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CamStyle: A Novel Data Augmentation Method
for Person Re-Identification

Zhun Zhong , Liang Zheng , Zhedong Zheng, Shaozi Li , Senior Member, IEEE, and Yi Yang

Abstract— Person re-identification (re-ID) is a cross-camera
retrieval task that suffers from image style variations caused by
different cameras. The art implicitly addresses this problem by
learning a camera-invariant descriptor subspace. In this paper,
we explicitly consider this challenge by introducing camera
style (CamStyle). CamStyle can serve as a data augmentation
approach that reduces the risk of deep network overfitting and
that smooths the CamStyle disparities. Specifically, with a style
transfer model, labeled training images can be style transferred
to each camera, and along with the original training samples,
form the augmented training set. This method, while increasing
data diversity against overfitting, also incurs a considerable
level of noise. In the effort to alleviate the impact of noise,
the label smooth regularization (LSR) is adopted. The vanilla
version of our method (without LSR) performs reasonably well
on few camera systems in which overfitting often occurs. With
LSR, we demonstrate consistent improvement in all systems
regardless of the extent of overfitting. We also report competitive
accuracy compared with the state of the art on Market-1501 and
DukeMTMC-re-ID. Importantly, CamStyle can be employed to
the challenging problems of one view learning and unsupervised
domain adaptation (UDA) in person re-identification (re-ID), both
of which have critical research and application significance. The
former only has labeled data in one camera view and the latter
only has labeled data in the source domain. Experimental results
show that CamStyle significantly improves the performance of
the baseline in the two problems. Specially, for UDA, CamStyle
achieves state-of-the-art accuracy based on a baseline deep re-ID
model on Market-1501 and DukeMTMC-reID. Our code is
available at: https://github.com/zhunzhong07/CamStyle.
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I. INTRODUCTION

PERSON re-identification (re-ID) [1]–[3] is a cross-camera
retrieval task. Given a query person-of-interest, it aims to

retrieve the same person from a database collected from multi-
ple non-overlapping cameras. In this task, a person image often
undergoes intensive changes in appearance and background.
Capturing images by different cameras is a primary cause of
such variations (Fig. 1). Usually, cameras differ from each
other regarding resolution, environment illumination, etc.

In addressing the challenge of camera variations, a previous
body of the literature chooses an implicit strategy. That is,
to learn stable feature representations that have invariance
property under different cameras. Examples in traditional
approaches include KISSME [4], XQDA [5], DNS [6], etc.
Examples in deep representation learning methods include
IDE [1], SVDNet [7], TripletNet [8], etc.

Compared to previous methods, this paper resorts to an
explicit strategy from the view of camera style data aug-
mentation. We are mostly motivated by the need for large
data volume in deep learning based person re-ID. To learn
rich features which are robust to camera variations, annotat-
ing large-scale datasets is useful but prohibitively expensive.
Nevertheless, if we can add more samples to the training set
that are aware of the style differences between cameras, we are
able to 1) address the data scarcity problem in person re-ID and
2) learn invariant features across different cameras. Preferably,
this process should not cost any more human labeling, so that
we can keep costs low.

Based on the above discussions, we propose a camera
style (CamStyle) data augmentation method to regularize
CNN training for person re-ID. In its vanilla version, we
learn image-image translation models for each camera pair
with CycleGAN [10]. With the learned CycleGAN model,
for a training image captured by a certain camera, we can
generate new training samples in the style of other cameras
(Fig. 1 and Fig. 2). In this manner, the training set is a combi-
nation of the original training images and the style-transferred
images. The style-transferred images can directly borrow the
label from the original training images. During training, we use
the new training set for re-ID CNN training following the
baseline model in [1]. The vanilla method is beneficial in
reducing over-fitting and achieving camera-invariant property,
but, importantly, we find that it also introduces noise to the
system (Fig. 2). This problem deteriorates its benefit under

1057-7149 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8202-0544
https://orcid.org/0000-0002-1464-9500
https://orcid.org/0000-0001-5403-9945
https://orcid.org/0000-0002-0512-880X


ZHONG et al.: CAMSTYLE: A NOVEL DATA AUGMENTATION METHOD FOR PERSON RE-IDENTIFICATION 1177

Fig. 1. (a) Example images from Market-1501 [9]. (b) Examples of
camera-aware style transfer between two cameras (camera 1 and camera 6)
using our method. Images in the same column represent the same person.

full-camera systems where the relatively abundant data has
a lower over-fitting risk. To mitigate this problem, in the
improved version, we further apply label smoothing regular-
ization (LSR) [11] on the style-transferred samples, so that
their labels are softly distributed during training.

The proposed approach, CamStyle, has three advantages.
First, it can be regarded as a data augmentation scheme that
not only smooths the camera style disparities, but also reduces
the impact of CNN over-fitting. Second, by incorporating
camera information, it helps learn pedestrian descriptors with
the camera-invariant property. Finally, it is unsupervised, guar-
anteed by CycleGAN, indicating fair application potentials.

Apart from the normal person re-identification settings, this
paper further identifies two important tasks which benefit
from the proposed CamStyle method, i.e. one view (camera)
learning and unsupervised domain adaptation. On the one
hand, in one view learning, labeled training images are only
available from one camera view, and the identities of images in
other cameras are unknown. Therefore, this setting provides
a very limited number of labeled images for training deep
models, and the model trained on images collected from one
camera may suffer from image style variations caused by
other cameras. To address this problem, we employ CamStyle
to generate new training images whose styles are similar to
the unlabeled cameras. In this way, CamStyle produces more
training data for training the re-ID model, reduces the risk of
over-fitting and improves the camera-invariance property of
re-ID models.

On the other hand, re-ID models trained on labeled dataset
often fail to perform well on an unseen testing set. This
is a domain adaptation task where we are provided with a
fully labeled source dataset named as source domain. We are
also provided an unlabeled target dataset which is named
as target domain. In domain adaptation [12]–[15], training is
conducted using both the labeled source domain data and the
unlabeled target domain data. Then, testing is conducted on
the target domain. Recent works mainly aim at reducing the
gap between the source and target domains on intermediate

feature-level [16] or on image-level [17], [18]. However,
these methods only take into consideration the inter-domain
variations, and overlook the intra-domain variations. The
inter-domain variations refer to the variations between source
domain and target domain, e.g., the differences in illumination,
background, clothing style between the two domains. The
intra-domain variations refer to the variations within the same
domain. In our paper, the target domain is composed of several
subdomains, corresponding to different cameras. We find that
the images captured by different cameras (subdomains) are dif-
ferent in their style. In fact, the image style variation between
different cameras is a critical influencing factor in person
re-ID. This is because in the process of testing, we attempt to
find out true matched persons captured by different cameras
from a given query person. Without considering the image
style variations caused by target cameras, a domain adaptation
model trained on the source set may only capture the overall
data bias between the source and target domains and may
encounter difficulties when the image style of the target
cameras changes greatly. To solve this problem, CamStyle
is first applied to learn camera style transfer models from
source domain to each target camera. Then, each labeled
source images can be style transferred to target cameras, and
the generated images are utilized to train re-ID models for
target domain. In this manner, our method not only reduces
the gap between the source domain and target domain, but
also considers the intra-domain variations in target domain.

In summary, the contributions of this work are featured in
the following aspects.

• We introduce a vanilla camera-aware style transfer model
for re-ID data augmentation. In few-camera systems,
the improvement can be as large as 17.1%.

• We propose an improved method through applying LSR
on the style-transferred samples to softly distribute their
labels during re-ID training. In full-camera systems, con-
sistent improvement is observed.

• Compared to [19], a more detailed description is pre-
sented in ”Introduction“ and ”Related Work“ sections.

• We further expand the experiments to compare and dis-
cuss the proposed method with more data augmentation
techniques, and, analyze the parameters of the proposed
method in more detail.

• Importantly, we extend the current system to the domain
adaptation task. CamStyle can be effectively applied
to this task and achieves state-of-the-art performance,
which demonstrates the extendibility and effectiveness of
CamStyle in domain adaptation.

• We are the first to propose the setting of one view
learning in the community of person re-ID, which is
very important in practice. One view learning is an open
set problem in which the unlabeled views may contain
classes that might be different from the labeled view.
We show that the CamStyle is very useful in this setting.

II. RELATED WORK

A. Deep Learning Person Re-Identification

Person re-ID can be regarded as an image retri-
eval [20]–[23] task. Benefit from the strong ability of deep
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Fig. 2. Examples of style-transferred samples in Market-1501 [9]. An image captured in a certain camera is translated to styles in other 5 cameras. Despite
the success cases, image-image translation noise indicated by red arrows should be considered.

learning [24]–[30], many deep learning methods [31]–[38]
have been proposed in person re-ID. In [31], input image
pairs are partitioned into three overlapping horizontal parts
respectively, and through a siamese CNN model to learn the
similarity of them using cosine distance. Later, Wu et al. [32]
increase the depth of networks with using smaller convolution
filters to obtain a robust feature. In addition, Varior et al. [34]
merge long short-term memory (LSTM) model into a siamese
network that can handle image parts sequentially so that
the spatial information can be memorized to enhance the
discriminative capability of the deep features.

Another effective strategy is the classification model,
which makes full use of the re-ID labels [1], [7], [39]–[42].
Zheng et al. [1] propose the ID-discriminative embedding
(IDE) to train the re-ID model as image classification which
is fine-tuned from the ImageNet [43] pre-trained models.
Wu et al. [39] propose a Feature Fusion Net (FFN) by incor-
porating hand-crafted features into CNN features. Recently,
Sun et al. [7] iteratively optimize the fully connected (FC)
feature with Singular Vector Decomposition and produce
orthogonal weights.

B. Data Augmentation in Person Re-Identification

When a CNN model is excessively complex compared to
the number of training samples, over-fitting might happen.
To address this problem, many regularization methods and
data augmentation methods have been proposed in the com-
munity of deep learning, such as Dropout [44] and Batch
Norm [45] for regularization, and, various transformations
including cropping, flipping and translation for data augmen-
tation. Dropout is widely utilized in various recognition tasks.
It randomly abandons (assigning to zero) the output of each
hidden neuron with a probability in the training stage and
only employs the contribution of the remaining weights in
forward pass and back-propagation. Recently, several methods
aim to address the over-fitting problem in person re-ID.
McLaughlin et al. [46] improve the generalization of network
by utilizing background and linear transformations to generate
various samples. Recently, Zhong et al. [47] randomly erase
a rectangle region in input image with random values which
prevents the model from over-fitting and makes the model
robust to occlusion. Similarity, Huang et al. [48] propose to
augment the training data with adversarially occluded samples.

The hard occluded samples are selected by a pre-trained
model to further optimize the re-ID model. More related to
this work, Zheng et al. [49] use DCGAN [50] to generate
unlabeled samples, and assign them with a uniform label
distribution to regularize the network. In contrast to [49],
the style-transferred samples in this work are produced from
real data with relatively reliable labels. In the view of pose
translation, a pose-transferable framework [51] is proposed to
generate novel samples with rich pose variations. The novel
samples are combined with the original training samples to
enhance the re-ID model.

C. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [52] have
achieved impressive success in recent years, especially in
image generation [50]. Recently, GANs have also been
applied to image-to-image translation [10], [53]–[56], style
transfer [57]–[59] and cross domain image generation [17],
[60], [61]. Isola et al. [53] apply a conditional GANs
to learn a mapping from input to output images for
image-to-image translation application. The main drawback
of [53] is that it requires pairs of corresponding images as
training data. To overcome this problem, Liu and Tuzel [54]
propose a coupled generative adversarial network (CoGAN)
by employing weight-sharing networks to learn a joint
distribution across domains. More recently, CycleGAN [10]
introduces cycle consistency based on “pix2pix” framework
in [53] to learn the image translation between two different
domains without paired samples. Style transfer and cross
domain image generation can also be regarded as image-
to-image translation, in which the style (or domain) of
input image is transferred to another while remaining the
original image content. In [57], a style transfer method
is introduced by separating and recombining the content
and style of images. Bousmalis et al. [60] introduce an
unsupervised GAN framework that transfers images from
source domain to an analog image in target domain.
Similarity, in [61], the Domain Transfer Network (DTN)
is proposed by incorporating multiclass GAN loss to
generate images of unseen domain, while reserving original
identity. Unlike previous methods which mainly consider the
quality of the generated samples, this work aims at using the
style-transferred samples to improve the performance of re-ID.
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D. Unsupervised Domain Adaptation

Although many researchers make efforts to normal per-
son re-identification settings, few works [16]–[18], [62]–[64]
have studied on unsupervised domain adaptation for re-ID.
Peng et al. [62] propose to learn a discriminative representa-
tion for target domain based on asymmetric multi-task dictio-
nary learning. Deng et al. [17] learn a similarity preserving
generative adversarial network based on CycleGAN [10] to
translate images from source domain to target domain. The
translated images are utilized to train re-ID models in a
supervised manner. In [16], a transferable model is proposed
to jointly learn attribute-semantic and identity discrimina-
tive feature representation for target domain. These methods
attempt to reduce the divergence between source domain and
target domain on either the image space [17], [18] or feature
space [16], [62], [63], but overlook the image style varia-
tions caused by different cameras in target domain. In this
work, we explicitly consider the intra-domain image vari-
ations caused by target cameras for learning discriminative
representations of target domain. HHL [64] proposes to learn
camera invariance via positive pairs formed by unlabeled target
samples and their camera style transferred counterparts. Differ
from HHL, this work transfers source data to styles of the
target cameras and directly learns the deep re-ID model with
labeled transferred samples in a supervised way.

E. Camera-Specific Transfer-Based Methods

Our approach is also related to camera transfer model-
ing methods. To capture the appearance variations between
cameras, earlier works focus on modeling the color trans-
fer between two overlapping cameras [65]–[68]. Porikili [65]
proposes to learn Brightness Transfer Function (BTF) for
estimating the colors variations of a person from one camera to
another. The transformation of colors is deduced by computing
a correlation matrix between two histograms of persons that
captured from the same scene region at the same time. Later,
Javed et al. [66], [67] extend the BTF for non-overlapping
cameras where the appearance variations are also caused by
illumination and pose changes. Rather than evaluating indi-
vidual histograms for each person, the CBTF approach [69]
(Cumulative Brightness Transfer Function) proposes to accu-
mulate the pixels from the whole training samples. A main
shortcoming of the above BTF-based methods is that they
attempt to learn the camera transfer by a single function.
In fact, there may be multi-mappings for transferring a image
from one camera to another. To address this shortcoming,
the Implicit Camera Transfer (ICT) [70] approach is presented
to learn camera transfer by a binary relation, which allows
camera transfer function to be a multi-valued mapping. Later,
ECT (Explicit Camera Transfer) [71] introduces to model
camera appearance transfer through a single function, as well
as leveraging the intra-camera samples to model appearance
variations. All of the above methods required labeled training
pairs for modeling camera transfer models and are applied to
the small-scale datasets. This work proposes an unsupervised
approach for learning camera transfer model and shows that

Fig. 3. The CycleGAN model includes two generators G and F , and
two adversarial discriminators DA and DB . DB enforces G to transfer
images from A into outputs indistinguishable from domain B, and vice versa
for DA and F .

our method is suitable for the scenario of large-scale person
re-identification.

III. THE PROPOSED METHOD

In this section, we first briefly look back at the
CycleGAN [10] in Section III-A. We then describe the
camera-aware data generation process using CycleGAN in
Section III-B. The baseline and the training strategy with LSR
are described in Section III-C and Section III-D, respectively.

A. CycleGAN Review

Given two datasets {xi }Mi=1 and {z j }Nj=1, collected from two
different domains A and B , where xi ∈ A and z j ∈ B ,
The goal of CycleGAN is to learn a mapping function G :
A → B such that the distribution of images from G(A) is
indistinguishable from the distribution B using an adversarial
loss. CycleGAN contains two mapping functions G : A → B
and F : B → A. Two adversarial discriminators DA and
DB are proposed to distinguish whether images are translated
from another domain. CycleGAN applies the GAN framework
to jointly train the generative and discriminative models. The
overall CycleGAN loss function is expressed as:

V (G, F, DA, DB ) = VG AN (DB , G, A, B)

+ VG AN (DA, F, B, A)

+ λVcyc(G, F), (1)

where VG AN (DB , G, A, B) and VG AN (DA, F, B, A) are the
loss functions for the mapping functions G and F and for the
discriminators DB and DA . Vcyc(G, F) is the cycle consistency
loss that forces F(G(x)) ≈ x and G(F(z)) ≈ z, in which
each image can be reconstructed after a cycle mapping.
λ penalizes the importance between VG AN and Vcyc. In the
training of CycleGAN, we alternatively train the generators
and discriminators and aim to optimize:

G∗, F∗ = arg max
DA,DB

min
G,F

V (G, F, DA, DB ) (2)

The overview of CylceGAN is shown in Fig. 3.
In the testing stage, we are provided with two translation

models G and F . Given an input image from domain A,
we apply G to transfer it to the style of domain B, and vice
versa for input image from domain B and F . In this way,
we could generate images in the style of domain B (or A) that
are transferred from domain A (or B).
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Fig. 4. The framework of the proposed method. The camera-aware style transfer models are learned from the real training data between different cameras.
For each real image, we can utilize the trained transfer models to generate images which fit the styles of target cameras. Subsequently, real images (green
boxes) and style-transferred images (blue boxes) are combined to train the re-ID CNN. The cross-entropy loss and the label smooth regularization (LSR) loss
are applied to real images and style-transferred images, respectively.

Fig. 5. Barnes-Hut t-SNE [72] visualization on Market-1501. We randomly select real training images of 700 identities to train the re-ID model and visualize
the real samples (R, dots) and their fake (style-transferred) samples (F, triangles) of a rest 20 identities. In each figure, different colors represent different
identities. We observe 1) fake samples generally overlay with the real samples (see (a), (b), (c) and (d)), laying the foundation of their data augmentation
mechanism; 2) noisy fake data exist now and then (red boxes in (a), (b) and (c)), which needs regularization techniques such as LSR. Best viewed in color.

B. Camera-Aware Image-Image Translation

In this work, we employ CycleGAN to generate new
training samples: the styles between different cameras are
considered as different domains. Given a re-ID dataset con-
taining images collected from L different camera views, our
method is to learn image-to-image translation models for each
camera pair with CycleGAN. To encourage the style-transfer
to preserve the color consistency between the input and output,
we add the identity mapping loss [10] in the CycleGAN loss
function (Eq. 1) to enforce the generator to approximate an
identity mapping when using real images of the target domain
as input. The identity mapping loss can be expressed as:

Vident it y(G, F)

= Ex�px [�F(x) − x�1] + Ez�pz [�G(z) − z�1], (3)

Specifically, for training images, we use CycleGAN to
train camera-aware style transfer models for each pair of
cameras. Following the training strategy in [10], all images
are resized to 256 × 256. We use the same architecture for
our camera-aware style transfer networks as CycleGAN. The
generator contains 9 residual blocks and four convolutions,
while the discriminator is 70 × 70 PatchGANs [53].

With the learned CycleGAN models, for a training image
collected from a certain camera, we generate L −1 new train-
ing samples whose styles are similar to the corresponding cam-
eras (examples are shown in Fig. 2). In this work, we call the
generated image as style-transferred image or fake image.
In this manner, the training set is augmented to a combination
of the original images and the style-transferred images. Since
each style-transferred image preserves the content of its orig-
inal image, the new sample is considered to be of the same
identity as the original image. This allows us to leverage the
style-transferred images as well as their associated labels to
train re-ID CNN in together with the original training samples.

Discussions: As shown in Fig. 5, the working mechanism
of the proposed data augmentation method mainly consists
in: 1) the similar data distribution between the real and fake
(style-transferred) images, and 2) the ID labels of the fake
images are preserved. In the first aspect, the fake images fill
up the gaps between real data points and marginally expand
the class borders in the feature space. This guarantees that the
augmented dataset generally supports a better characterization
of the class distributions during embedding learning. The sec-
ond aspect, on the other hand, supports the usage of supervised
learning [1], a different mechanism from [49] which leverages
unlabeled GAN images for regularization.
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C. Baseline Deep re-ID Model

Given that both the real and fake (style-transferred) images
have ID labels, we use the ID-discriminative embedding
(IDE) [1] to train the re-ID CNN model. Using the Softmax
loss, IDE regards re-ID training as an image classification
task. We use ResNet-50 [26] as backbone and follow the
training strategy in [1] for fine-tuning on the ImageNet [43]
pre-trained model. Different from the IDE proposed in [1],
we discard the last 1000-dimensional classification layer and
add two fully connected (FC) layers. The output of the first
FC layer has 1024 dimensions named as “FC-1024”, followed
by batch normalization [45], ReLU and Dropout [44]. The
addition “FC-1024” follows the practice in [7] which yields
improved accuracy. The output of the second FC layer, is
C-dimensional, where C is the number of classes in the
training set. In our implementation, all input images are resized
to 256 × 128. The network is illustrated in Fig. 4.

D. Training With CamStyle

Given a new training set composed of real and fake
(style-transferred) images (with their ID labels), this section
discusses the training strategies using the CamStyle. When we
view the real and fake images equally, i.e., assigning a “one-
hot” label distribution to them, we obtain a vanilla version of
our method. On the other hand, when considering the noise
introduced by the fake samples, we introduce the full version
which includes the label smooth regularization (LSR) [11].

1) Vanilla Version: In the vanilla version, each sample in the
new training set belongs to a single identity. During training,
in each mini-batch, we randomly select M real images and N
fake images. The loss function can be written as,

L = 1

M

M�

i=1

Li
R + 1

N

N�

j=1

L j
F , (4)

where LR and LF are the cross-entropy loss for real images
and fake images, respectively. The cross-entropy loss function
can be formulated as,

LCross = −
C�

c=1

log(p(c))q(c), (5)

where C is the number of classes, and p(c) is the predicted
probability of the input belonging to label c. p(c) is normal-
ized by the softmax layer, so

�C
c=1 p(c) = 1. q(c) is the

ground-truth distribution. Since each person in the training set
belongs to a single identity y, q(c) can be defined as,

q(c) =
�

1 c = y

0 c �= y.
(6)

So minimizing the cross entropy is equivalent to maximizing
the probability of the ground-truth label. For a given person
with identity y, the cross-entropy loss in Eq. 5 can be
rewritten as,

LCross = − log p(y). (7)

Because the similarity in overall data distribution between the
real and fake data, the vanilla version is able to improve the

baseline IDE accuracy under a system with a few cameras,
as to be shown in Section V.

2) Full Version: The style-transferred images have a pos-
itive data augmentation effect, but also introduce noise to
the system. Therefore, while the vanilla version has merit in
reducing over-fitting under a few-camera system in which, due
to the lack of data, over-fitting tends to occur, its effectiveness
is compromised under more cameras. The reason is that when
data from more cameras is available, the over-fitting problem
is less critical, and the problem of transfer noise begins to
appear.

The transfer noise arises from two causes. 1) CycleGAN
does not perfectly model the transfer process, so errors occur
during image generation. 2) Due to occlusion and detection
errors, there exists noisy samples in the real data, transferring
these noisy samples to fake data may produce even more noisy
samples. In Fig. 5, we visualize some examples of the deep
feature of real and fake data on a 2D space. Most of the
generated samples are distributed around the original images.
When transfer errors happen (see Fig. 5(c) and Fig. 5(d)),
the fake sample will be a noisy sample and be far away from
the true distribution. When a real image is a noise sample (see
Fig. 5(b) and Fig. 5(d)), it is far away from the images with
the same labels, so its generated samples will also be noisy.
This problem reduces the benefit of generated samples under
full-camera systems where the relatively abundant data has a
lower over-fitting risk.

To alleviate this problem, we apply the label smoothing
regularization (LSR) [11] on the style-transferred images to
softly distribute their labels. That is, we assign less confidence
on the ground-truth label and assign small weights to the other
classes. The re-assignment of the label distribution of each
style-transferred image is written as,

qL S R(c) =
⎧
⎨

⎩
1 − � + �

C
c = y

�

C
c �= y,

(8)

where � ∈ [0, 1]. When � = 0, Eq. 8 can be reduced to Eq. 6.
Then, the cross-entropy loss in Eq. 5 is re-defined as,

LL S R = −(1 − �) log p(y) − �

C

C�

c=1

log p(c) (9)

For real images, we do not use LSR because their labels
correctly match the image content. Moreover, we experimen-
tally show that adding LSR to the real images does not
improve the re-ID performance under full-camera systems (see
Section V-D). So for real images, we use the one-hot label
distribution. For style-transferred images, we set � = 0.1,
the loss function LF = LL S R(� = 0.1).

Discussions: Recently, Zheng et al. [49] propose the label
smoothing regularization for outliers (LSRO) to use the unla-
beled samples generated by DCGAN [50]. In [49], since the
generated images do not have labels, a uniform label distrib-
ution is assigned to the generated samples, i.e., LL S R(� = 1).
Comparing with LSRO [49], our system has two differences.
1) Fake images are generated according to camera styles.
The usage of CycleGAN ensures that the generated images
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Fig. 6. Examples generated by our method and DCGAN in [49].

remain the main characteristics of the person (Fig. 6 provides
some visual comparisons). 2) Labels in our systems are more
reliable. We use LSR to address a small portion of unreliable
data, while LSRO [49] is used under the scenario where no
labels are available.

IV. CAMSTYLE IN UNSUPERVISED DOMAIN

ADAPTATION AND ONE VIEW LEARNING

In this section, we first describe the problem of unsupervised
domain adaptation (UDA) in Section IV-A. Then the imple-
mentation of CamStyle in UDA is introduced in Section IV-B.
We present the implementation of CamStyle in one view
learning in Section IV-C.

A. Problem Definition of Domain Adaptation

In the problem of unsupervised domain adaptation (UDA)
in person re-identification (re-ID), we are provided with a
full-labeled source set {Xs, Ys} including Ns person images.
Each image xs corresponds to an identity ys , where ys ∈
{1, 2, ..., Cs}, and Cs is the number of identities. Meanwhile,
there are also provided Nt unlabeled target images xt from
unlabeled target set {Xt }. Images in the target set are collected
from Lt camera views and the identities of them are unknown.
The object of domain adaptation approaches are to train a
re-ID model that generalizes well on target domain testing set
with both labeled source training images and unlabeled target
training images. Next, we will introduce a new unsupervised
domain adaptation approach by using the proposed CamStyle.

B. CamStyle Domain Adaptation

Similar to the implementation of CamStyle in supervision
person re-ID introduced in Section III, the CamStyle based
domain adaptation approach consists of two steps: 1) source-
target camera style transfer for training images generation, and
2) training re-ID model with CamStyle.

1) Source-Target Camera Style Transfer: Assume we are
provided full labeled source domain images and unlabeled
target domain images. The target domain images are collected
from Lt camera views. We consider the styles under different
target cameras as different domains. The goal of our method is
to learn image-image translation models that translate labeled
images from source domain to each target camera. We use
CycleGAN to train Lt camera style transfer models for each
pair of source domain and target camera. Thus, with the

TABLE I

THE NUMBER OF LABELED IDENTITIES (#ID) AND NUMBER OF LABELED

IMAGES PER IDENTITY (#IMG/ID) UNDER EACH CAMERA ON

MARKET-1501 AND DUKEMTMC-REID

learned CycleGAN models, for each source domain image,
we can generate Lt new training images whose styles are
similar to each target camera, respectively. Each generated
image remains the identity of the original source image and
can be used in supervised learning for the target domain.

2) Training re-ID Model With CamStyle: With the camera
style transferred images that associated labels, we employ the
training strategy proposed in Section III to learn the re-ID
model for target domain.

Discussions: Recently, Deng et al. [17] and Wei et al. [18]
propose to learn a preserving generative adversarial net-
work (GAN) based on CycleGAN to translate images from
source domain to target domain. The generated images are
applied to train re-ID model for target domain. Both of
these two approaches only consider the inter-domain image
variations, while ignoring the intra-domain style variations
caused by target cameras. Compared with these two meth-
ods, our method jointly considering the image style varia-
tions of inter-domain and intra-domain in the source-target
image translation process. Visual comparison of image-image
translation between CamStyle and SPGAN proposed by
Deng et al. [17] are shown in Fig. 7.

C. CamStyle in One View Learning

In fact, it is easier to label person identities from one
camera view than across disjoint cameras. However, there
may have a few labeled samples for each identity under one
camera. Table I shows the details of the number of identities
and number of images per identities under each camera on
Market-1501 [9] and DukeMTMC-reID [49]. Specially, there
are less than 6 images per identities under each camera on
Market-1501. When training the re-ID model with samples
captured from one camera, the re-ID model may suffer from
lack of training samples and be sensitive to style variations
caused by different cameras. Note that, one view (camera)
learning can also be considered as a special domain adaptation
problem, where labeled data collected from one camera is the
source domain and unlabeled images collected other cameras
are target domains. It is an open-set problem in which the
unlabeled views may include identities that might be different
from the labeled view.

To overcome these challenges, we extend CamStyle to the
problem of one view learning. Specifically, our approach can
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Fig. 7. Visual examples of image-image translation in domain adaptation. (a) original source image, (b) style-transferred images generated by SPGAN [17],
(c) style-transferred images generated by CamStyle. Our method (CamStyle) generates various images that are similar to the styles of target cameras.

use all samples under different cameras to learn camera style
transfer models without any identity annotation and generates
new samples for each labeled image collected from one cam-
era. The generated images and original labeled training images
are formed the new training data. We use the augmented
labeled data for training re-ID model. In this way, CamStyle
not only reduces the risk of over-fitting caused by lack of
training data, but also improves the camera-invariance property
of re-ID model.

V. EXPERIMENT

A. Datasets

We evaluate our method on Market-1501 [9] and
DukeMTMC-reID [49], [73], because both datasets 1) are
large-scale and 2) provide camera labels for each image.

Market-1501 [9] contains 32,668 labeled images
of 1,501 identities collected from 6 camera views. Images are
detected using deformable part model [74]. The dataset is
split into two fixed parts: 12,936 images from 751 identities
for training and 19,732 images from 750 identities for testing.
There are on average 17.2 images per identity in the training
set. In testing, 3,368 hand-drawn images from 750 identities
are used as queries to retrieve the matching persons in the
database. Single-query evaluation is used.

DukeMTMC-reID [49] is a newly released large-scale per-
son re-ID dataset. It is collected from 8 cameras and comprised
of 36,411 labeled images belonging to 1,404 identities. Similar
to Market-1501, it consists of 16,522 training images from
702 identities, 2,228 query images from the other 702 iden-
tities and 17,661 database images. We use rank-1 accuracy
and mean average precision (mAP) for evaluation on both
datasets. The details of the number of training samples under
each camera are shown in Fig. 8.

B. Experiment Settings

1) Camera-Aware Style Transfer Model: Following
Section III-B, given a training set captured from L camera
views, we train a camera-aware style transfer (CycleGAN)

Fig. 8. The number of training samples under different cameras on Market-
1501 and DukeMTMC-reID.

model for each pair of cameras. Specifically, we train
(6 choose 2) = 15 and (8 choose 2) = 28 CycleGAN models
for Market-1501 and DukeMTMC-reID, respectively. During
training, we resize all input images to 256 × 256 and use the
Adam optimizer [75] to train the models from scratch with
λ = 10 for all the experiments. We set the batch size = 1.
The learning rate is 0.0002 for the Generator and 0.0001 for
the Discriminator at the first 30 epochs and is linearly
reduced to zero in the remaining 20 epochs. In camera-aware
style transfer step, for each training image, we generated
L − 1 (5 for Market-1501 and 7 for DukeMTMC-reID) extra
fake training images with their original identity preserved as
augmented training data.

2) Baseline CNN Model for re-ID: In the training of base-
line method, we follow the training strategy in [1]. Specifi-
cally, we keep the aspect ratio of all images and resize them to
256 ×128. Unless otherwise specified, two data augmentation
methods, random cropping and random horizontal flipping, are
employed during training. We set the probability of perform-
ing random flipping to 0.5 and random cropping to 1. The
dropout probability p is set to 0.5. We use ResNet-50 [26]
as backbone, in which the second fully connected layer has
751 and 702 units for Market-1501 and DukeMTMC-reID,
respectively. The learning rate starts with 0.01 for ResNet-50
base layers and 0.1 for the two new added full connected
layers. We use the SGD solver to train re-ID model and
set the batch size to 128. The learning rate is divided by
10 after 40 epochs, we train 50 epochs in total. In testing,
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Fig. 9. Evaluation with different ratio of real data and fake data (M : N ) in
a training mini-batch on Market-1501.

we extract the output of the Pool-5 layer as image descriptor
(2,048-dim) and use the Euclidean distance to compute the
similarity between images.

3) Training CNN With CamStyle: For training of CamStyle,
we adopt the same setting as training of the baseline model,
except that we randomly select M real images and N fake
(style-transferred) images in a training mini-batch. If not
specified, we set M : N = 3 : 1. Note that, since the number
of fake images is larger than that of real images, in each
epoch, we use all the real images and randomly selected a
N
M × 1

L−1 proportion of all fake images. Unless otherwise
specified, we apply random cropping and random flipping on
both real and fake data during training.

C. Parameter Analysis

An important parameter is involved with CamStyle,
i.e., the ratio of M

N , where M and N indicate the number of
real and fake (style-transferred) training samples in the mini-
batch. This parameter encodes the fraction of fake samples
used in training. By varying this ratio, we show the experimen-
tal results in Fig. 9. It can be seen that, CamStyle with different
M
N consistently improves over the baseline. When using more
fake data than real data (M : N < 1) in each mini-batch,
our approach slightly gains about 1% improvement in rank-
1 accuracy. On the contrary, when M : N > 1, our approach
yields more than 2% improvement in rank-1 accuracy. The
best performance is achieved when M : N = 3 : 1.

In Fig. 10 we evaluate the impact of � defined in Eq. 9.
When � = 0, the fake data is trained with cross-entropy
loss, and the improvement of “baseline+CamStyle” is limited
compared to “baseline”. When applying LSR on fake data,
the rank-1 accuracy and mAP improve with the increase of �
and achieve the best results when � is between 0.07 to 0.15.
For example, “baseline + CamStyle” yields rank-1 accuracy
of 88.6% when � = 0.7. This is +2.94% higher than
“baseline” (85.66%). A larger value of � is likely to be harmful
to the performance, because fake images still preserve the
original image content to some extent. As such, we should
set a high confidence to class of the original image. Taking
the above considerations into account, we select � = 0.1 from
the range of 0.07 to 0.15.

D. Variant Evaluation

1) Baseline Evaluation Under Different Camera Systems:
To fully present the effectiveness of CamStyle, our baseline

Fig. 10. Results on Market-1501 using different values of �.

TABLE II

PERFORMANCE EVALUATION ON MARKET-1501 USING DIFFERENT LOSS

FUNCTIONS. CROSSE: CROSS-ENTROPY, LSR: LABEL

SMOOTH REGULARIZATION [11]

systems consist of 2, 3, 4, 5, 6 cameras for Market-1501 and
2, 3, 4, 5, 8 cameras for DukeMTMC-reID, respectively.
In a system with 3 cameras, for example, the training and
testing sets both have 3 cameras. In Fig. 11, as the number
of cameras increases, the rank-1 accuracy increases. This is
because 1) more training data are available and 2) it is easier to
find a rank-1 true match when more ground truths are present
in the database. In the full-camera (6 for Market-1501 and
8 for DukeMTMC-reID) baseline system, the rank-1 accuracy
is 85.6% on Market-1501 and is 72.3% on DukeMTMC-reID.

2) Investigation Into the Effect of Vanilla CamStyle Under
Different Camera Systems: We evaluate the effectiveness
of the vanilla method (without LSR) in Fig. 11 and
Table II. We have two observations. First, in systems with
2 cameras, vanilla CamStyle yields significant improvement
over the baseline CNN. On Market-1501 with 2 cameras,
the improvement reaches +17.1% (from 43.2% to 60.3%).
On DukeMTMC-reID with 2 cameras, the rank-1 accuracy
is improved from 45.3% to 54.8%. This indicates that the
few-camera systems, due to the lack of training data, are prone
to over-fitting, so that our method exhibits an impressive sys-
tem enhancement. Second, as the number of camera increases
in the system, the improvement of vanilla CamStyle becomes
smaller. For example, in the 6-camera system on Market-1501,
the improvement in rank-1 accuracy is only +0.7%. This
indicates that 1) the over-fitting problems becomes less severe
in this full system and that 2) the noise brought by CycleGAN
begins to negatively affect the system accuracy.
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Fig. 11. Comparison of different methods on Market-1501 and DukeMTMC-reID, i.e., baseline, baseline + LSR, baseline + CamStyle vanilla (w/o LSR),
baseline+CamStyle (w/ LSR). Rank-1 accuracy is shown. Five systems are shown, which have 2, 3, 4, 5, 6 cameras for Market-1501 and 2, 3, 4, 5, 8 cameras
for DukeMTMC-reID, respectively. We show that CamStyle (with LSR) yields consistent improvement over the baseline.

TABLE III

IMPACT ANALYSIS OF USING DIFFERENT CAMERAS FOR TRAINING

CYCLEGANS ON MARKET-1501. WE ADOPT THE 6-CAMERA

SYSTEM. WE START FROM USING THE 1ST AND 2ND

CAMERAS, AND THEN GRADUALLY ADD OTHER

CAMERAS FOR TRAINING CYCLEGANS

3) Evaluation on the Effectiveness of LSR for CamStyle:
As previously described, when tested in a system with more
than 3 cameras, vanilla CamStyle achieves less improvement
than the 2-camera system. We show in Fig. 11 and Table II
that using the LSR loss on the fake images achieves higher
performance than cross-entropy. As shown in Table II, using
cross-entropy on style-transferred data improves the rank-1
accuracy to 86.31% under full-camera system on Market-1501.
Replacing cross-entropy with LSR on the fake data increases
the rank-1 accuracy to 88.12%.

In particular, Fig. 11 and Table II show that using LSR alone
on the real data does not help much, or even decrease the
performance on full-camera systems. For example, the rank-
1 accuracy drops from 88.12% (using cross-entropy loss for
real data and using LSR for fake data) to 87.11% when using
LSR on both real and fake data. Therefore, the fact that
CamStyle with LSR improves over the baseline is not attributed
to LSR alone, but to the interaction between LSR and the fake
images. By this experiment, we justify the necessity of using
LSR on the fake images.

4) Investigation Into the Impact of Using Different
Cameras for Training Camera-Aware Style Transfer Models:
In Table III, we show that as using more cameras to train
camera-aware style transfer models, the rank-1 accuracy is

improved from 85.66% to 88.12%. Particularly, our method
obtains +1.54% improvement in rank-1 accuracy even only
using the 1th and 2th camera to train camera-aware style
transfer model. In addition, when training cameras style trans-
fer models with using 5 cameras, it has the rank-1 accuracy
of 87.85%, which is 0.27% lower than of using 6 cameras.
This shows that even using a part of the cameras to learn
camera-aware style transfer models, our method can yield
approximately equivalent results to using all the cameras.

5) Analysis of Different Data Augmentation Methods: To
further validate the CamStyle, we further compare it with other
data augmentation methods, random flipping + random crop-
ping (RF+RC), Random Erasing (RE) [47], random rotation,
random scaling, random shearing, Gaussian noise and color
changing [46]. Because different data augmentation methods
are distinct in their working mechanism, it is expected that
the best performance of different methods is achieved under
different values of M:N. Therefore, for fair comparison, we set
the parameter M:N to the value which data augmentation
method yields the best performance. M and N represent the
number of real data and fake data in a training batch, respec-
tively. Here, the probability of performing data augmentation
is N:(M + N). We set the probability of performing random
flipping and random erasing to 0.5, and of random cropping
to 1. Random rotation is performed by rotating sampled
within 5 degrees with a random probability of 0.5. In random
scaling, we resize the image to 95%-100% of the original size
and then pad zeros to the image border. The probability of
random scaling is 0.3. Random shearing is applied by tilting
sampled within 5 degrees with a random probability of 0.5. For
Gaussian noise method, we add different levels of Gaussian
noise to an image. Specifically, we randomly add Gaussian
noise to 5% of the image pixels. The probability of adding
Gaussian noise is set to 0.3. For color changing, we first
transform the image color space from RGB to HSV and then
add a random value (sampled from [−0.2, 0.2]) to the hue
channel of all pixels. The image is then transformed back to
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Fig. 12. Example images generated by different data augmentation methods.

TABLE IV

COMPARISON COMBINATIONS BETWEEN DIFFERENT DATA

AUGMENTATION METHODS ON MARKET-1501. THE FIRST

COLUMN INDICATES THE NUMBER OF AUGMENTATIONS

METHODS EMPLOYED ON THE BASELINE MODEL.

RF + RC: RANDOM FLIP + RANDOM CROP,

RE: RANDOM ERASING [47]

RGB space. This operation is able to change the brightness of
images. We perform color changing with a probability of 0.4.
Example images generated by different data augmentation
methods are shown in Fig. 12.

The comparative results of the above data augmentation
methods are shown in Table IV. First, to understand the
performance of each individual data augmentation technique,
we train CNN baseline using each data augmentation method
individually. As show in Table IV, the rank-1 accuracy of
baseline is 84.15% when no data augmentation is used. When
only applying RF + RC, RE, CamStyle, or random rotation,
rank-1 accuracy is increased to 85.66%, 86.83%, 85.01% and
85.70%, respectively. We observe that RE achieves the largest
individual improvement in performance. However, random

TABLE V

COMPARISON WITH STATE OF THE ART ON THE MARKET-1501 DATASET.

IDE∗ REFERS TO IMPROVED IDE WITH THE TRAINING SCHEDULE

IN THIS PAPER. RE: RANDOM ERASING [47]

TABLE VI

COMPARISON WITH STATE OF THE ART ON DUKEMTMC-REID. IDE∗
REFERS TO IMPROVED IDE WITH THE TRAINING SCHEDULE

DESCRIBED IN THIS PAPER. RE: RANDOM ERASING [47]

shearing, random scaling, color changing and Gaussian noise
fail to improve the performance over the baseline. Then,
we investigate the combinations of RF + RC, RE, CamStyle
and random rotation. If we combine CamStyle with RF + RC,
RE or random rotation, we observe consistent improvement
over their individual usage. Nevertheless, the combination
of RF + RC and random rotation fails to further improve
the performance compared to their individual employment.
The best performance is achieved when RF + RC, RE, and
CamStyle are used together. In fact, CamStyle and some other
augmentation techniques focus on different aspects of CNN
invariance. In this respect, our results show that CamStyle is
well complementary to these data augmentation methods. Par-
ticularly, combining CamStyle with RF + RC and RE, we are
able to achieve 89.49% rank-1 accuracy on Market-1501.

Since random cropping, random flipping, random erasing,
random rotation, random shearing, random scaling, Gaussian
noise and color changing are based on basic image processing
operations, the computational cost is not heavy in CNN train-
ing. For CamStyle, the style transfer models and fake images
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TABLE VII

EVALUATION ON THE PERFORMANCE OF LEARNING FROM ONE CAMERA FOR PERSON RE-IDENTIFICATION. IN TRAINING, LABELED SAMPLES ARE

AVAILABLE FROM ONLY ONE CAMERA. IN TESTING, WE USE QUERY AND GALLERY SAMPLES UNDER ALL CAMERAS

TABLE VIII

METHODS COMPARISON USING DUKE / MARKET AS SOURCE, AND USING MARKET / DUKE AS TARGET. NOTE THAT, WE EMPLOY RANDOM

CROPPING AND RANDOM FLIPPING ON BOTH REAL DATA AND FAKE DATA DURING TRAINING

can be trained and generated off-the-shelf. Thus, we only need
to directly load the corresponding fake images in the training
of re-ID model.

E. Comparison With State-of-the-Art Methods

We compare our method with the state-of-the-art meth-
ods on Market-1501 and DukeMTMC-reID in Table V and
Table VI, respectively. First, using our baseline training strat-
egy, we obtain a strong baseline (IDE∗) on both datasets.
Specifically, IDE∗ achieves 85.66% for Market-1501 and
72.31% for DukeMTMC-reID in rank-1 accuracy. Compared
with published IDE implementations [1], [7], [49], IDE∗ has
the best rank-1 accuracy on Market-1501.

Then, when applying CamStyle on IDE∗, we obtain compet-
itive results compared with the state of the art. Specifically,
we achieve rank-1 accuracy = 88.12% for Market-1501,
and rank-1 accuracy = 75.27% for DukeMTMC-reID.
On Market-1501, our method has higher rank-1 accuracy
than PDF [79], TriNet [8], PSE [81] and DJL [80]. The mAP
of our method is slightly lower than TriNet [8] by 0.42%
and lower than HA-CNN [82] by 4.15%. HA-CNN utilizes a
more sophisticated network than ours. On DukeMTMC-reID,
the mAP of our method is lower than SVDNet [7] by 3.32%.

Further combining CamStyle with Random Erasing data
augmentation [47] (RF + RC is already implemented in the
baseline), our final rank-1 performance arrives at 89.49% for
Market-1501 and 78.32% for DukeMTMC-reID.

F. Learning From One View

Table VII shows the results of our method when using
only labeled samples collected from one camera to train

CNN re-ID model. Note that, we employ random cropping
and random flipping on both real data and fake data during
training. With training images only collected from one view,
the performance of baseline significantly drops. For example,
the rank-1 accuracy of baseline is 85.66% when trained with
all labeled data on Market-1501, but drops to 37.02% when
trained with labeled data from camera-1. With CamStyle,
the performance is significantly improved in all cases. For
example, our method has 57.56% rank-1 accuracy and 48.66%
rank-1 accuracy averaged on all settings on Market-1501 and
DukeMTMC-reID, respectively. This is 20.32% higher on
Market-1501 and 19.44% higher on DukeMTMC-reID than
baseline.

G. Implemented CamStyle in Domain Adaptation

1) Evaluation of Baseline on Performance: The results of
baseline are reported in Table VIII. When trained on and
tested on the target set, the baseline (IDE) produced high
performance on both datasets. However, the performance drops
significantly when the re-ID model is trained on the source set
and directly tested on the target set. For example, the baseline
re-ID model trained and tested on DukeMTMC-reID gives
rank-1 accuracy of 72.3%, but drops to 32.9% when trained
on Market-1501. The main reason is the difference in data
distribution between different datasets.

2) Investigation Into the Effectiveness of CamStyle for
Domain Adaptation: An effective strategy for reducing the
divergence of different datasets is to translate the labeled
images from source domain to target domain by training
a CycleGAN between domains [17], [18]. In this way, each
source image is mapped to one fake image in the style
of target domain. The translated fake images remain the
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TABLE IX

UNSUPERVISED PERSON RE-ID PERFORMANCE COMPARISON WITH

STATE-OF-THE-ART METHODS ON MARKET-1501. CAMEL [86]

USES MULTI-QUERY SETTING, THE OTHER METHODS

USE SINGLE-QUERY SETTING

TABLE X

UNSUPERVISED PERSON RE-ID PERFORMANCE COMPARISON WITH

STATE-OF-THE-ART METHODS ON DUKEMTMC-REID

original identities and are used to train re-ID model in a
supervised way. As shown in Table VIII, the baseline +
CycleGAN consistently improves the performance when using
the domain-domain translated training images. For example,
the baseline + CycleGAN improves the rank-1 accuracy from
44.6% to 49.9% when trained on DukeMTMC-reID and tested
on Market-1501. When considering the image variations of
target cameras, our method (CamStyle) translates labeled
images from source domain to each target camera. Compared
to baseline + CycleGAN, the baseline + CamStyle considers
the image variations of target cameras and generates more
training images capturing the styles of different target cameras.
As reported in Table VIII, our method clearly outperforms the
baseline and baseline + CycleGAN by a large margin. For
example, when using Market-1501 as source set and tested
on DukeMTMC-reID, our method is 9.2% and 5% higher
than baseline + CycleGAN in rank-1 accuracy and mAP,
respectively.

3) Comparison With the State of the Art: We compare
the proposed CamStyle with the state-of-the-art unsuper-
vised learning methods on Market-1501 and DukeMTMC-reID
in Table IX and Table X, respectively. First, we compare our
method with two hand-crafted methods, i.e. BOW [5], [9].
These two hand-crafted features are directly employed on
target testing set without training. Both of them fail to obtain
competitive results.

Then, we compare our method with three unsupervised
methods including [62], CAMEL [86], and PUL [87]. These
unsupervised methods exploit the unlabeled data on tar-
get domain for training re-ID model and achieve higher
results than hand-crafted methods. For example, when using
Market-1501 as source set and tested on DukeMTMC-reID,
PUL [87] achieves 30.0% in rank-1 accuracy, outperforming
the BOW [9] by 12.9%.

Finally, we compare our method with recently pro-
posed state-of-the-art domain adaptation methods, including
PTGAN [18], SPGAN [17] and TJ-AIDL [16]. Our method
obtains competitive results compared with the state-of-the-
art approaches. Specifically, our method achieves rank-1
accuracy = 58.8% and mAP = 27.4% when using
DukeMTMC-reID as source set and tested on Market-1501,
and achieves rank-1 accuracy = 48.4% and mAP = 25.1%
when trained on Market-1501 and tested on DukeMTMC-reID.
On the one hand, our methods give higher rank-1 accuracy
than PTGAN [18], SPGAN [17] and TJ-AIDL [16] in all
settings. On the other hand, when tested on DukeMTMC-reID,
our method has slightly lower mAP than SPGAN+LMP [17]
which employed local max pooling (LMP) in the testing phase.
Moreover, we further apply LMP in our approach during test-
ing phase. With LMP, our approach gains further improvement.
Specifically, the rank-1 accuracy of our approach is higher
than SPGAN + LMP [14] by 7% and 5.3% when tested on
Market-1501 and DukeMTMC-reID, respectively.

VI. CONCLUSION

In this paper, we propose CamStyle, a new data aug-
mentation method for deep person re-identification. The
camera-aware style transfer models are learned for each pair
of cameras with CycleGAN, which are used to generate
new training images from the original ones. The real images
and the style-transferred images form the new training set.
Moreover, to alleviate the increased level of noise induced by
CycleGAN, label smooth regularization (LSR) is applied on
the generated samples. Experiments on the Market-1501 and
DukeMTMC-reID datasets show that our method can effec-
tively reduce the impact of over-fitting, and, when combined
with LSR, yields consistent improvement over the baselines.
We show that our method is complementary to other data
augmentation techniques. In addition, CamStyle can be imple-
mented in other important person re-identification tasks, such
as one view learning and domain adaptation. Specially, our
method obtains state-of-the-art results in unsupervised domain
adaptation for person re-identification. In the future work,
we will improve the scalability of our approach to deal with the
increasing scale of cameras by multi-domain image-to-image
translation methods, such as StarGAN [55] and MUNIT [56].
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