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Abstract— Sufficient training data normally is required to train
deeply learned models. However, due to the expensive manual
process for a labeling large number of images (i.e., annotation),
the amount of available training data (i.e., real data) is always
limited. To produce more data for training a deep network,
generative adversarial network can be used to generate artificial
sample data (i.e., generated data). However, the generated data
usually does not have annotation labels. To solve this problem,
in this paper, we propose a virtual label called Multi-pseudo
Regularized Label (MpRL) and assign it to the generated
data. With MpRL, the generated data will be used as the
supplementary of real training data to train a deep neural
network in a semi-supervised learning fashion. To build the
corresponding relationship between the real data and generated
data, MpRL assigns each generated data a proper virtual label
which reflects the likelihood of the affiliation of the generated
data to pre-defined training classes in the real data domain.
Unlike the traditional label which usually is a single integral
number, the virtual label proposed in this paper is a set of
weight-based values each individual of which is a number in (0,1]
called multi-pseudo label and reflects the degree of relation
between each generated data to every pre-defined class of real
data. A comprehensive evaluation is carried out by adopting
two state-of-the-art convolutional neural networks (CNNs) in our
experiments to verify the effectiveness of MpRL. Experiments
demonstrate that by assigning MpRL to generated data, we can
further improve the person re-ID performance on five re-ID
datasets, i.e., Market-1501, DukeMTMC-reID, CUHKO03, VIPeR,
and CUHKO1. The proposed method obtains +6.29%, +6.30%,
+5.58%, +5.84%, and +3.48 % improvements in rank-1 accuracy
over a strong CNN baseline on the five datasets, respectively, and
outperforms state-of-the-art methods.

Index Terms— Person re-identification, generated data, virtual
label, semi-supervised learning.
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I. INTRODUCTION

N 20148, Generative Adversarial Network (GAN) was pro-

posed to generate data (images) with perceptual quality [1].
Since then, several improved approaches [2]-[4] were pre-
sented to further improve the quality of generated data. How-
ever, how to use the data is still an open question. Meanwhile,
person re-identification (re-ID) is a challenging task of recog-
nizing a person amongst different camera views. It is a typ-
ical computer vision problem that requires sufficient training
data to learn a discriminative model. In the past few years,
deep learning has demonstrated its performance in person
re-ID by producing several state-of-the-art methods [S]-[10].
To this end, sufficient labeled training data is essential to
train deeply learned models in a supervised learning fash-
ion. Although some large datasets, e.g., Market-1501 [11],
DukeMTMC-relID [12], and CUHKO3 [13] have been pro-
posed. However, due to the expensive cost of data acquisition
that needs to manually find corresponding labels of pedestrians
who appear under different camera views, the number of
images per ID in these datasets is still limited.

Using generated data to solve the problem of limited train-
ing data is a promising solution. Therefore, we attempt to use
unlabeled data generated by GANs to improve the person re-ID
performance further. In all existing methods by using GAN,
there are two main challenging points in order to assure
the better performance: 1) high quality data generated by
GAN [2]-[4], 2) a better strategy to use the generated data into
the training model [12]. Many works focus on the first point.
This paper particularly focuses on the second point. We follow
the same pipeline in [12] that incorporates generated data
with real data to train deep models in a semi-supervised
learning fashion. Compared with previous attempts [2], [14]
that perform semi-supervised learning in the discriminator
of GANSs, sufficient unlabeled generated data will directly
participate in training as the supplementary of limited labeled
real data in our work.

In 2017s, a related work was first proposed in [12] that
introduced a method called Label Smooth Regularization
for Outliers (LSRO). This method assigns virtual labels to
generated data with a uniform label distribution over all the
pre-defined training classes. The uniform distribution consid-
ers weights of all the pre-defined training classes equally.
More specifically, if the number of pre-defined training class
is K, the weight of each class is equally divided into 1/K.
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(a) (b) (c) Fitting generated images (a) and (b) into

pre-defined training classes using markers ‘o’
and ‘+’, respectively.

Fig. 1. Label distribution of pre-defined training classes (c) for generated
images (a) and (b). Only the maximum predicted probability of pre-defined
training classes is activated along with the training process (see (c)). Distin-
guishable label distributions can be observed between (a) and (b).

By doing so, LSRO shows two undesirable characteristics:
1) On the real data domain, the weights over all pre-defined
training classes are identical. 2) On the generated data domain,
all data share the same virtual label.

For the first fact, since every individual pre-defined training
class of real data has the same weight, the data generated
by GAN should be able to embed equal properties of all
pre-defined training classes. However, during the actual GAN
training process, only a random mini-batch of real data sam-
ples are used in each iteration. That is, only certain real data
from some classes (not all pre-defined training classes) are
used in GAN training in each iteration to generate artificial
data following a continuous noise distribution [1], [2]. Con-
sequently, the data distribution between the generated and
real data is biased by equally utilizing the weights from all
pre-defined training classes in the real data domain. We need
to assign certain type of label to generated data, which
can reflect the proper weights of pre-defined training
classes in GAN training on the different contributions
to new data generated. For the second fact, it may not be
correct to assign the same label to certain different generated
data if the generate data has the distinct visual differences.
In that case, ambiguous predictions may happen in training.
Figure 1(a) and 1(b) show two generated images with red and
green clothes respectively. If we fit these two images into
pre-defined training classes (only using the maximum pre-
dicted probability) through 50 training epochs, distinguishable
label distribution can be observed in Figure 1(c). Therefore,
using the same virtual label over all the generated data is
improper. We need to dynamically assign different virtual
labels to each generated data.

Although LSRO has demonstrated its effectiveness in [12],
the above problems still limit its effectiveness. To solve
this problem, a Multi-pseudo Regularized Label (MpRL) is
proposed as a virtual label assigned to generated data. Unlike
LSRO, main contributions of the proposed MpRL can be
summarized in three-fold:

o Compared with LSRO using uniform label distribu-

tion, the proposed MpRL assigns each generated data
a corresponding label which shows the likelihood of
the affiliation of the generated data to all pre-defined
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training classes. Thus, the relationship between the gener-
ated data and pre-defined training classes can be substan-
tially built, which makes generated data more informative
when they incorporate with the real data in training.

« By differentiating the different generated data, MpRL can
inherently mitigate of ambiguous prediction in training.
Intuitively, different generated data present distinct visual
differences and should have different impacts to the
training. The proposed method is to embed such char-
acteristics into the training model.

o Qualitative analyses are given to the proposed MpRL.
Also, comprehensive quantitative evaluations are carried
out to verify the performance of the proposed MpRL
not only on large but also on small-scale person re-ID
datasets by adapting different CNN models. In addition,
we also use two groups of generated data by different
GAN models to evaluate the proposed method. Such
comprehensive work was not presented in [12].

This paper is organized as follows. We first review some
related works in Section II. In Section III, we begin to
revisit the state-of-the-art virtual label used on generated data.
Then the implementation details of the proposed MpRL are
provided. A brief analysis is discussed to demonstrate why
MpRL works better in Section IV. The experiments are shown
in Section V. The conclusion is in Section VI.

II. RELATED WORK

A. Semi-Supervised Learning

Semi-supervised learning is halfway between supervised
and unsupervised learning, which uses both labeled and unla-
beled data to perform the learning task. It has been well
investigated, and dozens of methods have been proposed in
the literature. In image segmentation, a small number of
strongly annotated images and a large number of weakly
annotated images are incorporated to perform semi-supervised
learning [15], [16]. For person identification in TV series,
Bauml er al. [17] take labeled data and unlabeled data into
account and constrain them in a joint formulation. To tackle
multi-label image classification, Luo ef al. [18] make use of
unlabeled data in semi-supervised learning to boost the per-
formance. In text classification, a region embedding is learned
from unlabeled data to produce additional inputs to CNN [19].

Since obtaining training labels is expensive, previous
semi-supervised works mainly focus on how to utilize suf-
ficient unlabeled data with accessible labeled data to boost
the performance. However, if the real data is scarce or hard
to obtain, these methods may useless. Therefore, in this
paper, we directly use existing data to generate unlabeled
data by GAN. Further, we would like to show that these
generated data can help improve discriminative model learning
by assigning the proposed MpRL.

Also, several methods have proposed to assign virtual
labels to unlabeled data in a semi-supervised learning fashion.
In [20] and [14], a new class in the discriminator is taken
as the virtual label (all-in-one) assigning to all the unlabeled
data produced by the generator of GAN. The all-in-one
method simply regards all generated data as an extra class.
Let K represents the number of pre-defined training class
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in the real data domain, then K + 1 is assigned to each
generated data. Since these data are generated according to the
distribution of real data, they tend to belong to the pre-defined
training classes rather than a new one. To solve this problem,
the one-hot pseudo label is proposed [21] that can assign a
virtual label to generated data without using any extra class.
The one-hot pseudo label utilizes the maximum predicted
probability of the pre-defined training classes as the virtual
label assigning to an unlabeled data. In training, the virtual
label is dynamically assigned to the unlabeled data, so that
the same data may receive a different label each time when
it is fed into the network. Using the one-hot pseudo label,
a generated image will be fitted into a specific pre-defined
training class along with the training process, which may lead
to over-fitting. To address this problem, Zheng et al. [12]
introduce the LSRO that uses a uniform label distribution to
regularize the network training for person re-ID. In this paper,
the all-in-one [14], [20], one-hot pseudo [21], and LSRO [12]
will be used as our comparison experiments. Amongst them,
LSRO achieves the best performance in boosting the re-ID
performance. Notably, we call the pseudo [21] as one-hot
pseudo in this paper since only one pre-defined training
class with the maximum predicted probability is activated in
training.

B. Person Re-Identification

The person re-ID is selected to evaluate our MpRL based
on two reasons. Firstly, in the past five years, there has
been a tremendous increase in this research problem. It has
drawn growing interest from academic researches to practical
applications [22]. Secondly, compared with other computer
vision tasks, acquiring labeled data is expensive for person
re-ID. This inspires us to leverage generated data by GAN to
solve the limited training data problem. In the past few years,
two branches, including traditional and deep learning methods
have demonstrated their performance for person re-ID.

In traditional methods, the task of person re-ID can
be divided into two modules: feature extraction and met-
ric learning. In feature extraction, Liao et al. [23] propose
the local maximal occurrence feature to against viewpoint
changes and handle illumination variations. Chen er al. [24]
introduce a mirror representation to alleviate the view-specific
feature distortion problem. Zheng et al. [11] present a bag-
of-words descriptor that describes each person by a visual
word histogram. In metric learning, Zheng et al. [25] use a
relative distance comparison method to minimize the prob-
ability of a negative person image pair that has a larger
distance than a positive pair. Liao and Li [26] propose logistic
metric learning via an asymmetric sample weighting strategy.
Li et al. [27] employ a locally-adaptive decision function that
integrates traditional metric learning with a local decision rule.
Yu et al. [28] learn an asymmetric metric that projects each
view in an unsupervised learning fashion. Zhang et al. [29]
utilize true motion cues for long-term person re-ID.

Unlike the above traditional methods that are manually
designed to handle the person re-ID task. Deep learning
discovers more implicit information in matching persons and
achieves many state-of-the-art results.
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In deep learning methods, to distinguish person appear-
ance at the right spatial locations and scales, Qian et al. [6]
propose a multi-scale deep learning model to learn discrimina-
tive features. Lin et al. [7] introduce a consistent-aware deep
learning approach which seeks the globally optimal matching.
Also, deep features over the full body and body parts are
captured from local context knowledge by stacking multi-scale
convolutions in [30]. Two-stream network [10], [31], triplet
loss network [32], [33] and quadruplet network [34] have
been designed for person re-ID.

Zheng et al. [8], [9] propose an identification (Identif) CNN.
This network takes person re-ID as a multi-classification task,
and a CNN embedding is learned to discriminate different
identities in training. Beyond that, Zheng et al. [10] propose a
Two-stream deep neural network. A verification function that
separates two input images belonging to the same or different
identities is considered to improve the performance of the
Identif network further. In testing, the above two networks
extract CNN embeddings in the last convolutional layer to
compare the similarity between two inputs using squared
Euclidean distance. Both of the two CNN networks have
been utilized in [12] to investigate the improvement by adding
generated data with LSRO virtual labels in training.

In this work, we adopt the Identif network [8], [9] and the
Two-stream network [10] to verify the effectiveness of the
proposed MpRL. Compared with the previous related work,
our MpRL achieves better performance.

Boosting: Some methods have been proposed as a procedure
to boost person re-ID performance further. Huang et al. [35]
formulate person re-ID as a tree matching problem, and
a complete bipartite graph matching is presented to refine
the final matching result at the top layer of the tree.
To study person re-ID with the manifold-based affinity learn-
ing, Bai et al. [36] introduce a manifold-preserving algorithm
plunging into existing re-ID algorithms to enhance the perfor-
mance. Re-ranking which exploits the relationships amongst
initial ranking list in person re-ID has been studied to improve
the performance [37]-[39]. Finally, human feedback in-the-
loop is required that provides an instant improvement to re-ID
ranking on-the-fly [40]-[42].

Unlike the above attempts, in this work, we attempt to
use generated data to boost person re-ID performance on off-
the-shelf CNNs by incorporating with the proposed MpRL.
Although our main contribution is not to produce state-of-the-
art person re-ID results. We also try to boost the performance
of the Two-stream network [10] to outperform the results of
several state-of-the-art methods by using our MpRL.

III. THE PROPOSED MULTI-PSEUDO
REGULARIZED LABEL
In this section, we first revisit the state-of-the-art virtual
label LSRO [12] for person re-ID. Then MpRL is intro-
duced. Finally, three training strategies are given to the pro-
posed MpRL.

A. LSRO for Person Re-ID Revisit
LSRO assumes that the generated data does not belong
to any pre-defined training class and uses the uniform label
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distribution on each of them to address over-fitting [12]. LSRO
is inspired by label smoothing regularization (LSR) [43] which
assigns less confidence on the ground-truth label and assigns
small weights to other classes. Formally, giving a generated
image g, its label distribution qi sro (k) is defined as follows:

! 1
?9 ()

where K is the number of pre-defined training classes in the
real data domain, k € [1, ..., K] represents the k-th pre-defined
training class. In training, the loss of LSRO to a generated
image is defined as follows:

qisx’o(k) =

1 K
lLsro = —— ;lOg(P(Xk))a 2)

where X represents the output of k-th pre-defined training
class, p(Xx) € (0, 1) is the softmax predicted probability of
X belonging to the pre-defined training class k, defined as
follows:

p(Xy) = T (3)

o In Eq.2, the forward loss is as follows:
K
1 eXk
lLsro = —— D _10g(——)
K par Zj:l eXi

1 K K
=~ 2 X Hlog(D LN @)
k=1 j=1

o While, the backward gradient is as follows:

olLsro _ 1 eXk

Z;(:leX_/

oXy K ®)

B. Multi-Pseudo Regularized Label

Like LSRO, we use the proposed MpRL to assign virtual
labels to generated data when they are fed into the network.
However, unlike LSRO, we do not set the virtual label as
a uniform distribution over all pre-defined training classes
(i.e., 1/K). The weights over all pre-defined training classes
are different in the proposed MpRL. In this way, a dictionary o
is built to record the weights. Compared with the LSRO (see
Eq.1), for a generated image g, its label distribution is defined
as follows:
ak
X
where aj represents the weight of k-th pre-defined training
class in the dictionary a. The reason why different weights
are considered in the proposed MpRL will be discussed
in Section IV-C. Our MpRL does not belong to a specifi-
cally pre-defined training class but is constituted by different
weights from each of them. To obtain ay, we first formulate
the set of predicted probabilities p(X) of a generated image
over K pre-defined training classes as:

p(X) ={p(Xplk €[, ..., K]}. @)

(6)

q[‘%/lpRL(k) =
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Then, all elements in p(X) are sorted from the minimum to
maximum and saved to pg(X):

pS(X):{pS(XVl)|n € [1,, K]}a (8)

where py(X1) == min(p(X)) and ps(Xg) == max(p(X)).
oy is obtained by taking the corresponding index of p(Xj) in
the set of p(X):

ak = ¢px)(P(Xk)), )

where ¢, (x)(-) returns the index of p(Xy) in py(X).
By doing so, the corresponding relationship between real
data and a generated image is built by utilizing different
weights obtained through the predicted probabilities over
all pre-defined training classes. Combining Eq.6 with Eq.9,
the proposed MpRL can assign a multiple distributed virtual
label to a generated image g when it is fed into the network
in training:

ok
Gipre = { € 1L K1),

We call our method ‘multi-pseudo’ label because compared
with the one-hot pseudo label that only the maximum predicted
probability is activated, all the predicted probabilities are used
in MpRL. To address over-fitting (e.g., after several training
iterations some weights from pre-defined training classes will
become larger, while others may decrease to a pretty small
value), Eq.10 regularizes the gap between two contiguous
weights to 1/K. In this way, the proposed MpRL retains
the weights from all pre-defined training classes, even though
some of them may not or just producing a tiny contribution
to the generated data.

Combining the generated data with real data in training,
we define the cross-entropy loss of the proposed MpRL as
follows:

Imprr = —(1 — y)log(p(Xc))

(10)

K
—y'zoa;(%zog(pm))), (11)

where ¢ represents the ground-truth label of a real image, % is
defined in Eq.6. 4 is the parameter for the trade-off between
losses of generated and real data. If not specified, we set 4
to be 1. o is a normalization factor. In Eq.11, if we sum
up weights over K per-defined training classes (Zle % ,
the total weight equals to W Therefore, to normalize
weights over K pre-defined training classes, o is set to HLK

For a real image y = 0, Eq.11 is equivalent to softmax loss.
For a generated image y = 1, only the MpRL is used. Overall,
the network has two types of losses: one for real data and the
other for generated data.

o In Eq.11, the forward loss is as follows:
For a real image, y = 0:
X

e
Imprr = —log(Zg——)
jmp €t

K
—X. +log(z eXi).
j=1

12)
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For a generated image, y = 1:

Xk

K
ax e
—4eo p (= log( )
k=zl K Zf:l eXi

IMprL =

K K
Ok Ok )
—h0 D (e Xk = log (D (€))). (13)
k=1 j=1
o While, the backward gradient is as follows:
For a real image, y = 0:

ol Xe
TMPRE ) ——— (14)
o0X. Zj:l eXi
For a generated image, y = 1:
OlMpRL ok Xk
0X K Zj:l(e 7)

C. Training Strategy

To further investigate the effectiveness of the pro-
posed MpRL, three different training strategies, including
one static (constant virtual labels) and two dynamic (itera-
tively updated) approaches are introduced. Descriptions are as
follows:

o Static MpRL (sMpRL). The sMpRL is assigned to
each generated data before training the network. We use
a pre-trained Identif network (see Section V-B2) to
assign sMpRL. Specifically, 1) the Identif network is
pre-trained on a target re-ID dataset; 2) Eq.3 is utilized
to calculate the predicted probability over K pre-defined
training classes for each generated data; 3) Eq.10 is used
to assign each generated data with a sMpRL, and it
remains unchanged during the whole training process.
This implementation is similar to the LSRO except that
we consider different weights over all pre-defined training
classes instead of regarding them equally.

o Dynamic MpRL-I (dMpRL-I): Dynamically Update
MpRL from scratch. During training, dMpRL-Is are
dynamically assigned to each generated data using Eq.10,
and they will be updated iteratively to change the like-
lihood of the affiliation of the generated data to all
pre-defined training classes. Therefore, the same gener-
ated data may receive a different dMpRL-I each time
when it is fed into the network. This dynamic progress
starting from the first mini-batch fed into the network
until the training is completed. Notably, generated data
will assign random dMpRL-Is if they are involved in the
first training iteration.

o Dynamic MpRL-II (dMpRL-II): Dynamically Update
MpRL from the intermediate point. We try to assign
dMpRL-IIs to generated data after 20 epochs when the
CNN model becomes relatively stable, and also they
will be updated iteratively. That is, in Eq.11 y = 0,
and until after 20 epochs, it is set to 1. Also, the loss
is set to 0.1 and 1 for the generated and real data
respectively. Therefore, under this training strategy, 4 is
setto 0.1 in Eq.11. The detailed training strategy is shown
in Algorithm 1.
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Algorithm 1 The Training Strategy of the dMpRL-II:
Dynamically Update MpRL From the Intermediate Point to
Change the Likelihood of the Affiliation of the Generated Data
to All Pre-Defined Training Classes Iteratively

Input: Real data set: R;
Generated data set: G,
Merged data set: D = RUG;
Loss for the real data set: I1;
Loss for the generated data set: [5.
1 for number of training epochs do
2 Shuffle D ;
3 for number of training iterations in each epoch do
4 Setl; =0, 1, =0;
5 Sample minibatch from D — D';
6 Select real data R’ from Dl;
7 Set y = 0 in Eq.11;
3 Calculate loss {1 for RI;
9 if number of epochs > 20 then

10 Select generated data G from D’;
11 Assign MpRL to G using Eq.10;

12 Set y =1 in Eq.11;

13 Calculate loss o for G/;

14 Calculate the final loss = 17 + I3 x 0.1 ;
15 Backward propagation;

16 | Update parameters;

17 final;

IV. WHY MULTI-PSEUDO REGULARIZED
LABEL WORKS BETTER?

We use the all-in-one [14], [20], one-hot pseudo [21],
and LSRO [12] as our comparison experiments.
Figure 2(b), (c) and (d) respectively illustrate the label
distributions. Given a generated image, a new label that
does not belong to any pre-defined training class is assigned
to it by using the all-in-one (see Figure 2(b)). Using the
one-hot pseudo, only the maximum predicted probability of
pre-defined training classes is used as a virtual label (see
Figure 2(c)). A uniform label distribution 1/K is utilized by
the LSRO (see Figure 2(d)). The label distribution of MpRL
is illustrated in Figure 2(e). The a = {oxlk € [I1,..., K]}
(defined by Eq.6 to Eq.9) is used to record the different
weights over all the pre-defined training classes. In this
section, the differences between MpRL and the other three
virtual labels will be discussed in three aspects: 1) one-hot vs.
multiple label distribution, 2) the same vs. different virtual
labels, and 3) the same vs. different weights from pre-defined
training classes. Three qualitative discussions are given to
support the MpRL, while corresponding numerical evidence
will be provided in experiments (see Section V).

A. One-Hot vs. Multiple Label Distribution

The all-in-one and one-hot pseudo are two standard one-hot
labels that assign a virtual label to each generated data outside
(using a new class) and inside pre-defined training classes,
respectively. Compared with the multiple label distribution
that retains information from all pre-defined training classes,
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Input One-hot Pseudo
Distribution

1 @ Sophia

0 @ Jackson

0 @ Aiden

Label Distribution Input All-in-one
Distribution
0 |@|Sophia 0 |@|Sophia
0 |@®|Jackson 0 |@®|Jackson
0 |@|Aiden 0 |@|Aiden
1 /@ Emma 0 |@/Emma
0 @ |olivia 0@ olivia
0@ Lucas 0 ®|Lucas
0 @ Noah 0 @ Noah
0@ Mia 0|® Mia
1|@|New
(b) (c)

Input LSRO
Distribution
1/K/@ Sophia
1/K @ Jackson
1/K|@ Aiden

1/k|@ ) Olivia
1/K|@ Lucas
1/K/@ Noah
1/k|@ Mia

(d)

Input MpRL
Distribution
a1/K|@ Sophia
a2/K /@) Jackson

()

Fig. 2. The label distributions of real and generated data. The ground-truth label is assigned to the real data (a). For a generated image, all-in-one (b) assigns
a new label to it. One-hot pseudo (c) uses only one pre-defined training class with maximum predicted probability. LSRO (d) uses a uniform label distribution,
while the proposed MpRL (e) considers different weights over all pre-defined training classes.

Real Data: Representations from Pre-defined Training Classes

Fig. 3. Examples of generated data and their corresponding representations
in the real data domain. The left side shows four generated data with distinct
visual differences (in red, yellow, white and green clothes). For each generated
data, the right side gives ten nearest representations which represent each
pre-defined training class in the real data domain.

the one-hot distribution may produce inadequate regularization
power in training which is critical to prevent the network
from over-fitting. In the one-hot distribution, the network may
mislead to learn a discriminative feature on an infrequent
data sample or class. While using multiple distributed label,
the network will discourage to be tuned towards one particular
class and thus reduces the chance of over-fitting [12], [43].
We device MpRL following the multiple label distribution.
In Section V-F, corresponding experiments demonstrate the
superiority by using the multiple label distribution.

B. The Same vs. Different Virtual Labels

Two strategies can be used to assign virtual labels to gener-
ated data: 1) using the same virtual label over all the generated
data, 2) assigning different virtual labels to different generated
data. Both all-in-one and LSRO follow the first strategy, while
one-hot pseudo and MpRL go with the second one. Compared
with the second strategy, assigning each generated data with
the same label potentially leads to ambiguous predictions in
training. In Figure 3, four different generated images with
distinct visual differences (in red, yellow, white and green
clothes) are given to find their top ten nearest representations
which represent different pre-defined training classes in the
real data domain. The four groups visually show clear dif-
ferences. If we still assign the four generated images with
the same virtual label in training, consequently, the network

TABLE I
COMPARISON BETWEEN VIRTUAL LABELS
Label Label Weights on Pre-
Method Distribution | Assigning | defined Classes
All-in-one [20],[14] One-hot Same -
Pseudo [21] One-hot Different -
LSRO [12] Multiple Same Same
MpRL (ours) Multiple Different Different

will mislead in identifying them. The proposed MpRL follows
the second strategy that assigns each generated data with
a weight-based virtual label according to different predicted
probabilities. Corresponding experiments can be found in
Section V-F to show that by assigning different virtual labels
to generated data, the proposed MpRL can achieve better
performance.

C. The Same vs. Different Weights From
Pre-Defined Training Classes

LSRO assumes that the weight from each pre-defined
training class should be identical. Thus a generated image is
assumed to have the capability to simulate the distribution of
all the pre-defined training classes equally. This is impractical
when considering the actual GAN training process, for two
reasons (details can be found in [1], [2]). First, in each training
iteration, a mini-batch of random noise is fed into a generator
to simulate another mini-batch of real data. This indicates
that the generation capability of the inputs is limited in a
small scope, specifically, within a mini-batch of real data.
Secondly, normally the input random noise obeys a continuous
distribution, e.g., Gaussian distribution, while the distribution
of real data is discrete. Consequently, complete mapping does
not exist between inputs of the generator and the real data
domain. Due to the above two reasons, bias exists between
distributions of the output of the generator (generated data)
and real data. Therefore, a generated image does not have the
capability to embed equal properties of the distributions of all
pre-defined training classes in the real data domain. To address
the problem of LSRO, the proposed MpRL uses different
weights from pre-defined training classes (see Section III-B).
In experiments, we observe that the proposed MpRL can
outperform the state-of-the-art LSRO method on three large
and two small-scale person re-ID datasets (see Section V-F).

Through the above discussion, Table I summaries the prop-
erties between the proposed MpRL and other labels. Our
MpRL takes the advantages of all the properties and achieves
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Fig. 4.

Examples of generated (by DCGAN [2]) and real person images. (a)-(d) show the generated person images (first two rows) and real person

images (the third row) on Market-1501, DukeMTMC-reID, CUHKO03, VIPeR, and CUHKOI, respectively.

better performance than others. The numerical evidence which
shows the superiority of MpRL will be presented in Section V.

V. EXPERIMENTS

In this section five person re-ID datasets are used
to verify the effectiveness of the proposed MpRL,
including three large-scale datasets (Market-1501 [11],
DukeMTMC-reID [12], and CUHKO3 [13]) and two small-
scale datasets (VIPeR [44] and CUHKOI1 [45]). We mainly
evaluate the proposed MpRL using Market-1501 and VIPeR
since they belong to different scales.

A. Person Re-ID Datasets

Market-1501 is collected from six cameras in Tsinghua
University. It contains 12,936 training images and 19,732 test-
ing images. The number of identities is 751 and 750 in the
training and testing sets respectively. There is an average
of 17.2 images per training identity. All the pedestrians are
detected by the deformable part model (DPM) [46]. Both
single and multiple query settings are used.

DukeMTMC-relID is collected from eight cameras. The
original dataset is used for cross-camera multi-target pedes-
trian tracking [47]. We use the re-ID version benchmark [12]
to evaluate our method. It contains 1,404 identities in which
702 identities for training and the remaining 702 identities for
testing. The total training images are 16,522. In the testing
set, one query image for each identity is picked up in each
camera and put the remaining images in the gallery. There
are 2,228 query images and 17,661 gallery images for the
702 testing identities.

CUHKO3 is captured by six cameras on the CUHK campus.
It contains 14,097 images of 1,467 identities, and each identity
is observed by two disjoint camera views. There is an average
of 9.6 training identity images in this set. CUHKO3 contains
two image settings: one is annotated by hand-drawn bounding
boxes, and the other is produced by the DPM [46]. We use
the detected bounding boxes and the single query setting.

VIPeR is a small-scale dataset that only contains 632 iden-
tities. Each identity has two images which are observed by
two different camera views. There are 1,264 images in which
half identities are for training and the remaining is for testing.

CUHKO1 has 971 identities, each with four images captured
from two disjoint camera views. There are totally 3884 images.

Two different settings can be found on this dataset:
1) 871 identities for training, and 2) 485 identities for training.
We choose the latter one to verify the effectiveness of our
approach since the scale of training data is much more limited
than the former one. We use the multiple query setting in
testing.

B. Experimental Setup

1) GAN Models for Generating Data: GAN simultaneously
trains two models: a generator that simulates the distribution
of real data, and a discriminator that estimates the probability
that a image comes from the real data set rather than the
generator [1]. We mainly use the DCGAN model [2] and
follow the same settings in [12] for fair experimental compar-
isons. For the generator, 100-dim random noise is fed into a
linear function to produce a tensor with size of 4 x4 x 16. Then,
five deconvolutional functions with a kernel size of 5 x 5 and
a stride of 2 are used to enlarge the tensor. A rectified linear
unit and batch normalization are used after each deconvolution.
Also, one deconvolutional layer with a kernel size of 5 x 5 and
a stride of 1 are added to fine-tune the result followed by a tanh
activation function. Finally, 128 x 128 x 3 sized images can be
generated. The input of the discriminator includes generated
and real data. Five convolutional layers are used to classify
whether the generated image is fake with a kernel size of
5 x 5 and a stride of 2. In the end, a fully-connected layer is
added to perform a binary classification.

The Tensorflow [48] and DCGAN packages are used to train
the GAN model. Only data from the training set are used. All
the images are resized to 128 x 128 and randomly flipped
before training. The adam stochastic optimization [49] is used
with parameters f1 = 0.5, 2 = 0.99. The training stops
after 30 and 60 epochs on large and small-scale re-ID datasets
respectively. During testing, a 100-dim random vector ranged
in [—1, 1] with Gaussian distribution is fed into the GAN to
generate a person image. Finally, all the generated data are
resized to 256 x 256 and will be used to train CNN models
with the proposed MpRL.

Figure 4 illustrates the generated and real data on the five
different re-ID datasets. Although the generated data can be
easily recognized as fake by human, they remain effective in
improving the performance by adding the proposed MpRL as
virtual labels in experiments.
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Fig. 5. (a) is the Identif network presented in [8] and [9], (b) is the
Two-stream network introduced in [10]. Both networks use resnet-50 as a
basic component of CNN.

2) CNNs for Evaluation: We adopt two CNNs to evaluate
the proposed MpRL. These two networks have been used to
evaluate the performance of the all-in-one, one-hot pseudo, and
LSRO labels in [12]. The first is an Identif network [8], [9]
that takes person re-ID as a multi-classification task according
to the number of pre-defined training classes in the real
data domain. We use the Identif network as a baseline when
only the real data is used. Furthermore, to compare the
performance of different virtual labels, generated images are
incorporated into real images as inputs. The second one is a
Two-stream network [10] that combines the Identif network
with a verification function to train the network. Given two
input images, the verification function will classify them into
two classes (belong to the same or different identities). We use
this Two-stream network to achieve better results by adding
generated data in training. In our experiment, both Identif and
Two-stream networks use the pre-trained resnet-50 [50] as a
basic component. We change the last fully-connected layer to
have K neurons to predict K classes, where K is the number
of pre-defined training classes. Since we do not need to add
extra classes on generated data by using the proposed MpRL,
the last fully-connected layer remains K neurons in training.

Figure 5(a) and Figure 5(b) respectively show the Identif
and Two-stream networks. MpRLs are assigned to generated
data when they are fed into the network. In the Two-stream
network, squared Euclidean distance is used as a similarity
measure between two outputs of the K neurons, and parame-
ters are shared between the two resnet-50 components. Since
generated images are unlabeled data that do not belong to
any classes, only real images participate in the verification
function.

The Matconvnet [51] package is used to implement the
Identif network and the Two-stream network. All the images
are resized to 256 x 256 before being randomly cropped
into 224 x 224 with random horizontal flipping. A dropout
layer is inserted before the final convolutional layer of the
resnet-50. The dropout rate is set to 0.75 for Market-1501
and DukeMTMC-reID, and 0.5 for CUHKO3, VIPeR, and
CUHKOI1. We modify the fully-connected layer of resnet-50 to
have 751, 702, 1,367, 316 and 485 neurons for Market-1501,
DukeMTMC-reID, CUHKO3, VIPeR, and CUHKO1 respec-
tively. For the verification function in the Two-stream network,
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TABLE II

PERFORMANCE OF THE IDENTIF AND TWO-STREAM NETWORKS.
ONLY THE REAL IMAGES ARE USED. RANK-1 ACCURACY
AND MAP ARE LISTED

Dataset CNN mAP rank-1
Market 1301 | o ream (101 | 6409% | $183%
DukeMTMC1eD | 1oy 10] | Stodst | 72600
comr | e Bl T o

ViR | i B e
commor | L 61 T o5

a dropout layer with a rate of 0.9 is adopted after the similarity
measure. Stochastic gradient descent is used on both networks
with momentum 0.9. The learning rate is set to 0.1 and decay
to 0.01 after 40 epochs, and we stop training after the 50-th and
60-th epochs on the Identif network and Two-stream network,
respectively. For the Identif network, the batchsize is set to 64.
For the Two-stream network, the batchsize is set to 32 and 48
on large and small-scale re-ID datasets respectively. During
testing, for both networks, a 2,048-dim CNN embedding in
the last convolutional layer of the resnet-50 is extracted. The
similarity between two images is calculated by a squared
Euclidean distance before ranking. Naturally, the small-scale
dataset cannot train a network from the scratch. In order to
build certain initial network parameters, we first use the three
large scale re-ID datasets to pre-train two evaluation CNN
models which we use in our experiments (i.e., the Identif
network and the Two-stream network). Then, small datasets
VIPeR and CUHKOI1 along with the generated data (based
on the proposed method in this paper) are to fine-tune the
network.

C. The CNN Performance

Using the experimental setup in Section V-B, we train
the Identif and Two-stream networks on Market-1501,
DukeMTMC-reID, CUHKO03, VIPeR and CUHKOI, respec-
tively. Table II shows the experimental results using the real
data only. With the Identif (Two-stream) network, we obtain
the rank-1 accuracy 74.08% (81.83%), 61.94% (72.62%),
63.10% (81.88%), 40.76% (51.84%), and 65.33% (77.78%)
on Market-1501, DukeMTMC-relD, CUHKO03, VIPeR, and
CUHKOI, respectively. The result shown in Table II is a
baseline, and our goal is to improve the performance of the
two networks by using the proposed MpRL with generated
data in training.

D. Generated Data Improve the Performance
of the Identif Network

We first give the result of the Identif network to evaluate
our MpRL. Since the performance of the Two-stream network
is higher, it will be used to compare with some state-of-the-art
methods with the proposed MpRL in Section V-H. Table III
shows that when we add 24,000 GAN generated images
to train the Identif network on three large-scale datasets,
our dMpRL-II significantly improves the re-ID performance
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TABLE III

COMPARISON BETWEEN LSRO AND DMPRL-IT ON FIVE DATASETS.
IDENTIF NETWORK IS USED BY ADDING 24,000, 1,200, AND
4,000 GENERATED IMAGES ON THE THREE LARGE RE-ID
DATASETS, VIPER, AND CUHKO1, RESPECTIVELY.

WE SHOW THE IMPROVEMENTS IN THE italic AND
BOLD FONT BY USING LSRO AND THE
PROPOSED MPRL, RESPECTIVELY

Dataset Method mAP rank-1
baseline 52.68% 74.08%
LSRO [12] 56.33%  7821%
Market-1501 Improvement | +3.65%  +4.14%
dMpRL-II 58.59%  80.37%
Improvement | +5.91%  +6.29%
baseline 42.20% 61.94%
LSRO [12] 46.66%  66.92%
DukeMTMC-reID | Improvement | +4.46%  +4.98%
dMpRL-II 48.58%  68.24%
Improvement | +6.38%  +6.30%
baseline 68.36%  63.10%
LSRO [12] 71.60%  66.30%
CUHKO03 Improvement | +3.24%  +3.20%
dMpRL-II 73.48%  68.68%
Improvement | +5.12%  +5.58%
baseline 46.38% 40.76%
LSRO [12] 4994%  43.57T%
VIPeR Improvement | +3.56%  +2.81%
dMpRL-II 5225%  46.60%
Improvement | +5.87%  +5.84%
baseline 63.60%  65.33%
LSRO [12] 64.47%  66.98%
CUHKO1 Improvement | +0.87%  +1.65%
dMpRL-II 66.37%  68.81%
Improvement | +2.77%  +3.48%

on the strong baseline of Market-1501. The improvements
are +5.91% (from 52.68% to 58.59%) and +6.29% (from
74.08% to 80.37%) in mAP and rank-1 accuracy, respec-
tively. For DukeMTMC-reID, +6.38% (from 42.20% to
48.58%) and +6.30% (from 61.94% to 68.24%) improve-
ments are obtained in mAP and rank-1 accuracy, respec-
tively. For CUHKO3, the improvements are +5.12% (from
68.36% to 73.48%) and +5.58% (from 63.10% to 68.68%)
in mAP and rank-1 accuracy, respectively. We also test the
effectiveness of our proposed method on two small-scale
datasets, including VIPeR and CUHKOI. +5.87% (mAP) and
+5.84% (rank-1) improvements can be observed on VIPeR
by adding 1,200 generated images in training. Meanwhile,
+2.77% (mAP) and +3.48% (rank-1) improvements can be
observed on CUHKOI by adding 4,000 generated images in
training. The above results indicate the proposed MpRL can
effectively yield improvements over the baseline performance
on both large and small-scale re-ID datasets.

E. Comparison With Different Implementations of MpRL
Three implementations are used in our experiments to
demonstrate the effectiveness of the proposed MpRL (see
Section III-B). We conduct this experiment using the Identif
network. Table IV gives the comparisons on Market-1501.
We observe that by dynamically updating the likelihood
of the affiliation of the generated data to all pre-defined
training classes in training, dMpRL-I (4+4.74% and +4.87%
improvements in mAP and rank-1 accuracy respectively) and
dMpRL-II (+5.91% and +6.29% improvements in mAP and
rank-1 accuracy respectively) achieve better improvements
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compared with the sMpRL (43.08% and +4.77% improve-
ments in mAP and rank-1 accuracy respectively). This is
because each generated data will receive a proper MpRL along
with the discriminative power of the CNN getting better in
training. Also, compared with dMpRL-I, dMpRL-II achieves
the best improvement when the network becomes relatively
stable after 20 training epochs.

F. Comparison With Existing Virtual Labels

To further evaluate the proposed MpRL, we compare it
with other three competitive virtual labels: all-in-one, one-hot
pseudo, and LSRO. Amongst them, LSRO [12] is the state-
of-the-art method using generated data for person re-ID.
Table IV provides the comparison results. We add a different
number of generated data in training to show the improvement.
By adding 30,000 and 18,000 generated images, the all-in-
one achieves the best improvements in mAP (+3.51%) and
rank-1 vaccuracy (+3.32%), respectively. The one-hot pseudo
achieves +4.22% (mAP) and +3.87% (rank-1) improvements
when 24,000 and 30,000 generated images are respectively
added. Compared with them, LSRO obtains a better rank-1
accuracy improvement (44.13%) when adding 24,000 gener-
ated images. However, the improvement of mAP (+3.65%)
is slightly less than the one-hot pseudo. In this experi-
ment, we use the same generated data over all the methods;
the improvements are on par with that reported in [12].
Although the improvement of mAP (43.08%) is less than
other virtual labels by using sMpRL, we obtain better rank-1
accuracy improvements under all the implementations of the
proposed MpRL (4+4.77%, 4+4.87%, and +6.29%, respec-
tively). dMpRL-I and dMpRL-II also outperform other meth-
ods in mAP by +4.74% and +5.91% respectively. By adding
24,000 generated images, dMpRL-II improves the mAP and
rank-1 accuracy of the Identif network from 52.68% and
74.08% to 58.59% and 80.37%, respectively. Our method
outperforms the previous state-of-the-art method LSRO to
a certain degree (mAP: +3.65%— +5.91%, rank-1 accu-
racy: +4.13%— +6.29%). It can be observed that when
12,000 generated images are used, there is limited regulariza-
tion capability to improve the re-ID performance over all the
virtual labels. Meanwhile, if too many generated images are
added in training, e.g., 48,000, the performance is dropped
since the network tends to converge towards the generated
data instead of real data. To balance the number of generated
data in training, we empirically set it to 24,000 over the three
large-scale datasets we used.

In Table IV, it is clear to see that the multiple label
distribution (LSRO and MpRL) can always outperform the
one-hot label distribution (all-in-one and one-hot pseudo) in
the rank-1 accuracy. The reason can be found in Section I'V-A.
Besides, we also find that compared with the way using the
same label, assigning different labels to generated data can
achieve better results in both multiple (MpRL vs. LSRO) and
one-hot (one-hot pseudo vs. all-in-one) label distribution. The
reason can be found in Section I'V-B.

To further investigate the performance of the pro-
posed MpRL, we also evaluate it on two small-scale re-ID
datasets. Table V lists the result on VIPeR. Our dMpRL-II
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TABLE IV

COMPARISON OF ALL-IN-ONE, ONE-HOT PSEUDO, LSRO, AND MPRLS UNDER DIFFERENT NUMBERS OF GENERATED DATA
ON MARKET-1501 BY USING THE IDENTIF NETWORK. THE BEST IMPROVEMENT OF DIFFERENT METHODS

IS HIGHLIGHTED IN BOLD. RANK-1 ACCURACY AND MAP ARE SHOWN

4GAN Img All-in-one [20], [14] | One-hot Pseudo [21] LSRO [12] sMpRL dMpRL-I dMpRL-II
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1
0 (base) 52.68% 74.08% 52.68% 74.08% 52.68% 74.08% 52.68% 74.08% 52.68% 74.08% 52.68% 74.08%
12000 55.68% 76.96% 55.69% 76.52% 55.22% 77.17% 55.27% 77.73% 55.84% 77.88% 58.14% 79.22%
18000 55.59% 77.40 % 56.04% 77.95% 55.28% 76.96% 55.05% 77.73% 56.21% 78.36% 58.31% 79.81%
24000 56.07% 77.21% 56.90 % 77.62% 56.33% | 78.21% 55.59% | 78.85% 56.10% 77.79% | 58.59% | 80.37%
30000 56.19% 77.17% 56.54% 77.95% 55.40% 77.46% | 55.76 % 77.82% 57.15% 78.65% 57.69% 79.16%
36000 55.24% 75.92% 56.38% 77.42% 55.82% 77.91% 55.45% 78.32% | 57.42% | 78.95% 57.61% 79.90%
48000 53.98% 75.16% 55.86% 76.72% 54.87% 76.90% 55.02% 77.45% 56.01% 77.57% 57.03% 78.73%
improvement | +3.51% +3.32% +4.22% +3.87% +3.65% | +4.13% | +3.08% | +4.77% | +4.74% | +4.87% | +5.91% | +6.29%

TABLE V TABLE VI

COMPARISON OF LSRO AND THE PROPOSED DMPRL-II UNDER
DIFFERENT NUMBERS OF GENERATED DATA ON VIPER
WITH THE IDENTIF NETWORK. THE BEST IMPROVEMENT
OF DIFFERENT METHODS IS HIGHLIGHTED IN BOLD.
RANK-1 ACCURACY AND MAP ARE LISTED

LSRO [12] dMpRL-II

#GAN Img mAP rank-1 mAP rank-1
0 (base) 46.38% | 40.76% | 46.38% | 40.76%
600 4898% | 42.80% | 48.59% | 42.61%
1200 49.94% | 43.57% | 52.25% | 46.60%
1800 49.41% | 4339% | 50.51% | 44.24%
2400 4595% | 40.65% | 49.36% | 43.77%
12000 4334% | 37.12% | 44.25% 37.66%
improvement | +3.56% | +2.81% | +5.87% | +5.84%

improves the mAP and rank-1 accuracy on this dataset by
+5.87% and +5.84% respectively when adding 1,200 gener-
ated images in training, and outperforms the LSRO method.
Since VIPeR is a small dataset (only 632 images for training),
adding too many generated images, e.g., 12,000 leads to
inferior results. Therefore, we set the number of generated
data to approximate double that of the number of real data on
small datasets. Specifically, we use 1,200 and 4,000 generated
images for VIPeR and CUHKOI respectively. We mainly
report the result on VIPeR by changing the number of
generated data. The results of CUHKOI can be found in
Table III and VII.

Using the Identif network, Table III shows comparison
results between our dMpRL-II and LSRO on three large-scale
datasets by adding 24,000 generated images. Also, two
small-scale datasets are used to evaluate the proposed method
by adding 1,200 and 4,000 images respectively. By using
different weights from pre-defined training classes, dMpRL-II
can always outperform previous state-of-the-art virtual label
LSRO over the five datasets. The reason can be found in
Section IV-C.

G. Comparison With Different GAN Models

In addition to the DCGAN, other GAN models such as
WGAN-GP [4] has demonstrated its superior in generating
high quality person images. We attempt to generate data using
the WGAN-GP. Then, the relationship between the quality of
generated images and our proposed MpRL can be testified by
using different GAN models. In this experiment, two large
and one small-scale datasets are used individually to generate
images. Figure 6 shows the generated data by using different

COMPARISON BETWEEN USING GENERATED DATA BY DCGAN
AND WGAN-GP. TWO APPROACHES ARE USED, INCLUDING
LSRO AND THE PROPOSED DMPRL-II. EXPERIMENTS
CONDUCTED ON THREE DATASETS: MARKET-1501,
DUKEMTMC-REID, AND VIPER. RANK-1
ACCURACY AND MAP ARE LISTED

Market-1501
Method DCGAN [2] WGAN-GP [4]
mAP rank-1 mAP rank-1
LSRO [12] | 56.33% | 78.21% | 55.53% | 78.32%
dMpRL-IT 58.59% | 80.37% | 59.04% | 79.75%
DukeMTMC-relD
LSRO [12] | 46.66% | 66.92% | 46.79% | 66.97%
dMpRL-II 48.58% | 68.24% | 49.30% | 68.76%
VIPeR
LSRO [12] | 49.41% | 43.39% | 48.47% | 43.14%
dMpRL-IT 52.25% | 46.60% | 52.16% | 46.39%

GAN models. It can be observed that the WGAN-GP exhibits
better capability of generating person images on these datasets.
In order to verify the impacts of image quality created by
different GAN approaches, we compare the performance of
the proposed MpRL on the two different generated data sets.
Table VI lists the comparison results. It is observed that by
using generated data with different quality through different
GAN approaches, the re-ID performance is not significantly
affected. This is because these generated data are employed to
improve the performance of CNN models by its regularization
power instead of providing more actual subjects beyond the
scope of the raw dataset in training. Therefore, better gen-
erated data can bring superior perceptual quality but cannot
dramatically boost the effectiveness of regularizer although
some marginal improvements can be observed.

H. Comparison With the State-of-the-Art Methods

Although the main contribution in this paper focuses on
using the generated data to improve the performance of CNNs,
but not on producing a state-of-the-art result, we still compare
our result with several state-of-the-art methods. Table VII
lists the comparison results. It is clear to see that although
the performance of the original Two-stream network is
competitive, it still be inferior to many methods such as
Resnet+OIM [57], SSM [36], JLML [60], SVDNet [61],
and PDC [62]. However, by incorporating with the proposed
dMpRL-II, the Two-stream network achieves the state of
the art compared with other methods on Market-1501,
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Fig. 6.

Examples of generated and real person images. (a)-(c) show the generated person images (first two rows) and real person images (the third row)

on Market-1501, DukeMTMC-reID, and VIPeR respectively. Images in the first and second rows are respectively generated by the WGAN-GP [4] and

the DCGAN [2].

TABLE VII

COMPARISON OF OUR RESULTS WITH THE PUBLISHED STATE-OF-THE-ART METHODS. THE BEST AND THE SECOND-BEST RESULTS ARE
SHOWN IN BOLD AND UNDERLINE, RESPECTIVELY. RANK-1 ACCURACY AND MAP ARE LISTED. THE REK MEANS RE-RANKING

Large-Scale Datasets Small-Scale Datasets
Method ] Market-1501 DukpMTMC-reID ] CUHKO03 ] VIPeR CUHKOI
Single Query Multiple Query Single Query Single Query (detected) Single Query Multiple Query
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 rank-1 rank-1
Gate-reID [52] ECCVI16 39.55% 65.88% 48.45% 76.04% - - 58.84% 68.10% 37.80% -
SI-CI [53] CVPRI16 - - - - - - - 52.17% 35.76% -
GOG+XQDA [54] | CVPRI6 - - - - - - - 65.50% 49.70% 57.80%
SCSP [55] CVPRI16 26.35% 51.90% - - - - - - 53.54% -
DNS [56] CVPRI16 35.68% 61.02% 46.03% 71.56% - - - 54.70% 51.17% 69.09%
Resnet+OIM [57] CVPR17 - 82.10% - - - 68.10% - - - -
Latent Parts [30] CVPR17 57.53% 80.31% 66.70% 86.79% - - - 67.99% 38.08% -
P2S [58] CVPR17 44.27% 70.72% 55.73% 85.78% - - - - - -
ReRank [37] CVPR17 63.63% 77.11% - - - - - - - -
CADL [7] CVPR17 55.60% 80.90% - - - - - - - -
SpindleNet [59] CVPR17 - 76.90% - - - - - - 53.80% 79.90%
SSM [36] CVPR17 68.80% 82.21% 76.18% 88.18% - - - 72.70% 53.73% -
JLML [60] IICAI17 65.50% 85.10% 74.50% 89.70% - - - 80.60% 50.20% 76.70%
SVDNet [61] ICcCcv17 62.10% 82.30% - - 56.80% 76.70% 84.80% 81.80% - -
PDC [62] Iccvi17 63.41% 84.14% - - - - - 78.29% 51.27% -
Part Aligned [63] 1ccvi7 63.40% 81.00% - - - - - 81.60% 48.70% 75.00%
LSRO [12] ICCV17 66.07% 83.97% 76.10% 88.42% 47.13% 67.68% 87.40% 84.60% — -
Identif [8], [9] 52.68% 74.08% 64.95% 82.06% 42.20% 61.94% 68.36% 63.10% 40.76% 65.33%
Identif+dMpRL-II 58.59% 80.37% 70.22% 86.47% 48.58% 68.24% 73.48% 68.68% 46.60% 68.81%
Two-stream [10] 64.09% 81.83% 73.65% 86.82% 51.40% 72.62% 85.20% 81.88% 51.84% 77.78%
Two-stream+dMpRL-IT 67.53% 85.75% 77.85% 89.88% 58.56% 76.81% 87.53% 85.42% 54.65% 78.83%
Two-stream+dMpRL-I1+ReK 81.18% 87.96 % 86.53% 90.97 % 74.54% 81.28% 90.16 % 88.00% 53.22% 78.08%

DukeMTMC-reID, CUHKO3 and VIPeR. To achieve
better performance, after obtaining the rank list by sorting
the similarity of gallery images to a query, a re-ranking
method [37] is adopted to further boost our performance.
The combination of the dMpRL-II and re-ranking on the
Two-stream network achieves the best results on the three
large-scale datasets. However, the re-ranking approach cannot
further improve the performance of the two small-scale
datasets with limited number of testing person identities.
We find that the rank-1 accuracy of the DPFL method [64]
proposed in the ICCV17 workshop is slightly higher than
our result on Market-1501 (88.90% in single query and
92.30% in multiple query). However, DPFL uses an ensemble
deep model with multiple granularity inputs for each image.
Our Two-stream network just utilizes a single model and
outperforms the DPFL on CUHKO03 by a large margin
in mAP even without re-ranking (mAP: 87.53% (our) vs.
78.10% (DPFL), rank-1: 85.42% (our) vs. 82.00% (DPFL)).
Also, the performance of the Spindle [59] approach is slightly
higher than ours on CUHKO1 (79.90% vs. 78.83%). Since
VIPeR and CUHKOI are two small-scale datasets, nine

different person re-ID datasets are used to pre-train the
SpindleNet model and then fine-tuning on the two small
datasets respectively. We also use the fine-tuning strategy on
these two datasets, but only three datasets are involved in the
pre-training stage (see V-B2). Except for the CUHKO!1 dataset,
our performance outperforms the SpindleNet on the other
small-scale dataset VIPeR and the three large-scale re-ID
datasets simultaneously.
VI. CONCLUSION

In this paper, we propose a new virtual label MpRL for the
generated data by GAN. To train a CNN, MpRL is used as
virtual label assigned to generated data. These data are used for
semi-supervised learning. Two CNNs are adopted to show the
effectiveness of the proposed MpRL. Experiments demonstrate
that generated data can effectively improve the performance
of the two CNNs trained with the proposed MpRL. Com-
pared with the previous state-of-the-art method LSRO [12],
MpRL can always achieve better improvements. In the future,
considering the capability of GAN, we will continue to inves-
tigate virtual labels used on generated data for semi-supervised
learning and apply the proposed method to other fields.
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