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Progressive Local Filter Pruning
for Image Retrieval Acceleration

Xiaodong Wang, Zhedong Zheng, Yang He, Fei Yan, Zhiqiang Zeng, and Yi Yang, Senior Member, IEEE

Abstract—Most image retrieval works aim at learning discrim-
inative visual features, while little attention is paid to the retrieval
efficiency. The speed of feature extraction is key to the real-world
system. Therefore, in this paper, we focus on network pruning
for image retrieval acceleration. Different from the classification
models predicting discrete categories, image retrieval models
usually extract continuous features for retrieval, which are more
sensitive to network pruning. Such different characteristics of the
retrieval and classification models make the traditional pruning
method sub-optimal for image retrieval acceleration. Two points
are critical for pruning image retrieval models: preserving the
local geometry structure of filters and maintaining the model
capacity during pruning. In view of the above considerations,
we propose a Progressive Local Filter Pruning (PLFP) method.
Specifically, we analyze the local geometry of filter distribution
in every layer and select redundant filters according to one
new criterion that the filter can be replaced locally by other
similar filters. Furthermore, to preserve the model capacity of
the original model, the proposed method progressively prune
the filter by decreasing the scale of filter weights gradually.
We evaluate our method on four scene retrieval datasets, i.e.,
Oxford5K, Oxford105K, Paris6K, and Paris106K, and one person
re-identification dataset, i.e., Market-1501. Extensive experiments
show that the proposed method (1) preserves the original model
capacity while pruning (2) and achieves superior performance to
other widely-used pruning methods.

Index Terms—Image Retrieval, Person Re-identification, Net-
work Pruning, Local Geometry, Deep Learning

I. INTRODUCTION

IMAGE representation learned by Convolutional Neural
Network (CNN) has become dominant in many retrieval

fields, such as person re-identification and scene retrieval,
due to the discriminative power [1], [2], [3], [4], [5], [6],
[7]. However, training and testing the CNN-based model
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(a) Criteria for filter pruning: (left) global center-based methods, (right) our
method.
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(b) Filter distributions of different methods: (left) original filter distribution,
(middle) global center-based methods, (right) our method.

Fig. 1: A comparison between the conventional global center-
based methods and the proposed method. (a) Circles denote
different filters, and lines indicate the distance of filters to the
geometric center. For global center-based methods (left), red
filters close the geometric center tend to be removed, while our
method (right) tends to prune filters according to local rela-
tionships. (b) Furthermore, we show pseudo filter distributions
of different methods. The red curve denotes redundant filters
to be pruned. The global center-based methods (middle) will
largely change the original filter distribution (left) if the red
part is removed, while our method (right) properly maintains
the original filter distribution.

usually demands expensive computation resources for the fast
calculation [8], [9], [10]. It remains challenging for CNN-
based applications to the platforms with limited resources,
e.g., cellphones and self-driving cars [11]. To accelerate the
inference, researchers resort to pruning the redundant filters
and simplifying the CNN-based model to find a trade-off
between performance and efficiency [8], [12], [13], [14], [15].
Nevertheless, the existing network pruning methods mostly
pay attention to the image classification problem. Pruning
image retrieval models remains under-explored.

In this paper, we intend to fill the gap, and focus on network
pruning methods for image retrieval acceleration. Compared
with the image classification model, of which the output is a
discrete category, the image retrieval task aims at extracting
continuous features. Therefore, the image retrieval model is
sensitive to the pruning operation in nature, which would lead
to unexpected feature distribution changes and degrade the
subsequent image matching performance. This paper addresses
two main challenges in pruning image retrieval models. First,
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it is critical to preserve the local geometry structure of
filters in the original model. In other words, the filter distri-
bution of the pruned model should be the same as the original
model. The existing methods mainly adopt the global center-
based pruning approaches, which rank the filters according to
the distance to the geometric center [8], [12], [16]. However, as
shown in Figure 1(b), they suffer from destroying the original
filter distribution. The pruning procedure of our method and
global center-based methods are illustrated in Figure 1(a). We
could observe that the global center-based methods tend to
prune filters closed to the geometric center, resulting in a
significant change in filter distributions (Figure 1(b), middle).
In contrast, our method (Figure 1(b), right) can adequately
maintain the original filter distributions (Figure 1(b), left).
Second, maintaining the model capacity during pruning
remains challenging. The “lottery” mechanism [14], [17]
proposes to drop specific channels and argues that the key
is the weight initialization. Iterative training and rewinding is
necessary for this line of methods. In this way, the models
of different iterations usually have totally different feature
spaces from the original model. In parallel, some pruning
techniques [8], [16] argue that the essential lies in the training
process and drop the weight by deploying dynamic masks.
The masks directly set redundant filters to zeros, which also
affects the learned feature space largely. In this paper, we
start from a well-trained model and remove redundant filters
by decreasing the weight scale gradually. It could be viewed
as one mild pruning method instead of setting the filter to
zeros immediately. The model capacity, therefore, is preserved,
especially for the high-proportion pruning demands.

In an attempt to overcome the above-mentioned challenges,
we propose Progressive Local Filter Pruning (PLFP) to ac-
celerate CNN models for image retrieval. 1) To maintain the
distribution of the original model, we propose the local filter
pruning criterion, which is different from conventional global-
based criteria. 2) Unlike existing methods, we do not prune the
model with zero masks or retrain the model from lottery ini-
tialization. Instead, we leverage the pre-trained knowledge and
adopt one progressive pruning policy by gradually decreasing
the weight scales. To summarize, this paper has the following
contributions.

• We propose a Progressive Local Filter Pruning (PLFP)
method to leverage the local geometry structure of the
filter distribution. According to the local similarity, we
iteratively find the redundant filters which could be re-
placed by the neighbor filters. We intend to preserve the
filter distribution in the original model.

• To better utilize the priori knowledge in the pre-trained
model, we propose a filter weight decreasing strategy to
progressively prune the redundant filters. The progressive
pruning allows the pruned model to recover the model
capacity, especially when dropping a large proportion of
filters. The ablation study verifies the effectiveness of the
progressive pruning strategy.

• The extensive experiments on several benchmark datasets
demonstrate the effectiveness of the proposed method.
The proposed method has achieved the best performance

on all four scene retrieval datasets, comparing to the
compared pruning methods. Besides, we also arrive at the
best pruning performance after removing 88.9% FLOPs
on the person re-id benchmark, and surpass the second-
best compared methods by over 8.4% mAP and 6.0%
Rank-1.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III introduces the proposed
progressive local filter pruning framework in detail. Exper-
imental results are conducted and discussed in Section IV,
followed by the conclusions in Section V.

II. RELATED WORK

Image retrieval. Recently, owing to the efficiency in feature
extraction, Convolutional Neural Networks (CNN) has been
widely applied to learn the visual representation from data
in image retrieval communities [18], [19], [20], [21], [22].
Babenko et al. [18] propose to leverage the well-trained CNN
model to explore the common knowledge for image retrieval
tasks. Gu et al. [20] further promote the performance of
image retrieval by global CNN representations and a joint loss
network, while Lin et al. [23] add a learnable key point module
to mine salient areas. Besides, CNN also demands large-scale
training data [24]. Therefore, Radenovi et al. [25] propose
to utilize the 3D model to help data collection, which could
greatly save the cost of manual annotation.

Besides, in the field of person re-identification [26], [27],
[28], [29], [30], CNN also largely improves the performance.
Similar to image retrieval, CNN-based person re-identification
targets at generating discriminative person representations
using metric learning [27], [31] or classification losses [26].
Some studies introduce multi-scale deep learning frameworks
to explore the discriminative features at different locations
and scales [29], [32]. For instance, Shen et al. [29] apply a
similarity constraint to the Siamese network, which is able to
learn local and global representations simultaneously. Inspired
by the recent development of the Generative Adversarial
Networks (GANs) [33], some works propose to improve
the re-identification embeddings by leveraging the augmented
data [28], [34], [35], [36], domain adaption [37], [38],
[39], [40]. Unfortunately, extracting feature CNN descriptors
suffers from huge computation costs on million-scale even
trillion-scale data, hampering its practicability for real-world
applications [41]. Although the CNN-based representations
have shown effectiveness on image retrieval tasks, they usually
consume expensive computation resources, and little attention
is paid to the computational cost of the image retrieval model.
Network acceleration. There are several previous works
on accelerating CNNs, such as matrix decomposition [42],
dynamic inference [43], structure design [44], quantization
methods [45], [46], knowledge distillation [47], [48], [49],
[50], and network pruning methods [8], [51], [52], [53], [54],
[55], [56], [57], [58], [59], [60]. Among them, pruning meth-
ods have attracted much attention as they can properly reduce
computation cost and accelerate the inference by removing
unnecessary filters or connections. According to the pruning
policy, previous pruning methods can be roughly categorized
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Fig. 2: The geometry interpretation of the proposed method. Given a pre-trained model, for a specific layer (the second layer in
this example), we first calculate the local geometry for each filter and select redundant filters (orange filled circles) with small
local property (more details are in Section III). Then we deploy the filter weight decreasing policy to adjust the weight scale
of the selected filters (orange filled squares). After that, we fine-tune the model to give the potential important filters chances
to be rectified (green filled square), maintaining the model capacity. This “filter selection, filter decreasing, and fine-tuning”
process is iteratively performed till the weight of redundant filters gradually converges to zeros. Finally, during inference, we
could obtain a slim model after removing the zero-weight filters.

into hard-pruning and soft-pruning methods. The early re-
search on hard-pruning starts at the brain damage [61] and
brain surgeon [62] techniques. Han et al. remove connections
with low-weight [63], while Li et al. determine the importance
of filters by the l1-norm values [12]. Some researchers propose
to rank filters according to the contributions to the objective
loss function [64] or the reconstruction error on the feature
maps [13]. Srinivas et al. [65] and He et al. [16] propose to
analyze network redundancy according to the mutual informa-
tion among different filters. Another line of pruning method,
soft-pruning, is a sort of training compatibility method. Soft-
pruning does not drop the pruned filters immediately but
utilizes a dynamic mask to set candidate filters to zeros
temporally. The critical filters could be recovered later [8],
[66]. The method could also be smoothly embedded into the
training framework of traditional CNN models. Furthermore,
He et al. determine the redundancy of each filter by its
global closeness to other filters [16]. However, the soft-pruning
methods still drop the filter via setting the weights to zeros
and may largely compromise the well-trained weight from the
original model, especially when pruning a large number of
filters.

III. PROGRESSIVE LOCAL FILTER PRUNING

We let W be a set of filters of the whole network with
L convolutional layers and denote W l = {wl

1, w
l
2, · · · , wl

Cl}
as a set of filters of the l-th convolutional layer, where
wl

i is the i-th filter and Cl is the number of the filters.
Let Wpr be the filter set of the pre-trained network. Most
previous hard-pruning methods [12], [64] generally remove
the filters or channels from the pre-trained models. Given a
dataset X = {(xi, yi)}Ni=1 with N training samples and the
pruning rate P l for the l-th layer, hard-pruning methods aim
at optimizing the following objective function:

min
W

1

N

N∑
i=1

ℓ(W; (xi, yi)), s.t.|W| ≤
L∑

l=1

P l|W l
pr| (1)

where ℓ(·) is the loss function (we adopt the contrastive loss
and triplet loss in this paper). | · | represents the cardinalities of

the filter set. Typically, hard-pruning methods directly remove
the selected filters from the pre-trained model. Then they
fine-tune the pruned model to complement the performance
degradation. Noticing that once the filters are pruned, they
will not be updated during the following fine-tuning procedure.
Such a coarse pruning strategy will seriously reduce the model
capacity [8].

Intuitively, some filters may be less important in the pre-
trained model, but their importance may rise after the network
structure changes, e.g., removing some filters or connections.
Therefore, pruning methods should give filters more chances to
adjust themselves according to network structure alternations
dynamically. Motivated by the above observation and soft-
pruning technology [8], we proposed to prune filters in a soft
type manner by solving the following problem:

min
W

1

N

N∑
i=1

ℓ(W; (xi, yi))

s.t. ∥W∥0 ≤
L∑

l=1

P l|W l
pr|, |W| = |Wpr|,

(2)

where ∥W∥0 denotes the number of non-zero filters in W .
|W| = |Wpr| indicates that the soft-pruned filter set W still
has a one-to-one mapping relation with the initial filter set
Wpr. Note that we do not remove any filters during training;
instead we gradually set them to zeros. In this way, we could
achieve a similar pruning effect as Eq.(1).

To optimize the objective function in Eq.(2), soft-pruning
methods first select redundant filters by some global center-
based importance criteria, such as l1-norm, l2-norm, and lp-
norm. Then they zero the selected filters and fine-tune the
model again, making it possible to recover the potential im-
portant filters. However, as discussed in Section I, such global
center-based criteria may select filters in the high-density
regions, resulting in a volatile filter distribution. Besides,
the zero-pruning strategy in these soft-pruning methods may
largely compromise the kept weight in the pruned model from
that in the pre-trained model.

To solve the above-mentioned problems, we propose a
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Algorithm 1 Local Filter Selection

Require: The original filter set W l, the prune rate P l for the
l-th layer and the nearest neighbor number k .

Ensure: The selected filter subset Ŵ l with the best local
property preservation.

1: Initialize the selected filter subset Ŵ l = {}
2: Initialize the rest filter subset Ẇ l = {ẇl

1, ẇ
l
2, · · · , ẇl

Cl}
by W l

3: Construct an undirected graph G = ⟨V,E⟩ with the vertex
set V = {wl

1, w
l
2, · · · , wl

Cl} and the edge set E are
defined as: ∀wi, wj ∈ V, 1 ≤ i, j ≤ |V |,

Eij ←

{
d(wi, wj), if i ̸= j

0, Otherwise.

4: while |Ŵ l| < P lCl do
5: T = argmini,ẇl

i∈Ẇl ψ(ẇl
i)

6: if |T | == 1 then
7: i∗ = T (1)
8: else
9: i∗ = argmini,i∈T

∑|Ẇl|
j=1 Eij

10: end if
11: Ŵ l ← Ŵ l

⋃
ẇl

i∗ , Ẇ l ← Ẇ l − ẇl
i∗

12: Delete node ẇl
i∗ in V and the incident edges from G

13: end while
14: return Ŵ l

progressive local filter pruning method. Our method contains
two components: The first is the Local Filter Selection to
locate the redundant filters. The second is the Filter Weight
Decreasing method to prune filters. Specifically, we identify
redundant filters by their local geometry relationships. The
candidate filters are not immediately dropped. Instead, we
adopt the weight decreasing policy to decrease the weight scale
of the selected filters. In this way, we effectively inherit prior
knowledge in pre-trained model and progressively decrease
the impact of the candidate filters on the network. Meanwhile,
some potential important filters could have chances of recov-
ering to the original scale in the following training process.
After several iterations of training, the weight of redundant
filters gradually converges to zeros. Finally, we can obtain the
compressed model by removing the zero-weight filters. A brief
illustration of the pruning process for a single convolutional
layer is shown in Figure 2.

1) Local filter selection. We intend to find redundant filters
according to the mutual information. Inspired by previous
works on the local manifold learning [67], [68], which aims at
locality structure exploring, we argue that the local geometry
of filters could reflect more accurate mutual information.
Instead of considering the relationship between all filters
in [16], we focus on the local geometry between neighbor
filters. Intuitively, if one filter shares the similar local property
with the neighbors, the filter could be replaced by the neighbor
filters. For the filter W l of the l-th layer, we could formulate
its local property as the sum of the local relation across every
single filter:

Ψ(W l) =
∑

wl
i∈Wl

ψ(wl
i) =

∑
wl

i∈Wl

1

|U (wl
i)|

∑
wl

j∈U (wl
i)

d(wl
i, w

l
j),

(3)

where d(wl
i, w

l
j) denotes the distance function to model the

local relationship between wl
i and wl

j ; U (wl
i) represents the

neighborhood of wl
i, such as k nearest neighbors and ϵ nearest

neighbors. In this paper, we deploy the Euclidean distance
d(wl

i, w
l
j) = ||wl

i −wl
j ||2 and k nearest neighbors for U (wl

i).
Based on the previous analysis, we intend to prune filters

that obtain the small local property to preserve the original
filter distribution of the network. Concretely, given the pruning
rate P l for the l-th layer, we want to obtain the optimal
filter subset after pruning P l×Cl filters, keeping the original
local property. The layer-wise filter selection criterion could
be formulated as:

min
Wl

∥∥∥∥Ψ(W l)−Ψ(W l
pr)

∥∥∥∥
s.t.∥W∥0 ≤

L∑
l=1

P l|W l
pr|, |W| = |Wpr|,

(4)

Note that every time we change the filter W , some filters
are pruned and the local neighbor relationship is also
changed. To solve the Eq. (4), one naive way is to sort filters
according to the local geometry distance ψ(wl

i) in Eq.(3), and
then select P l × Cl filters with the smallest local property.
However, this may lead to an elimination of filters in the
densest area. Meanwhile, the pruned filter W may be sub-
optimal. To optimize the objective, we propose to update the
filter selection in an iterative way. Specifically, we sample one
filter inW l according to Eq. (4), re-evaluate the local property
of each remaining filter, and repeat the optimization procedure
till P l × Cl filters are sampled. If two or more filters are
obtaining the same local geometry distance, we calculate their
global distance in [16] ( the global distance of filter wl

i is the
total distance between wl

i and the other filters in the same
layer) and sample the filter with the minimum global distance
score. The detailed algorithm is provided in Algorithm 1.
Advantages of local filter selection. The conventional pruning
methods usually apply the global center-based criterion, e.g.,
l1-norm and lp-norm to the clustering center. We argue that
the global center-based criteria may prune the critical filters
which are close to the center, and change the original filter dis-
tribution. In contrast, the proposed method focuses on keeping
filter diversity as well as preserving the filter distribution of
the original model. We, therefore, leverage the local geometry
as the indicator to search the candidate filters. The candidates
with small local property could be replaced by their neighbors.
In this way, after pruning, the model could recover the original
filter distribution.

2) Filter weight decreasing We could obtain the candidate
filter subset Ŵ l for pruning by Algorithm 1. One way is
to remove these filters directly following the hard-pruning
methods [12], [64]. However, the operation may impact the
capacity of the well-trained model, especially when a large
proportion of filters is dropped. Although several soft-pruning
methods, e.g., [8], propose to leverage the dynamic mask,
which does not drop the filter until the training completion,
the side effect caused by setting the filter to zeros also com-
promises the model training process. To solve this problem,
we propose an effective strategy to gradually reduce the value
of candidate filters by multiplying a constant decay factor
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γ (0 ≤ γ ≤ 1). Formally, for the l-th layer, we update each
selected filter wl ← γwl, where wl ∈ Ŵ l. After the scale of
the candidate filter is decreased, we then fine-tune the network
for one epoch. The local geometry score between filters is
calculated again and is used to re-select the pruned filters. In
other words, the wrongly-selected filters are provided more
chances to recover the original scale. This “decreasing and
fine-tuning” process is iteratively performed, till the weights
of redundant filters gradually converge to zeros. By integrating
the filter weight decreasing strategy with the selected filters
according to Eq.(4), we could re-write our training objective
function in Eq.(2) as follows:

min
W

1

N

N∑
i=1

ℓ(W; (xi, yi))

s.t. W = {Ẇ, γŴ}, 0 ≤ γ ≤ 1, ∥W∥0 ≤
L∑

l=1

P l|W l
pr|,

|W| = |Wpr|,

(5)

where Ŵ and Ẇ refer to the selected filters and the rest filters
in W across the whole network, respectively.

It is worth noting that since we iteratively update the model
in every epoch, some weights are multiplied by γ multiple
times and will gradually decrease to zeros.
Advantages of filter weight decreasing. According to the
convolution operation, the filter weight decreasing actually
decreases the contribution of the selected filter. For instance,
the original output is w ⊙ x, and the output of the weight
decreasing filter is γw ⊙ x, where ⊙ denotes the convolution
operation. The contribution of the selected filter is also de-
creased by γ times. If γ = 0, the filter weight decreasing will
equal to the conventional hard-pruning methods. If γ = 1, the
network will not be pruned. The proposed pruning, therefore,
could be viewed as one mild strategy of the hard-pruning
method. We progressively decrease the contribution of the
selected filters, while providing chances of recovering the
potential important filters to keep the model capacity. In
Section IV-C, we further provide the ablation study on the
effectiveness of the filter weight decreasing.

IV. EXPERIMENTS

We apply our pruning method on two sorts of CNN-based
image retrieval applications, i.e., scene retrieval and person re-
identification. The following experiments are conducted with
two kinds of networks, i.e., VGG-16 [69] and ResNet-50 [70],
on five benchmarks, i.e., Oxford5K [71], Oxford105K [71],
Paris6K [72], Paris106K [72], and Market-1501 [73]. On
the selected datasets, the main task is the cross-view image
matching, which could be formulated as a metric learning
problem. The target is to map the images of different cameras
to shared space. In this space, the embeddings of the same
location should be close, while the embeddings of different
locations should be apart. We impose two kinds of networks
with the triplet loss [35] and contrastive loss [25] for re-
identification and scene retrieval, respectively. Note that this
paper mainly focuses on network pruning for image retrieval.
In other words, we try to keep the pruned model as small as
possible with the least performance degradation.

1). Datasets: The datasests used in our experiment are
described as follows:

Scene retrieval data: 1) training dataset: Following [25],
we impose the Structure-from-Motion 3D (SfM3D) dataset
used in [74] for our training samples, which are derived
from Flickr and contains 7.4 million images. The initial
dataset SfM3D contains overlapping classes, such as images in
Oxford5K and Paris6K datasets. After removing overlapping
classes, there are nearly 120k images from 713 classes, where
551 and 162 classes are randomly selected for training and val-
idation, respectively. We select around 2,000 and 1,700 images
for training and validation queries per epoch, respectively. 2)
testing datasets: We evaluate the proposed method on four
prevailing scene retrieval datasets, namely Oxford5K [71],
Paris6K [72], Oxford105K [71], and Paris106K [72]. The
Oxford5K dataset contains 5062 Oxford building images col-
lected from Flickr. Similar to Oxford5K, the Paris6K dataset
consists of 6412 images from Paris landmarks. Both of these
two datasets have 55 query images corresponding to 11 build-
ings/landmarks. The Oxford105K and Paris106K datasets are
generated by adding 1 million distractor images from Flickr
to Oxford5K and Paris6K, respectively.

Person re-identification data: The Market-1501 dataset is
used to evaluate the performance of the proposed method in
terms of person re-identification. This dataset contains 32,668
images with 1,501 different individuals, and each individual
is captured in a university by at most six cameras and is
present in at least two cameras. All images are automatically
detected by the Deformable Part Model (DPM) detector [75].
The misalignment problem is common, and the dataset is close
to the realistic settings. 751 individuals are selected for the
training set and 750 individuals are chosen for the testing
set without overlapping. On average, every individual in the
training set has 17.2 photos. In total, there are 19732 testing
images, 3368 query images, and 12936 training images.

2). Compared methods: To verify the effectiveness, we
compare the proposed method with the competitive pruning
approaches, including (1) HFP, the hard type filter pruning
method, which selects and deletes redundant filters according
to the l1-norm criterion [12]. (2) SFP, the soft type filter
pruning method. Redundant filters are set to zeros instead of
direct deletion [8]. (3) FPGM, the filter pruning via geometric
median [16]. (4) Taylor. Filters are ranked by Taylor expan-
sion, which is built on the contribution of filters on network
loss [64]. The pruned model is based on widely-used retrieval
code, such as (1) Person re-identification baseline. Our
implementation is similar to [35], which imposes a ResNet-50
as the backbone network. (2) Scene retrieval baseline, which
uses VGG-16 as the backbone network with the contrastive
loss function [25].

A. Results on Person Re-identification

Setting: Three state-of-the-art pruning methods, that is,
SFP [8], FPGM [16], and HFP [12], are introduced for
comparison. Following [8], all the convolutional layers are
pruned with the same pruning rate P at the same time. We
test all the comparison pruning methods with P varying from
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TABLE I: Performance evaluation of the compared pruning methods on Market-1501 using ResNet-50 initialized on
the Imagenet dataset. For each layer, the larger pruning rate indicates more filters will be dropped. ‘FLOPs(%)↓’ and
‘Parameters(%)↓’ denote the FLOPs and parameters drop between the pruned model and the baseline model. Our method
outperforms other comparison methods, especially when a large proportion of filters is pruned. The best results are highlighted
in bold.

Pruning rate(%) Methods mAP(%) Rank-1(%) Rank-5(%) Rank-10(%) FLOPs(%)↓ Parameters(%)↓
0 Baseline [35] 70.81 86.63 93.74 96.05 0 0

10

SFP [8] 69.08 85.45 93.85 95.78

14.50 12.92

FPGM [16] 70.23 86.40 93.97 95.81
HFP [12] 69.08 85.33 93.88 96.17

Ours (k=1) 70.06 86.22 94.18 95.99
Ours (k=5) 70.38 86.25 94.18 96.26

Ours (k=10) 70.53 86.58 94.39 96.29

20

SFP [8] 69.03 84.77 93.74 95.69

28.25 24.83

FPGM [16] 70.07 86.07 93.79 95.81
HFP [12] 67.93 85.51 93.97 96.14

Ours (k=1) 69.60 85.60 93.91 96.08
Ours (k=5) 69.76 85.78 93.94 95.93

Ours (k=10) 70.23 86.07 93.59 95.69

50

SFP [8] 65.85 83.05 92.96 95.52

62.45 55.57

FPGM [16] 65.31 83.02 91.98 94.66
HFP [12] 57.22 77.82 90.29 93.74

Ours (k=1) 66.32 83.85 93.29 95.64
Ours (k=5) 66.14 83.64 92.84 94.93

Ours (k=10) 66.09 83.88 93.11 95.55

90

SFP [8] 48.02 71.17 86.88 90.91

88.85 74.28

FPGM [16] 45.31 68.26 84.74 89.64
HFP [12] 47.24 70.57 85.09 89.85

Ours (k=1) 56.47 77.25 89.46 92.84
Ours (k=5) 50.98 72.06 87.11 91.33

Ours (k=10) 49.29 70.31 86.40 91.24

{10%, 20%, 50%, 90%}. For the soft-pruning methods, i.e.,
SFP, FPGM, and our method, we embed the pruning operation
into training procedure, and prune filters while fine-tuning for
100 epochs. To conduct a fair comparison, for the hard-pruning
method, i.e., HFP, we prune network once and fine-tune it with
the same number of epochs as the soft-pruning methods. Our
method contains two hyper-parameters, i.e., k and γ. We tune
k from {1, 5, 10} and set γ = 1× 10−2 when P ⩽ 50% and
γ = 3× 10−1 when P > 50%, respectively.

Following [35], we deploy ResNet-50 as the backbone
network for our person re-identification baseline, and replace
the last average pooling layer and fully-connected layer with
an adaptive max-pooling layer. We employ the widely used
triplet loss function [76] and SGD to train the network with
an initial learning rate l0 = 0.001, momentum 0.9, margin 0.3,
the pool size of 128, and the batch size of 32.

Results: As shown in Table I, in most cases the soft-pruning
methods, i.e., SFP, FPGM, and our method, can greatly
improve the accuracy than the hard-pruning method, i.e.,
HFP, indicating that keeping the connections of redundant
filters while pruning is quite important for retaining the
model capacity. When fewer filters are pruned, the global-
based geometric pruning method, i.e., FPGM, is slightly better
than SFP by preserving crucial filters with small magnitude.
However, FPGM tends to degrade the accuracy with the
pruning rate increasing. Particularly, when 90% of filters are
pruned, FPGM fails SFP. The reason may be that FPGM
globally measures the importance of filters according to their
distance to the geometric center, which tends to hurt the filter
distribution when a large proportion of filter is pruned. Our

method is consistently better than the other methods for almost
all the pruning rate P . In particular, our method brings a
bigger advantage in getting smaller models over the other
pruning methods. For example, when pruning 50% of filters,
our method outperforms the second best method, i.e., SFP,
nearly 0.5% mAP , and just increases the Rank-5 error by
0.45% than the baseline. As the pruning rate increasing, our
proposed local pruning method obtains much better results
than the comparison methods. For instance, our method with
k = 1 surpasses the second best method, i.e., SFP, over 8%
mAP and 6% Rank-1 accuracy respectively, when pruning
90% filters and 88.9% FLOPs1 have been reduced. This
demonstrates that the local geometry criterion is beneficial to
preserve the original filter distribution, which is consistent with
observations in Section I. In addition, our method contains two
critical components, i.e., local ranking and weight decreasing.
We present a detailed discussion of them in Section IV-C.

B. Results on Scene Retrieval

Setting: We employ the same backbone network, i.e., VGG-
16, as [25] for the scene retrieval baseline, which is pre-
trained on the building dataset, i.e., Structure-from-Motion
3D (SfM3D) [74]. The pre-trained model is provided by the
author2. We follow the conventional pipeline in [25] and adopt
the contrastive loss function as the objective function. Adam
[77] is used to train the model with an initial learning rate
l0 = 5 × 10−6, exponential decay lr = l0 exp (−0.01t) over

1https://github.com/sovrasov/flops-counter.pytorch
2https://github.com/filipradenovic/cnnimageretrieval-pytorch

https://github.com/sovrasov/flops-counter.pytorch
https://github.com/filipradenovic/cnnimageretrieval-pytorch
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TABLE II: Performance evaluation of the compared pruning methods using VGG-16 on various scene retrieval datasets, e.g.,
Oxford5K, Oxford105K, Paris6K, and Paris106K in terms of mAP (%). The proposed method obtains the best results comparing
with other pruning methods. The best results are highlighted in bold.

Methods Datasets FLOPs(%)↓Oxford5K Oxford105K Paris6K Paris106K
Baseline [25] 82.45 77.86 81.37 74.82 -

HFP [12] 75.25 68.89 71.78 60.61 50.70
Taylor [64] 76.15 71.07 72.51 62.36 52.39

SFP [8] 75.26 70.65 74.02 62.15 51.59
FPGM [16] 73.62 68.83 72.23 62.54 52.99

Ours 77.67 72.34 74.12 64.34 57.37

Fig. 3: The pruning sensitivity of different methods with
varying pruning rates. One low-level convolutional layer (left)
and one high-level convolutional layer (right) are selected for
comparison. We could observe that our method has advantages
of exploring the potential redundancy of each layer and can
achieve relatively higher mAP than other pruning methods.

epoch t, momentum 0.9, margin 0.85, the batch size of 5, and
the pool size for hard-negative mining is set to 2,000. During
testing, we extract the multi-scale representations from the
images of different scale factors without whitening operation,
i.e., { 1√

2
, 1,
√
2}.

Three state-of-the-art pruning methods are chosen for com-
parison, i.e., HFP [12], Taylor [64], and SFP [8]. Following
[12], we investigate the pruning sensitivity of each convo-
lutional layer and manually choose the best pruning rates.
Concretely, for each layer, we tune the pruning rate from
{10%, 20%, · · · , 90%}. For each method, we first record the
border performance value, where the mAP relatively drops
over 3%. Then, we calculate the pruning threshold by aver-
aging the border performance values across the comparison
methods. The best pruning rate for each method is the max-
imum value in the tuning range with larger mAP than the
pruning threshold. The pruning sensitivity results over two
convolutional layers, i.e., one low-level and one high-level
layer, are shown in Figure 3. For Taylor [64], which globally
ranks filters through all convolution layers, we set the pruning
rate to 40%. For our method, the hyper-parameters k and γ are
set to 10 and 5×10−1, respectively. Similar to the comparison
strategy in Section IV-A, for soft-pruning methods, i.e., SFP
and our method, we train network and progressively prune
filters for 100 epochs. For the hard-pruning methods, i.e., HFP
and Taylor, we prune network once and train the compressed
model with the same number of epochs as the soft-pruning
methods.
Results: As shown in Table II, we summarize the compar-
ison results on the Oxford5K, Oxford105K, Paris6K, and
Paris106K datasets. Our method achieves the best results on
all the selected datasets, e.g., 77.67% mAP on Oxford5K and

64.34% mAP on Paris106K, when 57.37% FLOPs is reduced.
The performance drop of our method is limited with −4.78%
mAP from the baseline [25] on Oxford5K. Similar results
are observed on other datasets, where our method saves more
FLOPs and still achieves a better performance over other
pruning methods, which demonstrates the effectiveness of the
proposed method.

C. Ablation Study

Our method contains two components, i.e., local filter selection
(controlled by hyper-parameter k) and filter weight decreasing
(controlled by hyper-parameters γ). A large k indicates that
more neighbor filters are taken into consideration. Meanwhile,
the value of γ affects the speed of the weight decreasing.
We provides detailed case studies to help understand these
components and to determine the hyper-parameters.

TABLE III: Performance comparison with our proposed two
components, i.e., local filter selection and weight decreasing,
on Market-1501 using ResNet-50. We observe that these
components jointly works well for filter pruning and can boost
the pruning performance.

Methods Performance
with local filter selection? ✗ ✓ ✗ ✓
with weight decreasing? ✗ ✗ ✓ ✓

Rank-1(%) 68.44 71.06 74.50 77.25
mAP(%) 45.18 48.08 54.03 56.47

Are local filter selection and weight decreasing necessary?
In our PLFP, local filter selection and weight decreasing are
imposed to preserve the original filter distribution and utilize
the model capacity, respectively. To study the effectiveness
of them, we first remove these two components in PLFP and
conduct a new pruning method with the global-geometric filter
framework in FPGM [16], namely GP. Then, we manually
add one component at a time into GP to study their influence.
Table III shows the results on Market-1501 with 90% filters
pruned. We can observe that GP with local filter selection
(the third column) and GP with weight decreasing (the fourth
column) constantly outperform GP, indicating the importance
of leveraging local geometry information and weight decreas-
ing for filter pruning. Besides, GP with our proposed two
components (the fifth column) achieves the best mAP over the
others. This demonstrates that our proposed two components
jointly work well for filter pruning and can obtain much
encouraging pruning performance.
How to determine the value of k? From Table I, we could
observe that our method is sensitive to the parameter k. To
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Fig. 4: The parameter sensitivity analysis of k on the Market-
1501 dataset. We observe that our method performs slightly
better with a large k (i.e., k ≥ 10) when fewer filters (i.e.,
pruning rate P < 50%) are pruned. In contrast, it tends to
achieve higher performance with a small k (i.e., k < 10) when
more filters are removed (i.e., P ≥ 50%).

investigate the importance of parameter k, we chose different
k values from {1, 5, 10, · · · , 1000, 5000} on Market-1501 with
pruning rate P varying from {10%, 20%, 50%, 90%}. We set
γ = 1 × 10−2 when P ≤ 50% and γ = 3 × 10−1 when
P > 50% respectively. The results are shown in Figure 4.
Concretely, if P is relatively small, e.g., P < 50%, a
large k value will lead to better performance. In contrast,
a small k value is the first choice for the high-proportion
pruning demand, e.g., P ≥ 50%. We speculate that when a
small proportion of filters is selected, a large k could utilize
more local information without damaging the original filter
structure. When we intend to remove a large proportion of
filters, the large k may lead to dropping the entire points in
the local geometry, which could be avoided by searching the
limited local geometry. A small k value, therefore, performs
well in this condition, where only the closest neighbor is taken
into consideration. Besides, we can also observe in Figure 4
that when k > 10, the performance improvements are subtle
with the increase of k value. Therefore, in practice, to reduce
the cost of hyper-parameter tuning, we can set k = 1 when
P ≤ 50%, and k = 10 when P > 50%.

Fig. 5: The parameter sensitivity analysis of γ on the Market-
1501 dataset. We observe that our method is insensitive to
γ when pruning rate P < 60%. In contrast, a large γ (i.e.,
γ = 3× 10−1) is the better choice when P ≥ 60%.

Effect of weight decreasing. To study the sensitivity with
respect to parameter γ, we evaluate different γ values in the
range from {6 × 10−1, 3 × 10−1, 1 × 10−1, 6 × 10−2, 3 ×
10−2, 1× 10−2, 0} on the Market-1501 dataset with different
pruning rates P varying from {10%, 20%, 60%, 90%}. We fix
k = 1 in the ablation study. The results are shown in Figure 5.

We observe that our method is not sensitive to γ when P is
small, e.g., P = 10% and P = 20%. In contrast, when a
large proportion of parameters is dropped, e.g., P ≥ 60%, the
model with larger γ, which decreases the filter scale slowly,
significantly performs well. It is consistent with our intuition
that the filter weight decreasing helps the model adapt to the
large prune rate. Note that if the value of γ is too large, e.g.,
γ = 6 × 10−1, the network may converge very slowly, and
limited redundant filters are decreased to zeros. To compare
the results fairly, we use the hard-pruning method to drop the
final redundant filters, so the model with γ = 6× 10−1 does
not perform well.

Fig. 6: Weight distribution of different methods before and
after pruning. The global-center method, i.e., SFP (blue),
prunes filters close to the geometric center (zero here), largely
changing the original distribution (red). In contrast, PLFP
(green) evaluates the redundancy of filters according to their
local similarity and is capable of maintaining the original filter
distribution.

D. Filter Distribution Preservation Analysis
Our method introduces the local filter selection to preserve

the original filter distribution in pre-trained models. In this
section, we verify the filter distribution preservation ability of
our method by analyzing the weight distribution of different
methods before and after filter pruning without fine-tuning.
The pruning rate is set to 50%. The weight is from the last
convolutional layer of ResNet-50. We can observe that the
global-center method, i.e., SFP (blue), tends to prune filters
with small-scale weight value (close to the geometric center),
leading to a relatively flat curve and a large disparity with
the original distribution (red). In contrast, our PLFP (green)
locally evaluates the redundancy of filters with their neighbors.
As can be seen in Figure 6, the numbers of the deleted filters
in our PLFP are relatively evenly distributed than SFP across
the original range of weight value. Therefore, PLFP is capable
of maintaining the original filter distribution.

To further show how the proposed method works, we
visualize the first convolutional layer feature maps in our
person re-identification network. The results are shown in
Figure 7, where we have pruned 10% of filters and marked
the corresponding pruned feature maps with red boxes. These
pruned feature maps contain the outlines of the input image,
such as straps (2, 31), T-shirts (13, 59), shorts (28), and
hat (57). Clearly, our method prunes filters according to the
local redundancy criterion, where the pruned feature maps can
be replaced by the remaining ones. For example, straps, T-
shirts, shorts, and hats can be replaced by feature maps: (43,
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Fig. 7: The input image (left) and the visualization of the first convolutional layer feature maps (indexed from 0 to 63) (right).
The maps with red boxes are pruned by our method. For instance, feature maps (2) and (13) share the similar patterns with
feature maps (43, 54) and (11, 42), respectively, and can be safely removed.

54, 55, et al.), (11, 42, et al.), (20, 22 et al.), and (1, 34, 53,
et al.), respectively.

E. Model Capacity Preservation Analysis

TABLE IV: The mean Euclidean distance on Market-1501
between the embedding features extracted from the original
model and the pruned models. It shows that our method is
more capable of retaining the model capacity of the original
model than the other pruning methods.

Methods Distance ( ×10−2) mAP(%) Rank-1(%)
FPGM [16] 35.28 45.31 68.26
HFP [12] 35.17 47.24 70.57
SFP [8] 35.13 48.02 71.17

Ours (k = 1) 34.70 56.47 77.25

As demonstrated in Section IV-C, our method is adept
at preserving the model capacity while pruning. In other
words, the pruned model could keep the original pre-trained
knowledge as much as possible. To verify this, we collect and
analyze the outputs of the last convolutional layer of the pre-
trained and pruned models. Intuitively, if the pruned models
maintain a large model capacity, they can generate close
outputs with the pre-trained model. Following the experimental
setting in Section IV-A, for all the compared pruning methods,
we prune and fine-tune the pre-trained model for 100 epochs.
Then, we compute the Euclidean distance between the outputs
of the original model and pruned models with 90% filters
removed on Market-1501. The results are shown in Table IV.
We find that our model generates the most similar output with
the baseline model in [35] and achieves over 8% and 6%
than the second best method in terms of mAP and Rank-
1, respectively, which indicates that the proposed method
can recover the model capacity while fine-tuning by keeping
connections of the redundant filters. Therefore, it is suitable
for pruning image retrieval networks.

F. Pruning Efficiency Analysis

For the pruning efficiency investigation, we record the
execution (including pruning and fine-tuning) time and infer-
ence time of the comparison methods with 90% filters are
pruned on Market-1501. All of the pruned methods are trained

on an Intel (R) Core (TM) i9-9980XE CPU @ 3.00GHz
PC with 64G memory and a GPU (Nvidia 2080Ti). After
obtaining the slim model, we test them on a CPU (1.3 GHz
Dual-Core i5). As can be observed in Table V, our method
outperforms other pruning methods more than 8% on mAP
and accelerates the baseline model (186.28 microseconds per
image) by over 4.0× (i.e., 46.28 microseconds per image),
demonstrating the effectiveness of the proposed method. For
execution, it takes 5.83 hours for PLFP, which consumes 0.55
hours more than FPGM, i.e., 5.28 hours. The main reason
is that PLFP introduces an iterative pruning strategy and
needs more computation resources. However, once PLFP is
converged, we can safely remove the redundant filters (i.e.,
the filters that converge to zero) to obtain the slim model with
the equivalent inference time as FPGM.

TABLE V: Runtime comparison of different pruning methods
on ResNet-50 with 90% filters are pruned. ‘ms’ refers to
millisecond. The proposed method has saved more than 75%
inference time with respect to the baseline and achieved better
retrieval performance over other pruning methods.

Methods Type mAP(%) Inference time (ms/image)
Baseline [35] - 70.81 186.28

HFP [12] hard 47.24 46.28
SFP [8] soft 48.02 46.28

FPGM [16] soft 45.31 46.28
Ours soft 56.47 46.28

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a progressive local filter pruning
strategy for image retrieval acceleration. Different from exist-
ing global center-based pruning works, the proposed approach
resorts to remain the filter distribution by considering local
relations between filters. Besides, the progressive filter weight
decreasing allows the pruned model to preserve the model
capacity, even when dropping a large proportion of filters.
Compelling results on four scene retrieval benchmarks and
one person re-id dataset show the effectiveness of our method
on accelerating the image retrieval models. We hope this
work can pave the way for fast image retrieval in real-world
environments.

In future, we will extend the proposed PLFP to other image
retrieval related applications like 3D point cloud matching,
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object detection, etc. In addition, we would like to further
improve PLFP by combining the filter correlations among
different layers. One possible direction is to design a multi-
task pruning framework, where each layer is treated as one
pruning task. In this framework, multi-task learning and sparse
regularization techniques can be considered to extract the inter-
layer filter correlations.
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