonetheless, a key distinction lies in the nature of the modi-
fication text in CIR, which acts less as a content descriptor and
more akin to a two-part instructional guide. The information
in the modification text for one reference image can be divided
into two parts: one part pertains to the elements or features
of the reference image that need to be preserved, which are
usually expressed implicitly, and the other part includes new
additions or changes. Figure 2 shows one example to illustrate
this characteristic of the modifier. If we start from the origin

and add two orthogonal pieces of information, [logo] and
“short sleeves” result in the reference image, while [logo]
and “long sleeves” point to the target image. Therefore, the
modifier, “Same logo but is long sleeves”, which transitions
from the reference to the target image, can be decoupled
into two steps. The first step is to retain identical or similar
information from the reference image, corresponding to “same
logo”, along with other implicitly unmentioned details such
as the collar style and color. We denote these preserved traits
as the implicit prototype, generated based on the reference
image and the corresponding modification text. The second
step combines the implicit prototype with new or altered
content from the modifier, such as “longer sleeves”, to form a
composite query to retrieve the most suitable target image.

Motivated by this observation, we design a Prototypical
Two-Hop Alignment (PTHA) strategy to progressively bridge
the semantic gap between the multi-modal query and the target
image. In particular, PTHA decouples the alignment into two
steps: the first step generates the reverse modifier using the
MTST generator and learns the implicit prototype preserving
the sharing clues, while the second step combines the implicit
prototype with the modifier to align with the target image. In
a nutshell, the contribution can be summarized as follows:
• Considering the triplet scarcity in composed image re-

trieval (CIR), we contribute a generation framework of
Modification Text-oriented Synthetic Triplets (MTST) to
augment the existing benchmarks with high-quality syn-
thetic triplets, supporting effective pre-training for CIR.

• We build two large-scale pretraining datasets for nature
and fashion domains with our trained modification text
generator, containing 800K and 580K triplets with ex-
pressive modification texts.

• A Prototypical Two-Hop Alignment (PTHA) strategy is
proposed, which decouples the CIR problem as a two-step
alignment paradigm to gradually bridge the gap between
the multimodal query and the target image.

• Benefiting from the generated high-quality triplets and
our devised PTHA network, we achieve comparable
results, with improvements of +2.39 in Avg. on the
CIRR benchmark from nature and +1.57 in Avg. on the
FashionIQ benchmark.

II. RELATED WORK

A. Vision Language Models

In recent years, significant progress has been made in the
foundational research of Vision Language Models (VLMs).
Typical models like CLIP [25] and ALIGN [26] achieve cross-
modal understanding by leveraging contrastive learning on
large-scale image and text pairs. Li et al. [27] introduce image-
text matching and masked language modeling (MLM) tasks
during training to enhance fine-grained matching. BLIP [28]
equip the pre-trained models with text generation capabilities
by language modeling (LM). With a similar spirit, some recent
works further fine-tune the cross-modality model for different
downstream tasks, such as text-based person retrieval [29]
and drone localization [30]. The emergence of various Large
Language Models (LLMs) [15], [17], [18], [31]–[35] has also
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influenced the development of visual language models, as
they possess vast knowledge and powerful text generation
capabilities. LLaVa [36] directly maps visual features to LLMs
and aligns spaces through fintuning. BLIP2 [1] establishes
a bridge between vision language base models and various
open-source LLMs by deploying a Q-Former on filtered data.
InstructBLIP [37] further improves performance using instruc-
tion tuning and exhibits enhanced text generation capabilities
while reducing training costs through LLM freezing. We
deploy instruction tuning to composed image retrieval and
make it possible to generate modifiers using related images.

B. Composed Image Retrieval

Image retrieval is an important research task in multi-modal
field. It aims to retrieve target images from a gallery based
on a given query. This can be done by solely using text
descriptions or by using images [38], [39] to retrieve similar
or related images. However, single-modal tasks such as text-
based image retrieval or image-based image retrieval cannot
accurately and conveniently meet the specific retrieval needs
of certain scenarios. To address this issue, the Composed
Image Retrieval task has been proposed [4], [5], [7], [8], [40],
which involves integrating the reference image feature and
supplementing or modifying the textual feature to retrieve the
target image. There have been efforts in training lightweight
connection layers to obtain fused features from image and
text representations. ARTEMIS [41] combines triplets through
explicit matching and implicit similarity, and Baldrati et
al. [42] proposes a combiner to leverage CLIP visual and
textual representations. Liu et al. [43] proposes a re-ranking
method after the first selection. In very recent works, many
existing works [44]–[48] leverage large amounts of external
data to achieve zero-shot CIR capabilities. MagicLens [48]
achieves strong performance in zero-shot CIR while also
making progress in richer relations beyond image similarity.
SPRC [49] utilizes Q-Former to extract sentence-level prompts
and guides sentence-level prompt generation aligned with an
auxiliary text prompt. In addition, there have been works that
enhance task performance by introducing additional datasets
for pre-training [22]–[24]. These datasets provide extra train-
ing examples and diverse data distributions, allowing the mod-
els to learn more comprehensive and robust representations. In
our work, we design a prototypical two-hop alignment network
to decompose CIR into an implicit prototype learning module
and fusion module. In the implicit prototype learning module,
we utilize generated reversed modifiers to benefit implicit
prototype learning.

C. Composed Image Retrieval Triplet Generation

In previous works, Composed Image Retrieval(CIR) triplet
generation has been primarily achieved through manual and
automatic methods: Manual Annotated. The CIRR dataset [4]
consists of manually annotated textual triplets, which are
derived from a subset of images from the NLVR2 dataset [50],
representing real-world scenarios. The FashionIQ dataset [40]
comprises manually selected pairs of similar fashion images,

along with human-annotated textual triplets, specifically cu-
rated for the fashion domain. Automatic Annotated. Han
et al. [8] employed the differences in manually annotated
attribute labels of fashion200k dataset images to generate
modified texts using a triplet template. In recent years, there
have been proposed methods that leverage automatic gener-
ation techniques from other tasks and models. LaSCo [24]
utilized VQA 2.0 [51] to construct triplets by using different
answers for similar images and the same question, employing
GPT 3.0 [52], followed by manual quality control. CompoD-
iff [22] built triplets based on InstructPix2Pix [16], using
text descriptions collected from both human annotators and
large-scale model generation and generating images using
Stable Diffusion [13]. CoVR [24] employed similar video
captions to filter similar image pairs and trained an MTG-LLM
to generate a modifier using two similar captions, forming
triplets. Compared to existing methods, we incorporate images
into the training of modifier generation and map visual features
into the space of a large model. We propose a lightweight
text generation method that is more flexible, diverse, and
controllable in length while maintaining low training costs.

In previous works, CIR triplet generation has been primarily
achieved through manual and automatic methods: Manual
Annotated. The CIRR dataset [4] consists of manually an-
notated textual triplets, which are derived from a subset of
images from the NLVR2 dataset [50], representing real-world
scenarios. The FashionIQ dataset [40] comprises manually
selected pairs of similar fashion images, along with human-
annotated textual triplets, specifically curated for the fashion
domain. Automatic Annotated. Han et al. [8] employed the
differences in manually annotated attribute labels of fash-
ion200k dataset images to generate modified texts using a
triplet template. In recent years, there have been proposed
methods that leverage automatic generation techniques from
other tasks and models. LaSCo [24] utilized VQA 2.0 [51]
to construct triplets by using different answers for similar
images and the same question, employing GPT 3.0 [52],
followed by manual quality control. CompoDiff [22] built
triplets based on InstructPix2Pix [16], using text descriptions
collected from both human annotators and large-scale model
generation and generating images using Stable Diffusion [13].
CoVR [24] employed similar video captions to filter similar
image pairs and trained an MTG-LLM to generate a modifier
using two similar captions, forming triplets. Compared to
existing methods, we incorporate images into the training of
modifier generation and map visual features into the space of a
large model. We propose a lightweight text generation method
that is more flexible, diverse, and controllable in length while
maintaining low training costs.

III. MODIFICATION TEXT-ORIENTED SYNTHETIC
TRIPLETS (MTST) GENERATION

A. MTST Generator

1) Architecture: Modification Text-oriented Synthetic
Triplets (MTST) generator takes the reference and target
images as input and outputs the modification text. To produce
high-quality text, we follow the multimodal large model [1],
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Fig. 3: An overview of MTST Generator architecture. The paired reference images and target images are fed into an Image
Encoder and a trainable Query Encoder to get their respective features 𝑞𝑟 , 𝑞𝑡 . These representations are then concatenated and
fused with the instruction using the same Query Encoder to obtain a fusion representation 𝑞𝑐. Representations 𝑞𝑟 , 𝑞𝑡 , 𝑞𝑐 along
with the instruction embedding are concatenated and fed into a frozen LLM to generate modification text.

[37] to design our MTST generator, i.e., image encoder
extracts the image features and a Large Language Model
(LLM) is followed to give reliable text output. Figure 3
depicts the overall architecture, consisting of an Image
Encoder and a Query Encoder for vision feature extraction,
a Fully Connected Layer bridging the vision feature to the
LLM, and a LLM as the text prediction module. We keep
the Image Encoder and LLM frozen and only train the Query
Encoder and Fully Connected Layer to map the learned
prompt feature to LLM space.

2) Generator Training: The manually annotated (training)
triplets in the standard benchmark like CIRR [4] are taken
as the training samples. To guide the network learning,
we also provide an instruction, “How to change from
one image to another?”, which is incorporated into
the Query Encoder to clarify the purpose. In specific, the
reference image and target image are separately input to the
Image Encoder and Query Encoder to get their respective
query features 𝑞𝑟 , 𝑞𝑡 from initial query tokens 𝑞𝑖𝑛𝑖𝑡 .

To acquire the task-oriented features, we next feed the
instruction and vision features 𝑞𝑟 , 𝑞𝑡 into Query Encoder to
obtain a composed representation 𝑞𝑐. Subsequently, we pass
𝑞𝑟 , 𝑞𝑡 , and 𝑞𝑐 through the projection layer 𝐹𝐶𝑙𝑙𝑚 to produce
a comprehensive vision feature, which is then concatenated
with the instruction embedding 𝑞𝑖𝑛𝑠 and fed into LLM for
text generation:

input𝑙𝑙𝑚 = 𝐹𝐶𝑙𝑙𝑚 (𝑞𝑟 ⊕ 𝑞𝑡 ⊕ 𝑞𝑐) ⊕ 𝑞𝑖𝑛𝑠 , (1)

For modification text modeling, we deploy a language
generative task auto-regressively to predict the next token of

the modification text by maximizing the conditional likelihood:

L𝑔𝑒𝑛 = −E(𝐼𝑟 ,𝐼𝑡 ,𝑡 )∼D [
𝑀∑︁
𝑚=1

𝑙𝑜𝑔𝑃(𝑡𝑚 |input𝑙𝑙𝑚, 𝑡0, · · · , 𝑡𝑚−1)],

(2)

where 𝑀 denotes the length of modification text 𝑡 and 𝑡𝑚
denotes the 𝑚𝑡ℎ token of t. D is the distribution of triplets. 𝐼𝑟
and 𝐼𝑡 denote the reference and the target image, respectively.

B. Grounded MTST Generation

In this paper, we focus on two common domains, i.e., the
nature and the fashion, for MTST generation. We take the
popular CIRR and FahsionIQ benchmarks as the source data.
To generate triplets resembling the real world, we carefully
design the image sampling strategies for the triplet generation.

CIRRMTST. We employ two strategies for selecting image
pairs from the CIRR dataset: (1) The CIRR training dataset
comprises 3,345 image sets, each featuring six analogous
images, from which the training triplets are sampled. Pairwise
combinations of images within these clusters yield a total
of 100,350 unique pairs. (2) We create new image sets by
combining images with the same category from the NLVR2
dataset [50], which is the source dataset for CIRR images. We
then pair these newly created image sets, resulting in 707,745
image pairs. Therefore, by extending MTST on these image
pairs, we generate a total of 808,095 triplets on the CIRR
dataset.

FashionIQMTST For the FashionIQ dataset, each image
has multiple labels that describe its style, such as ‘short
sleeves’, ‘v-neck’, ‘hoodie’. We classify the images based on
their labels, and images with the same label, share certain
characteristics and similarities. From these images, we can
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TABLE I: Statistics of existing CIR datasets and our generated dataset: We expand the triplets of CIRR and FashionIQ
datasets using our MTST generator. The table compares the number of triplets, unique images, unique words, and the average
length of modification text.

Name Domain Image Source #Triplets #Unique images #Average length #Unique Words

FashionIQ (train) [40] Fashion FashionIQ (train) 16,914 23,813 54.90 4,253
CIRR (train) [4] Nature CIRR (train) 36,761 21,185 59.51 7,129

SynthTriplets 18M [22] Nature Synthetic 18,000,000 - - -
LaSCo [23] Nature VQA2.0 [51] 389,305 121,479 30.7 13,488
WebVid-CoVR [24] Nature WebVid2M,WebVid10M [53] 1,648,789 130,775 23.36 19,163

FashionIQMTST Fashion FashionIQ [40] (train) 579,114 26,048 61.66 5,212
CIRRMTST Nature NLVR2 [50] (train) 808,096 103,170 113.03 19,681

select the image pairs we need. However, some labels usually
correspond to a large number of images. For example, the
label “long sleeve” corresponds to 1,006 images. If we pair
the images with same label all together, we would end up with
1,011,030 image pairs for only one category. This could result
in weak image correlations and an imbalanced dataset. To
address this, we impose a limit to the number of image pairs,
ensuring it does not exceed three times the number of images
in its respective category. As a result, we generated a total of
579,114 triplets from the dress, shirt, and toptee categories
in FashionIQ. Table I presents the statistics of our final
datasets and the comparison with the existing CIR datasets.
Our proposed MTST exhibits several salient advantages:
• Narrower domain gap to the annotated triplets. By re-

sorting to text generation, we effectively mitigate domain
discrepancies compared to image generation methods.
Furthermore, benefiting from the paradigm of directly
utilizing real images as input for text generation, we
bypass visual domain gaps inherent in other approaches.

• Expressive modification text. Leveraging the capabilities
of Large Language Models (LLMs), MTST yields mod-
ification texts that are more verbose than those found in
existing benchmarks. This characteristic allows for richer
and more expressive content representation.

• Greater flexibility in triplet generation. The MTST
framework necessitates only two images for generating
corresponding text, thus demonstrating a high degree
of flexibility. This enables large-scale triplet generation
without compromising efficiency or diversity.

IV. PROTOTYPICAL TWO-HOP ALIGNMENT NETWORK

As illustrated in Figure 4, our prototypical two-hop alignment
(PTHA) network comprises an image encoder and a text
encoder for image and text feature extraction respectively,
and a multimodal encoder to combine the multimodal query
pair. During training, we first generate the reversed modifier
using MTST and then apply the proposed PTHA to learn
the network. When inference, we utilize the fusion feature
to compute cosine similarity with the image feature extracted
from candidates in the image gallery to perform retrieval.

A. Pre-training with MTST

Before optimizing our PTHA network, we first adopt MTST
to perform pre-training, pursuing a better initialization for the
subsequent learning. Formally, we first encode the reference

image 𝐼𝑟 adpoting a frozen image encoder EI , and fuse the
resulted representation with modification text 𝑇𝑟2𝑡 with the
multi-modal encoderEM :

𝑓𝑟2𝑡 = EM (EI (𝐼𝑟 ), 𝑇𝑟2𝑡 ). (3)

Following SPRC [49], we take the multimodal feature 𝑓𝑟2𝑡
as the textual prompt, which is then fed into the text encoder
ET with modification text to produce the fusion feature of the
reference image and modification text:

𝑓𝑞 = ET ( 𝑓𝑟2𝑡 , 𝑇𝑟2𝑡 ). (4)

We utilize the same Image Encoder EI to encode target
image 𝐼𝑡 and the same multi-modal encoder EM to produce
the target feature of query pair:

𝑓𝑡 = EM (EI (𝐼𝑡 )). (5)

Subsequently, we deploy contrastive learning loss query
feature 𝑓𝑞 and target image feature 𝑓𝑡 to train the network:

L𝑞2𝑡 = − 1
|B|

| B |∑︁
𝑖=1

log
exp(sim( 𝑓𝑞𝑖 , 𝑓𝑡𝑖 )/𝜏)∑ | B |
𝑗=1 exp(sim( 𝑓𝑞𝑖 , 𝑓𝑡 𝑗 )/𝜏)

, (6)

where B denotes the input batch, 𝑓𝑞𝑖 and 𝑓𝑡𝑖 denotes the 𝑖-th
fusion feature and target feature in B respectively, and 𝜏 is
a learnable temperature parameter. For similarity calculation,
we adopt the [CLS] token in 𝑓𝑞 , i.e., 𝑓𝑞𝑐𝑙𝑠 , to query the
target image embeddings and take the max pool as a similarity
estimation:

sim( 𝑓𝑞 , 𝑓𝑡 ) = max
𝑘∈[1,𝑁 ]

𝑓𝑞𝑐𝑙𝑠 · 𝑓𝑡 [𝑘]
| | 𝑓𝑞𝑐𝑙𝑠 | | · | | 𝑓𝑡 [𝑘] | |

, (7)

where 𝑓𝑡 [𝑘] means the 𝑘-th token embedding in 𝑓𝑡 .

B. Prototype-bridged Two-Hop Fine-Tuning

Motivated by the intuition in Figure 2, we perform a two-
hop alignment stategy during the fine-tuning phase. Implicit
Prototype Learning via Reverse Text. In the first step, we
target to learn the implicit prototype preserving the shared
information between the images. Particularly, we force the
two images to approach each other via the respective text
guidance, to reach a feature (implicit prototype) containing
shared information in the two images. To support this, we first
synthesize the modifiers from the target image to the reference
image adopting the trained MTST generator.

In specific, let 𝑇𝑡2𝑟 be the reverse modification text, then
similar to Eq. 3, the representation 𝑓𝑡2𝑟 of the reversed pair
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Fig. 4: Top: Overview of the training phase. We first employ implicit prototype learning between 𝑓𝑟2𝑡 and detached 𝑓𝑡2𝑟 .
𝑓𝑡2𝑟 is extracted from the target image and generated reversed text using the MTST generator. In the second step, we utilize
contrastive loss between fusion feature 𝑓𝑞 and target image 𝑓𝑡 , text-only feature 𝑓𝑚, and target image feature 𝑓𝑡 . Bottom:
Overview of the inference phase. We leverage the fusion feature 𝑓𝑞 to compute similarity with the features extracted from the
image gallery to perform retrieval.

can be obtained from the target image 𝐼𝑡 and the generated
reverse modification text 𝑇𝑡2𝑟 .

Subsequently, we learn the implicit prototype by making the
two multi-modal features step towards each other:

L𝑝2𝑝 =
1
|B|

| B |∑︁
𝑖=1

( 𝑓 𝑟2𝑡𝑖 − 𝑓 𝑡2𝑟𝑖 )
2, (8)

where 𝑓 denotes the mean of 𝑁 tokens of feature 𝑓 . During
training, we stop the gradient propagation of 𝑓𝑡2𝑟 . The gradient
update is halted for the reversed multimodal pair due to two
considerations: (1) The reversed text is only generated during
training for 𝐿𝑝2𝑝 calculation, consequently, we maintain the
integrity of implicit prototype details in the real query pair’s
features to align across both training and inference stages; (2)
Mitigating the likelihood of model degeneration or collapse.
Implicit Prototype-bridge Alignment. In the second step, we
further fuse the learned implicit prototype 𝑓𝑟2𝑡 with the mod-
ifier 𝑇 to combine the necessary modifications or additions,
yielding the composite feature 𝑓𝑞 for retrieval, which is then
aligned with the target image with a contrastive procedure
similar to eq. (6). Besides, following SPRC [49], we also
align the modification text and the target image as an auxiliary
constraint L𝑡2𝑡 , which matches the content in the modification
text feature 𝑓𝑚 to the target image feature 𝑓𝑡 to aid the
learning of dominated constraints, on the other hand, narrows
the semantic gap between the modification text and the target

image, such that ease the alignment of query pair and target
image in feature space. The constraint is also specified as a
contrastive procedure similar to eq. (6) with the features of
the target image and the modification text. Our final objective
is formulated as:

L = L𝑞2𝑡 + L𝑡2𝑡 + 𝛼L𝑝2𝑝 , (9)

where 𝛼 is a non-negative trade-off hyper-parameter.

V. EXPERIMENT

A. Experimental Setup

1) Datasets and Evaluation Metrics: Following previous
work [42], [49], [54], [55], the real-world dataset CIRR and
the fashion domain dataset FashionIQ are considered. Both are
manually annotated CIR datasets based on real images. CIRR
is created from 21k real-world images from NLVR2 [50],
producing 36k triples. FashionIQ primarily contains images
from three categories in the fashion domain: dress, shirt, and
toptee. It comprises a total of 77k fashion product images and
30k triplets, each pair of images contains two different relative
captions annotated by two individuals. Following the metric
settings of the standard evaluation experiment, we report the
average recall at rank K (R@K). For FashionIQ, we report the
R@10 and R@50 on the val set in three categories. For CIRR,
we disclose the R@1, 5, 10, and 50 as well as Recallsubset@1,
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TABLE II: Comparison on CIRR test set. "Pretraning data" is the dataset for model pretraining. "Avg." means (Recall@5 +
Recallsubset@1)/2. The best result is indicated in bold, while the second best is underlined. Our proposed PTHA with pretraining
on CIRRMTST outperforms the previous method in all metrics. * indicates that the method deploys an extra re-ranking strategy.†
indicates the utilizing of extra training method SPN4CIR [55].

Recall@K Recallsubset@K Avg.

Method backbone Pretraining Data K=1 K=5 K=10 K=50 K=1 K=2 K=3

MAAF [57] w/o VLP - 10.31 33.03 48.30 80.06 21.05 41.81 61.60 27.04
TIRG [5] w/o VLP - 14.61 48.37 64.08 90.03 22.67 44.97 65.14 35.52
ARTEMIS [41] w/o VLP - 16.96 46.10 61.31 87.73 39.99 62.20 75.67 43.05
CIRPLANT w/OSCAR [4] w/o VLP - 19.55 52.55 68.39 92.38 39.20 63.03 79.49 45.88
ComqueryFormer [11] CLIP - 25.76 61.76 75.90 95.13 51.86 76.26 89.25 56.81
NSFSE [12] CLIP - 20.70 52.50 67.96 90.74 44.20 65.53 78.50 48.35
Compdiff [22] CLIP SynthTriplets 22.35 54.36 73.41 91.77 35.84 56.11 76.60 29.10
CLIP4CIR [42] CLIP - 38.53 69.98 81.86 95.93 68.19 85.64 94.17 69.09
BLIP4CIR+Bi [54] BLIP - 40.15 73.08 83.88 96.27 72.10 88.27 95.93 72.59
CASE [23] BLIP LaSCo 49.35 80.02 88.75 97.47 76.48 90.37 95.71 78.25
CoVR-BLIP [24] BLIP WebVid-CoVR 49.69 78.60 86.77 94.31 75.01 88.12 93.16 80.81
Reranking* [43] BLIP - 50.55 81.75 89.78 97.18 80.04 91.90 96.58 80.90
SPRC [49] BLIP-2 - 51.96 82.12 89.74 97.69 80.65 92.31 96.60 81.39
SPRC2* [49] BLIP-2 - 54.15 83.01 90.39 98.17 82.31 92.68 96.87 82.66
SPRC† [49] [55] BLIP-2 - 55.06 83.83 90.87 98.29 81.54 92.65 97.04 82.69

Baseline BLIP-2 - 51.39 81.95 89.92 97.90 78.98 91.78 96.36 80.46
PTHA (Ours) BLIP-2 - 51.85 82.1 89.93 97.98 80.32 92.36 96.70 81.21
PTHA (Ours) BLIP-2 CIRRMTST 54.70 84.05 90.89 98.26 81.64 93.30 97.30 82.85
PTHA (Ours)† [55] BLIP-2 CIRRMTST 56.43 84.92 91.74 98.43 82.12 93.35 97.42 83.52

2, 3 on test set. Recallsubset@K serves as a benchmark for fine-
grained matching, considering each image set composed of 6
similar images as the search space.

2) Implementation Details: MTST Generator. The MTST
Generator is fine-tuned on the CIR task based on the
InstructBlip-Vicuna-7b [37] base model, with only the Q-
Former fine-tuned. The number of query tokens in the Q-
Former [1] is set to 32. The frozen vicuna checkpoint is
specified as vicuna-7b-v1.1 [32]. The model weights are
loaded from a pre-trained model available from InstructBLIP
[37].

PTHA. The model architecture in PTHA is the same as
SPRC [49]. The multimodal encoder is the query encoder in
BLIP-2 [1], the text encoder is the text encoder in BLIP-2.
The vision encoder is the frozen ViT-g/14 from EVA-CLIP
[56]. We employ two-stage strategy. The batch size is set
to 128 and the number N of query tokens is set to 32 for
both stages. The initial model weights of pretraining is from
BLIP2-pretrained [1]. In the fine-tuning stage, we follow all
the settings of SPRC [49]. During our finetuning stage on
CIRR after pretraining on CIRRMTST, we replace the [CLS]
token 𝑓𝑞𝑐𝑙𝑠 with the average embedding of N query tokens and
the [CLS] token in 𝑓𝑞 , i.e., 𝑓𝑞𝑎𝑣𝑔 in eq. (7).

B. Quantitative Results

1) CIRR.: Table II shows the comparison result on CIRR.
It is worth mentioning that the results of pretraining on
our CIRRMTST and fine-tuning using our proposed PTHA
framework outperforms all existing methods across all metrics.
Compared to the SOTA model without an extra re-ranking
strategy, i.e., SPRC, we achieve improvements of +2.74, +1.93,
+1.15, and +0.57 in Recall@1, 5, 10, and 50, respectively, and
obtain an overall average improvement of +1.46. Additionally,

Fig. 5: Left: Ablation studies on different pre-training
CIRRMTST data size. We report Recall@5 and Avg. metric
on CIRR validation set by fine-tuning with eq. (9). Right: We
deploy different 𝐿𝑝2𝑝 weight 𝛼 on fine-tuning stage with the
same pre-trained model.

we further fine-tuned our method using SPN4CIR [55], achiev-
ing better performance. Compared to SPRC with SPN4CIR
[55], we achieve an improvement of +0.83 on average.

2) FashinIQ.: We then evaluate our FashionIQMTST and
PTHA on FashionIQ. As shown in Table III, we observe
a similar upward trend in performance improvement as it in
CIRR, indicating consistent progress. Apart from the R@10
metric on Toptee, we surpass the second-best method, i.e.,
SPRC in all other metrics, achieving an average improvement
of +0.79. It indicates that our method and pretraining strategy
are similarly applicable in the FashionIQ dataset.

C. Ablation Studies

1) Effect of PTHA Learning: Table IVa presents an analysis
of the loss terms employed in PTHA learning, elucidating
their contributions. Results from both the pretraining and
finetuning phases confirm the effectiveness of all three losses.
For instance, using only the query-to-target contrastive loss
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TABLE III: Comparison on FashionIQ validation set. “Avg.” means (Recall@10 + Recall@50)/2. * indicates that the method
deploys extra re-ranking strategy.

Dress Shirt Toptee Average Avg.

Method baseline Pretraining Data R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

TIRG [5] w/o VLP - 14.87 34.66 18.26 37.89 19.08 39.62 17.40 37.39 27.45
CIRPLANT w/OSCAR [4] w/o VLP - 17.45 40.41 17.53 38.81 61.64 45.38 18.87 41.53 30.20
MAAF [57] w/o VLP - 23.8 48.6 21.3 44.2 27.9 53.6 24.3 48.8 36.6
CurlingNet [58] w/o VLP - 26.15 53.24 21.45 44.56 30.12 55.23 25.90 51.01 34.36
CosMo [59] w/o VLP - 25.64 50.30 24.90 49.18 29.21 57.46 26.58 52.31 39.45
ARTEMIS [41] w/o VLP - 25.68 51.25 28.59 55.06 21.57 44.13 25.25 50.08 37.67
NSFSE [12] CLIP - 31.12 55.73 24.58 45.85 31.93 58.37 29.17 53.24 41.26
MUR [60] CLIP - 32.61 61.34 33.23 62.55 41.40 72.51 35.75 65.47 50.61
Css-Net [61] CLIP - 33.65 63.16 35.96 61.96 42.65 70.70 37.42 65.27 51.35
CLIP4CIR [42] CLIP - 33.81 59.40 39.99 60.45 41.41 65.37 38.82 61.74 50.03
ComqueryFormer [11] CLIP - 33.86 61.08 35.57 62.19 42.07 69.30 37.17 64.19 50.68
CompoDiff [22] CLIP SynthTriplets 40.88 53.06 35.53 49.56 41.15 54.12 39.05 52.34 46.31
FAME-VIL [62] CLIP - 42.19 67.38 47.64 68.79 50.69 73.07 46.84 69.75 58.29
BLIP4CIR+Bi [54] BLIP - 42.09 67.33 41.76 64.28 46.61 70.32 43.49 67.31 55.40
CoVR-BLIP [24] BLIP WebVid-CoVR 44.55 69.03 48.43 67.42 52.60 74.31 48.53 70.25 59.39
CASE [23] BLIP LaSCo 47.77 69.36 48.48 70.23 50.18 72.24 48.79 70.68 59.74
Reranking* [43] BLIP - 48.14 71.34 50.15 71.25 55.23 76.80 51.17 73.13 62.15
SPRC [49] BLIP2 - 49.18 72.43 55.64 73.89 59.35 78.58 54.92 74.97 64.85

Baseline BLIP2 - 48.04 72.65 53.54 73.91 57.37 78.85 52.98 75.13 64.07
PTHA (Ours) BLIP2 - 49.54 72.81 55.50 73.97 57.96 78.96 54.33 75.24 64.79
PTHA (Ours) BLIP2 FashionIQMTST 50.77 73.78 55.91 75.36 58.28 79.70 54.99 76.28 65.64

(L𝑞2𝑡 ) without pretraining yields an average performance of
81.64. The inclusion of the text-to-target image term (L𝑡2𝑡 )
enhances this to 82.15. The simultaneous deployment of all
three losses optimizes performance to its peak. Under the cases
of learning with pretraining, the contribution of each loss is
sufficiently validated, and simultaneously applying three losses
promotes our performance to the new state-of-the-art.

2) Effect of MTST pretraining: By comparing the results of
the cases with and without pretraining, it can be observed that
regardless of the type of the applied loss function, the models
that have undergone pretraining consistently exhibit significant
performance improvement. In the application of four different
combinations of loss functions, the pretraining respectively
leads to an improvement of 1.52, 1.57, 1.86, and 1.43 in
“Avg.”. The effect of pretraining on enhancing Recall@K is
notably substantial. We also give a comprehensive discussion
in terms of the size and the image source of pretraining MTST.
The results are reported in Figure 5, left. As the size of the
data increases from 0 to 800K, the performance of the model
shows an upward trend.

D. MTST Assessment

1) Scalability of MTST Pre-training: To further validate the
effectiveness of MTST Pre-training, we pre-train four more
methods [5], [41], [42], [49] using CIRRMTST700K, which
doesn’t contain the image pairs from the original image set.
The results are reported in Tab.IVb. MTST pre-training brings
clear performance improvements across all four methods,
especially TIRG [5] and ARTEMIS [41].

2) Generated Data Quality: As shown in Table IVd, by
directly using our CIRRMTST for training without further fine-
tuning, and excluding image pairs from the CIRR training set,
we demonstrate competitive results directly on the validation
set. This suggests a high similarity between CIRRMTST and
those of CIRR. To further assess the quality of generated data,

we generate 4K modifiers from the CIRR validation image
pairs. Our evaluation includes 3 parts:

(1) Direct evaluation. The generated modifier text can
achieve a 0.25 ROUGE-1 Score and 0.19 METEOR Score.
However, due to the modifiers’ diversity, we affirm these
metrics don’t fully measure the quality.

(2) Indirect Evaluation. Substituting generated text for CIRR
validation leads to much higher scores, highlighting our data’s
robust quality and pre-training suitability (see Table IVc).

(3) User study. We ask five experts to assess 100 randomly
selected image pairs in CIRRMTST to choose the better text
between the real modifier and the generated modifier. We
randomly shuffle the order of these two types of text. The
findings suggest a comparable preference for generated text
over real text, with favorable scores of 43%, 40%, 50%, 46%,
and 45%, respectively. It is worth noting that we provide
users with an option to report any factual errors in the two
modification texts corresponding to each image pair, and we
report the average error reporting rate, which is calculated as:
the number of reported errors in the generated modification
texts /(the total number of generated modification texts ×the
number of test users). The final average error reporting rate of
generated text is only 4%.

3) Comparison with other generated data: We compare the
gains of the CIRRMTST700K vs. SynthTriplets18M [22] on
ARTEMIS [41].We separately utilize these two data to pretrain
and CIRR training set to finetune. Figure 6 shows that with
much less data, our performance enhancement on all markers
is more comprehensive and significant than SynthTriplets18M.

E. PTHA Assessment
Our method shares the same baseline with [49]. We observe
PTHA’s comparable performance in Table II, row 16. Notably,
our PTHA, combined with pre-training, shows more than
additive effectiveness, especially on Recall@1. When fine-
tuned with an identical pre-trained model, PTHA outperforms
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TABLE IV: Ablation studies. (a): Comparison of different loss combinations on Recall@5 and Recallsubset@1 metrics of CIRR
validation set. “✓” denotes the loss in the column is applied. We report the results on CIRR validation set. (b): Performance
comparison of four methods w/ and w/o pre-training using CIRRMTST700k. MTST pre-training brings clear performance
improvements across all four methods. (c): Comparison of the results using original text and generated text for triplets. (d):
Comparison of the results of PTHA and SPRC [49] on CIRR val dataset. (e): We achieve admirable performance after first
phase’s pre-training on CIRRMTST700𝐾 by only utilizing a simple contrastive learning loss L𝑞2𝑡 . (f):Zero-shot CIR performance
comparison on CIRCO [54] test set.

(a) Ablation of Loss Functions and Pretraining

Losses Recall@5 Recallsubset@1 Avg.

w/o
pretrain

L𝑞2𝑡 L𝑡2𝑡 L𝑝2𝑝

✓ 83.76 79.52 81.64

w/
pretrain

✓ ✓ 82.87 81.43 82.15
✓ ✓ 83.74 80.27 82.00
✓ ✓ ✓ 84.0 81.39 82.70

✓ 85.12 81.2 83.16
✓ ✓ 85.52 81.92 83.72
✓ ✓ 85.29 82.42 83.86
✓ ✓ ✓ 85.55 82.71 84.13

(b) Effectiveness of Pretraining

Method Pre-train with
CIRRMTST

Recall@K Recallsubset@K Avg.
K=1 K=5 K=1 K=2

TIRG [5] - 10.62 38.36 39.47 61.05 38.91
TIRG [5] ✓ 18.60 53.54 51.58 72.61 52.56↑ 13.65
ARTEMIS [41] - 17.47 47.31 40.70 61.91 44.00
ARTEMIS [41] ✓ 28.08 62.77 53.75 74.49 58.26↑ 14.26
CLIP4CIR [42] - 42.17 76.11 69.70 87.42 72.91
CLIP4CIR [42] ✓ 44.69 77.57 71.80 88.14 74.68↑ 1.77
SPRC [49] - 53.67 82.87 81.44 92.97 82.16
SPRC [49] ✓ 55.30 85.05 81.46 93.22 83.31↑ 1.15

(c) Comparison of the results using original text and generated text for triplets.

Method Modifier Recall@K Recallsubset@K Avg.
K=1 K=5 K=1 K=2

PTHA orgin 56.80 85.55 82.71 94.00 84.13
PTHA generated 69.17 93.63 88.14 96.22 90.89

(d) Comparable performance after pretraining

CIRR CIRRMTST Recall@K Recallsubset@K Avg.

K=1 K=5 K=10 K=50 K=1 K=2 K=3

✓ 53.03 83.76 90.60 97.96 79.52 92.71 96.82 81.64
✓ 51.28 79.86 87.75 97.22 77.01 91.05 96.17 78.44

(e) Two stages’ result comparison of PTHA and SPRC [49]

Method Query Recall@K Recallsubset@K Avg.
K=1 K=5 K=1 K=2

SPRC [49] implicit prototype 𝑓𝑟2𝑡 48.51 79.81 74.67 90.17 77.24
PTHA implicit prototype 𝑓𝑟2𝑡 51.21 82.09 76.27 90.74 79.18
SPRC [49] final feature 𝑓𝑞 56.32 85.50 82.09 93.49 83.80
PTHA final feature 𝑓𝑞 56.80 85.55 82.71 94.00 84.13

(f) Zero-shot CIR performance on CIRCO [44] test set.

Arch Pretraining Method Finetuning Method mAP@K

K=5 K=10 K=25

ViT-g/14 CompoDiff [22] - 15.33 17.71 19.45
ViT-g/14 - SPRC [49] 19.68 20.73 22.63
ViT-g/14 CIRRMTST PTHA 20.06 21.05 23.01
ViT-g/14 CIRRMTST - 22.8 24.02 26.17
ViT-g/14 LinCIR [45] - 20.34 21.85 23.98
ViT-g/14 LDRE+IP-CIR [63] - 32.75 34.26 36.86
CoCa-L MagicLens-L [48] - 34.1 35.4 38.1

R@1 R@5 Rsubset@1Rsubset@2 Avg.
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Fig. 6: Two pre-training data, CIRRMTST700K and Syn-
thTriplets18M benefit on ARTEMIS after same finetuning on
CIRR. With much less data, CIRRMTST700K’s performance
enhancement on all markers is more comprehensive and sig-
nificant than SynthTriplets18M’s.

SPRC on CIRR (See Table IVe, rows 3-4). This is due to
the consistency of the generated data in the pre-training and
fine-tuning stages, as well as the supervisory role of the L𝑝2𝑝 .
Further more, PTHA has a better intermediate feature quality.
We directly utilize the features extracted solely through the
multi-modal encoder (i.e., the implicit prototype, 𝑓𝑟2𝑡 .) as
the query for validation. The results, as shown in Table IVe,
rows 1-2, clearly indicate that our first-phase feature quality

is superior to SPRC’s.
We set the weight of L𝑞2𝑡 to 1 and the weight of L𝑡2𝑡 to 0.4

following SPRC [49]. We conduct experiment with different
weight 𝛼 of L𝑝2𝑝(See Figure 5, right) on pre-trained model
using CIRRMTST700k. Weighting L𝑝2𝑝 with 𝛼 = 0.5 leads to
the best results.

F. Zero-shot ability on CIRCO [44]

As shown in Table IVf, we compare the performance of
our pretrained model, fine-tuned model, SPRC [49], and other
pretrained models [22], [45], [48], [63] on CIRCO [44] in
a zero-shot setting. It can be seen that our fine-tuned model
outperforms SPRC, and our pre-trained model shows stronger
generalization capabilities with higher zero-shot performance.
G. Qualitative Results

As shown in Figure 7, we qualitatively present the triplets
generated in CIRRMTST and FashionIQMTST. Particularly in
CIRRMTST, our generated modification text encompasses both
a description of the target image and the changes observed
by comparing the two images. We have observed that the
model demonstrates strong descriptive capabilities in capturing
changes in features such as color, condition, quantity, and the
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shows two similar animals sitting in a 
dirt pile with grass and flowers around 
it instead of one animal coming out of 
a hole in the ground

white car is parked in front of a large 
sign with trees in the background
instead of a white car parked in front 
of a factory

shows three different types of locks 
with keys next to a ruler for size 
comparision instead of just one lock

two black puppies sit on the floor in 
front of a blue water bowl instead of 
two adult black and white dogs laying 
on a bed

remove one penguin and make the 
remaining one stand on grass instead 
of ice in the background

change to a white and black horse 
pulling a two-wheeled carriage, must 
be in an enclosed area

remove two dogs and make one dog 
sleeping on a wooden surface with its 
eyes closed in a dark room 
background, instead of three dogs 
sitting together in a green grassy area

change the color of the mosquito net
to green and add a flower pattern on 
the bedspread instead of a plain white 
one

change the color of the wardrobe to 
white and add a chair in front of the 
wardrobe

remove the man, make the buffalo 
face the camera, and make the grass 
greener behind the buffalo's head

change the color of the knee pads to 
beige and add an oval logo on the top 
of the knee pads

change the color of the lipstick to pink
and remove the text from the image 
in the top left corner

has no sleeves and no belt and is more 
colorful and strapless

has a draped front and is more ruffled 
and has a longer drape

the shirt is green in color with irish
firefighter written on it and is a green 
t-shirt

Fig. 7: Selected examples of generated triplets in CIRRMTST(row 1-4) and FashionIQMTST(row5). The blue box represents
the reference image, while the green box indicates the target image. We leverage these two images as input to generate modified
text. The blue text represents the information derived from the reference image, while the green text represents new additions
or changes specific to the target image.

Change one palican 
with a bottle for 
three of them.

Dog with opened 
mouth walks 
through the grass.

Put it upside down 
playing with food.

Number of dogs 
increased and color 
changed to black.

R1 R5 R1 R5Reference Image Modification text

Fig. 8: Qualitative CIR results of our methods and SPRC, placed in descending order from right to left based on similarity.
The green boxes indicate the correct matches, and the images in the red boxes are the wrong matches.

addition or removal of objects. Furthermore, we also compare
the retrieval results of our method with the state-of-the-art
approach, SPRC [49] on several examples (see Figure 8).
We can observe that during the retrieval process, our method
effectively preserves the relevant implicit prototypes of the
reference image based on the modification text. The target
images largely retain these implicit prototypes. For instance,
in the first row, when the description might mislead the model,
we accurately preserve the “pelican” prototype. In the second
to fourth rows, we implicitly retain the characteristics of
animals from the reference image.

VI. CONCLUSION

In this paper, we focus on alleviating the scarcity of training
triplets in composed image retrieval. To this end, we train
a modification text generator that produces synthetic, high-
quality modification-oriented triplets. Our generator inputs

two images and outputs versatile, descriptive modifications
to form realistic-like triples. With the trained generator, we
benefit from the learning of CIR in both the pretraining
and fine-tuning stages. In the pretraining stage, we generate
the large-scale triplets to perform pretraining. In the fine-
tuning stage, we first synthesize the reversed modification
text, supporting us design a two-step alignment mechanism
to gradually address the gap between the multimodal query
and the target image. We first learn the implicit prototype
with the real triplet and its reverse counterpart and combine
the implicit prototype with the modification text to align with
the target image. Extensive experimentation on benchmark
datasets from both natural and fashion domains demonstrates
that our method achieves a comparable performance with state-
of-the-art approaches.
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LIMITATIONS AND FUTURE WORK

Our work primarily offers a paradigm for expanding training
sets on CIR. Focusing on improving performance on specific
datasets, CIRR [4] and FashionIQ [40], the model is pre-
trained on the extended data of such dataset. Therefore,
training on specific domain results in insufficient effective-
ness and generalization compared to previous methods that
utilize large-scale triplet pre-training, as shown in zero-shot
CIR performance on CIRCO [44] in Table IVf. Furthermore,
applying MTST generation strategy to MLLMs [64], [65] that
already possess the ability to distinguish between two images
leads to a decrease in the model’s generalization capability.
Future work could benefit from employing powerful MLLMs
to further explore a more rapid and efficient approach to
domain adaptation, along with a method for generating text
with higher quality and finer-grained modifications.
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