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Learning Cross-view Geo-localization Embeddings
via Dynamic Weighted Decorrelation Regularization
Tingyu Wang, Zhedong Zheng, Zunjie Zhu, Yaoqi Sun, Chenggang Yan, and Yi Yang, Senior Member, IEEE

Abstract—In the domain of cross-view geo-localization, the
challenge lies in accurately matching images captured from
distinct perspectives, such as aerial drone imagery and satellite
imagery of the same geographical location. Existing methods
predominantly concentrate on minimizing distances between
feature embeddings in the representational space, inadvertently
overlooking the significance of reducing embedding redundancy.
This oversight potentially hampers the extraction of diverse
and distinctive visual patterns critical for precise localization.
This work argues that minimizing embedding redundancy is
a pivotal factor in enhancing a model’s ability to discrimi-
nate diverse scene characteristics. To support this claim, we
introduce a straightforward yet effective regularization tech-
nique, termed Dynamic Weighted Decorrelation Regularization
(DWDR). DWDR serves to actively promote the learning of
orthogonal feature channels within neural networks. By dy-
namically adjusting weights, DWDR targets the minimization
of inter-channel correlations, guiding the correlation matrix
towards diagonality, indicative of independence among channels.
The dynamic weighting mechanism adaptively prioritizes the
decorrelation of channels that remain highly correlated through-
out training. Additionally, we devise a symmetrical sampling
strategy for cross-view scenarios to ensure that the training
examples are balanced across different imaging platforms in a
batch. Despite its simplicity, the integration of DWDR and the
proposed sampling scheme yields remarkable performance across
four extensive benchmark datasets: University-1652, CVUSA,
CVACT, and VIGOR. Notably, in stringent conditions, such as
when constrained to exceedingly compact feature dimensions
of 64, our methodology significantly outperforms conventional
baselines, thereby affirming its efficacy and robustness under
challenging constraints.

Index Terms—Geo-localization, Image Retrieval, Deep Learn-
ing, The Cross-correlation Correlation Matrix, Decorrelation.

I. INTRODUCTION

CROSS-VIEW geo-localization is an image retrieval task
and has been broadly applied to event detection, drone

navigation, and accuracy delivery [1], [4], [5], [6]. Given a
probe from the query platform (e.g., the drone), the system
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Fig. 1. (a) A strong metric learning based baseline [1]. (b) The baseline
combined with our proposed dynamic weighted decorrelation regularization
(DWDR). ERF refers to the effective receptive field (the yellow area). A large
ERF reflects that the learned model is able to extract more discriminative
visual features from a wider range without over-fitting to the local area [2],
[3].

aims to spot a candidate image in the gallery platform (e.g., the
satellite) containing the same geographic target with the probe.
Since satellite images possess GPS metadata as annotations,
we can easily acquire the location information of the interest-
ing probe. In addition, when the GPS signal of the positioning
device encounters interference, the image-based cross-view
geo-localization can also be employed as an auxiliary tool to
refine the geo-localization and provide a more robust result.

Cross-view geo-localization remains challenging since im-
ages from different platforms inherently contain viewpoint
variations. The extreme viewpoint change leads to differences
in the visual appearance of a geographic target, which confuses
the system to locate a position accurately. A crucial key
to the geo-localization challenge is to learn a discriminative
visual embedding [7], [8], [9], [10], [11]. Recently, deep
learning technologies have received much research attention
in the cross-view geo-localization problem since the great
potential in feature extraction. A popular scheme for learning
cross-view geo-localization models is first utilizing the pre-
trained convolutional neural network to extract feature maps
of images. Following, various metric learning functions are
proposed to pull the image pairs with the same geo-tag closer
while pushing those features from non-matchable pairs far
apart [1], [12], [13], [14]. Based on this basic scheme, the
attention mechanism [15], [16] and aligning the spatial layout
of features [4], [17], [18], [19] are also widely considered in
the network design. Most existing methods focus more on the
similarity between cross-view embeddings while ignoring the
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redundant channels of the embedding itself.

In human perception study, the neuroscience H. Barlow
claims that concise, non-redundant descriptions are of higher
value to the perception system and will help to clarify inputs
of the external world [20]. Based on this bio-perceptual hy-
pothesis, we argue that stripping the redundancy of visual em-
beddings contributes to the discrimination of different targets.
In this paper, we propose a dynamic weighted decorrelation
regularization (DWDR). The measuring objective of DWDR is
the Pearson cross-correlation coefficient matrix, which is com-
puting from features of positive pairs composed of cross-view
images. Specifically, DWDR employs Square Loss to regress
the diagonal elements of the objective matrix to 1, and the off-
diagonal elements are approximated to 0. However, the objec-
tive matrix is typically large, e.g., 2048×2048. The optimizer
is easily overwhelmed by a mass of elements already close
to the optimization goal, thus ignoring other elements that
need to be regressed. To address this optimization problem,
we assign a dynamic weight to each element loss according to
the maximum regression distance of the target element. The
dynamic weight can adaptively highlight the importance of
poorly-regressed elements and suppress the side effect of well-
regressed elements in optimization. We observe that DWDR
encourages the learned model to focus on a larger effective
receptive field, which prevents the network from overfitting to
a local pattern [2] (see Figure 1). Besides, as mentioned above,
the computation of the Pearson cross-correlation coefficient
matrix requires positive sample pairs. As a by-product of se-
lecting positive pairs, we also provide a cross-view symmetric
sampling strategy. In a training batch, our symmetric sampling
strategy aligns the number of the same geo-tag images between
different platforms. Therefore, the proposed strategy mitigates
the sample imbalance, especially in drone-to-satellite geo-
localization, which contains limited satellite data [21], [22].
To summarize, our contributions are as follows.

• We propose a dynamic weighted decorrelation regu-
larization (DWDR), which motivates networks to learn
discriminative embeddings by stripping the redundancy
of features. During training, DWDR assigns a dynamic
weight to the loss of each element in the objective
matrix, yielding efficient optimization of networks. As
a by-product of DWDR, we further introduce a cross-
view symmetric sampling strategy, which maintains the
example balance in a training batch.

• Albeit simple, we demonstrate the effectiveness of the
proposed method on four cross-view geo-localization
datasets. Extensive experiments show that multiple exist-
ing works [1], [4], [23] fused with our method are able
to further boost the performance. In addition, we observe
that our method still obtains superior results even for a
short visual embedding with 64 dimensions.

The rest of this paper is organized as follows. In Section II,
we discuss related works. The details of our method are
illustrated in Section III. Experimental results are provided
in Section IV. Finally, Section V presents a summary.

II. RELATED WORK

In this section, we briefly review related previous works,
including image-based cross-view geo-localization and low-
redundancy representation learning.

A. Image-based Cross-view Geo-localization

Imaged-based cross-view geo-localization has been tackled
as an image retrieval task. Early works [24], [25], [26] employ
hand-crafted operators to extract discriminative features for
cross-view image matching. With the development of deep
learning, the convolutional neural network (CNN) has received
much research attention in the extraction of image represen-
tation. The pioneering CNN-based approach [27] directly de-
ploys pre-trained AlexNet [28] to extract features for the cross-
view geo-localization. Further, [29] introduce the information
of image pairs as the constraint to fine-tune the pre-trained
network and acquire a better performance. Following this line
of considering object constraints, [30] borrow knowledge from
face verification and harness the contrastive loss [31] to guide
the optimization of a modified Siamese Network [32]. [33]
discuss the limitation of the Siamese architecture in large-
scale cross-view matching and provide a soft-margin triplet
loss to improve the geo-localization accuracy. Similarly, [34]
propose a weighted soft-margin ranking loss, which not only
improves the matching accuracy but also speeds up the training
convergence. [35] mine hard examples in the training batch to
strengthen the penalization of the soft-margin triplet loss. [1]
suggest that images with the same identification can be clas-
sified into one cluster and apply the instance loss [36], [37],
[38] as the proxy target to learn discriminative embeddings.
Another line of works concentrates on addressing the spatial
misalignment problem of cross-view retrieval. CVM-Net [34]
employs a shared NetVLAD to aggregate the local feature
to minor the visual gap between different viewpoints. [17]
explicitly encode the orientation information into the image
descriptors and boost the discriminative power of the learned
features. [18] first attempt to utilize the optimal transport (OT)
theory to close the spatial layout information in the high-
level feature. Then [16] directly resort to the polar transform
to align the pixel-level semantic information of cross-view
images. DSM [39] designs a dynamic similarity matching
module to solve the cross-view matching in a limited Field
of View (FoV). LPN [4] stresses the importance of contextual
information and proposes a square-ring partition strategy to
improve the performance of cross-view geo-localization. With-
out any extra annotations, RK-Net [15] automatically detects
salient keypoints to improve the model capability against the
appearance changes.

B. Low-Redundancy Representation Learning

In the early study of human perception, the neuroscientist
H. Barlow [20] suggests that the perception system tends
to encode the raw sensory input as the low-redundancy
representation in which each component possesses statistical
independence. This learning principle guides a number of algo-
rithms in machine learning. [40] support that the decorrelation
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criterion is useful in the context of data and derive a fast online
pretraining algorithm to learn decorrelated features for neural
networks. [41] design Decov Loss that motivates the network
to learn non-redundant representations and demonstrate that
decorrelating representations helps to reduce overfitting of the
trained deep networks. [42] utilize Singular Value Decompo-
sition (SVD) and reduce the correlation between output units
by integrating the orthogonality constraint in CNN training.
Thus the final descriptor contains lower redundant information
about the sample. In self-supervised learning (SSL), Barlow
Twins [43] proposes a simple yet effective object function to
acquire representations with low redundancy and avoid model
collapse. The optimization goal of Barlow Twins is to trans-
form a cross-correlation matrix into an identity matrix. SSL
does not require the input data with human annotation, and
the cross-correlation matrix is computed from two distorted
representations of a sample.

III. PROPOSED METHOD

In Section III-A, we first give a revisit of preliminaries
followed by the description of our baseline network structure
for geo-localization in Section III-B. Next, we introduce the
dynamic weighted decorrelation regularization (DWDR). The
dynamic weight mechanism relieves the plateau problem in
Barlow Twins [43]. We also provide a mechanism discussion
(see Section III-C).

A. Preliminaries

Cross-correlation matrix measures the correlation be-
tween two matrices. In particular, for two random matrices
X = (X1, X2, · · · , XM )T , Y = (Y1, Y2 · · · , YN )T , where
Xm, Yn ∈ Ra with a dimensions, the cross-correlation matrix
of X and Y can be defined as:

ϕ ≜ E
[
XYT

]
. (1)

A component-wise description is:
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where E [·] refers to the expectation.
Pearson cross-correlation coefficient matrix is similar

to the cross-correlation matrix, and it shows a normalized
measurement between two matrices. Differently, the value
of each element in the Pearson cross-correlation coefficient
matrix is between −1 and 1. The score 1 and −1 denote
that two vectors are perfectly correlated and anti-correlated. 0
means that two vectors are completely unrelated. Based on the
definition of the cross-correlation matrix, the Pearson cross-
correlation coefficient matrix can be formulated as:

ρ =
E
[
(X− µX) (Y − µY)

T
]

σXσY
, (3)

where µX and σX are the mean and the standard deviation of
X, respectively. µY and σY are the mean and the standard
deviation of Y, separately. E [·] is the expectation.

Barlow Twins [43] is a widely-used method for self-
supervised learning (SSL). To address the issue of repre-
sentation collapse, the main contribution of Barlow Twins
is introducing a new regularization objective, which can be
defined as:

LBT ≜
d∑

i=1

(1− ϕii)
2 + λ

d∑
i=1

d∑
j=1,j ̸=i

ϕij
2, (4)

where λ is a positive hyper-parameter, and ϕ is the cross-
correlation matrix between two mini-batch of features. Given
two batches of features with d dimensions (d is generally
set as 2048), we multiply the feature matrix along with the
batch dimension. Thus, the dimension of ϕ is d × d. The
regularization function LBT encourages every feature channel
to be independent of others. Specifically, it impels the diagonal
elements ϕii from the same channel to 1, while pushing
off-diagonal elements ϕij between different channels to 0.
However, in practice, Barlow Twins meets the optimization
problem, especially when facing a typical large matrix (e.g.,
2048 × 2048). The model arrives at the plateau after the
majority of channels are converged, and it neglects other still-
correlated “hard” channels, compromising the training process.

B. Network Structure

We adopt ResNet-50 [44] as the backbone and add a
new classifier. The classifier consists of a fully-connected
layer (FC), a batch normalization layer (BN), a dropout layer
(Dropout), and another fully-connected layer (FC). Notably,
the backbone can also be other networks such as VGG16 [45]
and Swin Transformer [23]. The two-branch baseline consists
of three forward phases, i.e., feature extraction, feature aggre-
gation, and feature classification. Specifically, we denote the
input images from two platforms as xk, where k ∈ {1, 2}.
1 denotes the satellite platform, and 2 refers to the drone or
ground platform. We first employ two backbones with shared
weights to extract feature maps. Then the global average
pooling is deployed to aggregate the information of feature
maps into the column vectors fk. Finally, we harness a
classifier to map vectors fk of different platforms into one
shared classification space and acquire the predicted logit
vectors zk. Meanwhile, the cross entropy function is employed
to calculate the instance loss Lid [1]. The instance loss is
a classification loss with a shared classifier Fclassifier. The
above process can be formulated as:

fk = Avgpool(Fk
backbone(xk)), (5)

zk = Fclassifier(fk), (6)

Lid =

2∑
k=1

−log
exp(zk(y))∑C
c=1 exp(zk(c))

. (7)

The label y ∈ [1, C], where C indicates the category number of
geographic targets in the training set. zk(y) is the logit score
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Fig. 2. A schematic overview of our method. We first apply the symmetric sampling strategy to generate one batch of drone-and-satellite positive pairs.
The symmetric sampling strategy is composed of the drone-view based sampling and the satellite-view based sampling. Then the satellite-platform and the
drone-platform images of the batch are fed into a two-branch network. The two-branch network shares weights of two backbones since images from the
drone platform and the satellite platform have similar patterns. Next, the average pooling is deployed to aggregate the output feature maps of each branch
into the column vectors. Finally, the column vectors of two branches are inputted into a classifier module to acquire predicted logit scores, respectively, and
the cross-entropy function is utilized to compute the instance loss. The proposed DWDR aims to transform the Pearson cross-correlation coefficient matrix ρ
into an identity matrix I as much as possible. The Pearson cross-correlation coefficient matrix ρ is calculated by column vectors from two branches. Note
that here we show the framework employing ResNet-50 as the backbone and images of University-1652 as inputs. When training on CVUSA, CVACT and
VIGOR, the two-branch backbone does not share weights.

of the ground-truth geo-tag y. When inference, we remove
the final linear classification layer and extract the intermediate
feature fk as the visual representation.

C. Dynamic Weighted Decorrelation Regularization

In this work, we introduce a dynamic weighted decorrelation
regularization (DWDR) to encourage the network to learn low-
redundancy visual embeddings. As shown in Figure 2, DWDR
is implemented based on a classic two-branch baseline [1].
The two-branch baseline harnesses location classification as
the pretext [1], [46] to conduct the cross-view geo-localization
task. During training, we employ the symmetric sampling
strategy to balance examples between different platforms in a
training batch. It is worth noting that the symmetric sampling
strategy is a by-product of DWDR.

The optimization objective of DWDR is the Pearson cross-
correlation coefficient matrix ρ between fk extracted from
images of different platforms. Given two batches of extracted
vectors f1 and f2 of size b×2048, according to Eq. 3, we can
gain the objective matrix ρ with the shape of 2048 × 2048,
where b denotes the batchsize. DWDR aims to spur the
network by regressing the objective matrix ρ into a sparse
matrix, i.e., an identity matrix. We employ Square Loss to
constrain the regression of each element. DWDR can be
written as:

LDWDR ≜
d∑

i=1

ω1 · (1− ρii)
2 + λ

d∑
i=1

d∑
j=1,j ̸=i

ω2 · ρ2ij ,

(8)
where λ is a hyper-parameter to balance the diagonal

and off-diagonal element weight, ρii refers to the diagonal

elements of the objective Pearson matrix ρ, and ρij denotes
off-diagonal elements. ρii is regressed to 1, which makes
visual embeddings of the same geo-tag invariant for different
platforms. ρij is regressed to 0 to make the visual embedding
channels independent from each other. ω1 and ω2 are two
dynamic weights to prevent the optimization plateau, which
depends on the regression score. In this way, the dynamic
weight adjusts the influence of the loss and adaptively pays
attention to the poorly-regressed elements during training.
Considering that each element of the Pearson matrix is in
[−1, 1], we set ω1 =

(
1−ρii

2

)γ1
, ω2 = |ρij |γ2 , |·| denotes

the absolute value. In this way, given non-negative focusing
parameters γ1 and γ2, we ensure ω1 ∈ [0, 1] and ω2 ∈ [0, 1].
For elements close to the regression result (well-regressed
elements), the assigned dynamic weight is near 0. Conversely,
for elements far from the regression target (poorly-regressed
elements), the assigned dynamic weight increases to 1.
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Fig. 3. A diagram of the symmetric sampling strategy.

Symmetric sampling strategy. In order to compute the
Pearson cross-correlation coefficient matrix, a necessary step
is to construct a training batch by acquiring different-platform
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images with same geo-tags (‘positive pairs’). Here we take the
University-1652 dataset [1] as an example. A satellite-view
image is randomly selected as an anchor to create a positive
pair with the corresponding drone-view image that shares the
same geo-tag, a process termed satellite-view based sampling.
Conversely, when the drone-view image serves as the anchor,
the method is referred to as drone-view based sampling. We
note that the image number of different platforms is usually
different due to the capturing difficulty. For example, we
can easily acquire multiple drone images while only having
one satellite image. If we apply the satellite-view based
sampling during training, it will miss sampling some drone-
view images. It is because every time we randomly sample
one image from 54 drone-view images with putting back. On
the other hand, if we apply the drone-view based sampling,
it will contain duplicate geo-tags within a mini-batch, which
repeatedly samples the same satellite image. Therefore, we
propose a symmetric sampling strategy (see Figure 3), which
combines the satellite-view based sampling and drone-view
based sampling. In particular, we sample two mini-batch by
the two strategies respectively and combine them together as
the new mini-batch to train the model. This combined strategy
ensures the model can “see” all the training data while keeping
the category sampling relatively balanced.

Discussion. The proposed method is similar to Barlow
Twins considering disentangling the correlation matrix, but is
different in the following aspects: First, Barlow Twins [43]
optimizes the cross-correlation matrix, while our method har-
nesses the Pearson cross-correlation coefficient matrix. The
Pearson matrix is preferable, since it normalizes the element
in a limited range of [-1,1], which unifies the element scale
within the matrix and prevents overflowing. Second, as shown
in Eq. 4, Barlow Twins accumulated the error along the
whole matrix ϕ. However, the dimension of ϕ is large, e.g.,
2048 × 2048. As training proceeds, the majority of elements
converge, and the network arrives at the plateau, since the
loss is accumulated by a vast of elements. The optimization
of the remaining minority elements is usually ignored. The
proposed DWDR also accumulated the error but with dynamic
weights for different elements in Eq. 8. We leverage the
Pearson matrix, which is normalized in the range [-1, 1], to
set the corresponding dynamic weights. The design also limits
dynamic weights in [0,1], preventing the weight overflow.
Therefore, DWDR can focus on the minority elements, even
when majority channels are converged. Compared with Barlow
Twins, DWDR encourages the network to make still correlated
channels independent throughout the training period.

Optimization. We optimize our network by jointly employ-
ing the instance loss and DWDR:

Ltotal = αLid + (1− α)LDWDR. (9)

The instance loss Lid forces different-platform images with
the same geo-tag to be close on the high-level features and
pushes mismatched images far apart. At the same time, DWDR
motivates the learned visual embeddings with independent
channels. Thus the network is able to extract more discrimi-
native features. α is a weight to control the importance of the
loss function and the regularization term.

IV. EXPERIMENT

We introduce four cross-view geo-localization datasets and
the evaluation protocol in Section IV-A. The implementation
detail is provided in Section IV-B. We carry out a series of
comparisons with state-of-the-art approaches in Section IV-C,
followed by ablation studies in Section IV-D. Finally, Sec-
tion IV-E visualizes the cross-view geo-localization results.

A. Datasets and Evaluation Protocol

We conduct experiments on four geo-localization datasets,
i.e., University-1652 [1], CVUSA [47], CVACT [17] and
VIGOR [48].

University-1652 [1] is a multi-view multi-source dataset,
including data from three different platforms, i.e., drones,
satellites and dash cams. As the name implies, this dataset
collects 1652 ordinary buildings of 72 universities around
the world. 701 of all 1652 buildings are separated into the
training set, and the other 951 builds constitute the testing
set. Therefore, build images in the training and testing set are
not overlapping. For each building, the dataset contains one
satellite-view image, 54 drone-view images and 3.38 ground-
view images on average. Since dash cams are hard to acquire
enough street-view images for some buildings, the dataset also
collects 21,099 common-view images from Google Image as
an extra training set. The dataset supports two new aerial-
view geo-localization tasks, i.e., drone-view target localization
(Drone → Satellite) and drone navigation (Satellite → Drone).

CVUSA [47] is a large-scale cross-view dataset, which
consists of images from two viewpoints, i.e., the ground view
and the satellite view. In the dataset, 35,532 ground-and-
satellite image pairs are employed for training, and 8,884
image pairs are provided for testing. Noteworthily, ground-
view images are the pattern of panoramas, and the orientation
of all ground and satellite images is aligned.

CVACT [17] is a similar dataset to CVUSA. For the
ground-to-satellite task, CVACT also contains 35,532 image
pairs for training. Different from CVUSA, CVACT provides a
validation set with 8,884 image pairs denoted as CVACT val.
Meanwhile, compared to CVUSA, CVACT possesses a larger
test set with 92,802 image pairs named CVACT test. When
evaluated in CVACT val, a query ground-view panorama
matches only one satellite image in the gallery. However, for
CVACT test, a panoramic query image may correspond to
several satellite images within 5 meters from the ground-truth
location.

VIGOR [48] considers the misalignment in spatial location
of ground-to-satellite cross-view geo-localization. Different
with one-to-one retrieval, VIGOR consists of 90,618 satellite
images and 105,214 ground panoramas, and one satellite
may against two ground panoramas. In evaluation, VIGOR
supports two application scenarios, i.e., same-area and cross-
area protocols. Satellite images in the same-area protocol are
invariant when training and testing, but are different when
executing the cross-area protocol.

We follow existing works [4], [18], [16] and mainly employ
CVACT val to evaluate our method when training on CVACT.
Besides, we only apply the symmetric sampling strategy in
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TABLE I
STATISTICS OF FOUR CROSS-VIEW DATASETS, INCLUDING THE IMAGE

NUMBER OF TRAINING AND TESTING SETS. THE LEFT AND RIGHT OF THE
ARROW (→) REFER TO THE QUERY AND GALLERY PLATFORMS,

RESPECTIVELY.

Dataset Training Testing
Drone Satellite Drone → Satellite Satellite → Drone

University-1652 [1] 37,854 701 37,855 951 701 51,355
Ground Satellite Ground → Satellite Satellite → Ground

CVUSA [47] 35,532 35,532 8,884 8,884 8,884 8,884
CVACT [17] 35,532 35,532 8,884 8,884 8,884 8,884
VIGOR [48](Same-Area) 52,609 90,618 52,605 90,618 90,618 52,605
VIGOR [48](Cross-Area) 51,520 44,055 53,694 46,563 46,563 53,694

TABLE II
COMPARISON WITH EXISTING RESULTS REPORTED ON UNIVERSITY-1652.
THE COMPARED METHOD ARE CATEGORIZED INTO THREE GROUPS. THE

FIRST GROUP CONSISTS OF BASELINE-RELATED METHODS WHICH
EMPLOY AVERAGE POOLING TO AGGREGATE FEATURE MAPS. THE
SECOND GROUP CONTAINS METHODS THAT APPLY CONTEXTUAL

INFORMATION. THE THIRD GROUP INCLUDES TRANSFORMER-BASED
METHODS. “M” INDICATES THE MARGIN OF THE TRIPLET LOSS. †

DENOTES THE INPUT IMAGE OF SIZE 384× 384. THE INPUT IMAGE SIZE
OF TWO TRANSFORMER-BASED METHODS AND OTHER CNN-BASED

METHODS ARE 224× 224 AND 256× 256, RESPECTIVELY. THE BEST
RESULTS ARE IN BOLD.

Method
University-1652

Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

Instance Loss (Baseline) [1] 57.09 61.88 73.89 58.73
Contrastive Loss [30] 52.39 57.44 63.91 52.24
Triplet Loss (M = 0.3) [49] 52.16 57.47 65.05 52.37
Triplet Loss (M = 0.5) [49] 51.23 56.40 62.77 51.29
Soft Margin Triplet Loss [34] 53.67 58.69 67.90 54.76
LCM† [21] 66.65 70.82 79.89 65.38
RK-Net [15] 66.13 70.23 80.17 65.76
Baseline [1] + Ours 69.77 73.73 81.46 70.45
LPN [4] 75.93 79.14 86.45 74.49
LPN + USAM [15] 77.60 80.55 86.59 75.96
PCL [50] 79.47 83.63 87.69 78.51
LPN [4] + Ours 81.51 84.11 88.30 79.38
Swin-B [23] 84.15 86.62 90.30 83.55
FSRA [22] 84.51 86.71 88.45 83.47
Swin-B [23] + Ours 86.41 88.41 91.30 86.02

University-1652 because there is an obvious imbalance of
training examples across different platforms, i.e., 1 satellite
image corresponds to 54 drone images (see Table I).

Evaluation protocol. In our experiments, the performance
of our method is evaluated by three metrics, i.e., Recall@K
(R@K), the average precision (AP) and the hit rate. R@K
refers to the proportion of true-matched candidates in the top-
K of the ranking list. The value of AP is measured by the area
under the Precision-Recall curve. The hit rate refers to the ratio
of correctly matched top-1 reference images to query images.
Higher scores of these three metrics denote better network
performance.

B. Implementation Details

Our method is performed based on a classic two-branch
baseline [1]. The baseline adopts a modified ResNet-50 [44]

pre-trained on ImageNet [51] to extract visual features. Specif-
ically, we remove the final classification layer of ResNet-
50 [44]. Besides, the stride of the second convolution layer and
the down-sample layer in the first bottleneck of the ResNet-
50 [44] stage4 is set from 2 to 1. The input image is resized
to 256×256, and the image augmentation consists of random
cropping, random horizontal flipping, and random rotation. We
employ stochastic gradient descent (SGD) with momentum 0.9
and weight decay 0.0005 to update model parameters. The
image number of each platform in a mini-batch is 16. The
initial learning rate is 0.001 for the modified ResNet-50 [44]
backbone and 0.01 for the classifier module. The dropout rate
in the classifier module is 0.75. In all datasets, we train our
models for 120 epochs, and the learning rate is decayed by
0.1 after 80 epochs. Also, except for the proposed DWDR,
we only adopt the instance loss for model optimization. There
are two trade-off parameters λ and α in the loss function.
We run a simple search and observe the better results for
λ = 1.3 × 10−3 and α = 0.9. Note that when using Swin-
B [23] and VGG16 [45] as backbones, λ = 2.0 × 10−3 and
λ = 3.9 × 10−3 are best choices, separately. During testing,
we deploy the Euclidean distance to compute the similarities
between the query and candidates. Our model is implemented
on Pytorch [52], and all experiments are conducted on a single
NVIDIA RTX 2080Ti GPU.

C. Comparison with Competitive Methods

Results on University-1652. As shown in Table II, we
compare our method with lots of competitive methods on
University-1652. The compared methods are divided into three
groups, i.e., baseline-related methods, methods harnessing
contextual information and Transformer-based methods. In
the first group, the first line reports results of our two-
branch baseline, i.e., “Instance Loss [1]”. We can observe
that “Baseline + Ours” substantially improves the baseline
performance. In the drone-view target localization task (Drone
→ Satellite), the accuracy of R@1 increases from 57.09% to
69.77% (+12.68%), and the value of AP raises from 61.88%
to 73.73% (+11.85%). In the drone navigation task (Satellite
→ Drone), the accuracy of R@1 goes up from 73.89% to
81.46% (+7.57%), and the value of AP increases from 58.73%
to 70.45% (+11.72%). Meanwhile, the performance of our
method also has surpassed other baseline-related methods.
In the second group, LPN [4] explicitly takes advantage of
contextual information during training. Some methods, e.g.,
“LPN + USAM [15]” and PCL [50], combined with LPN
have yielded better results, and we can also implement our
method based on LPN. Specifically, we re-implement LPN by
utilizing the symmetric sampling strategy to replace the origi-
nal random sampling and incorporating the dynamic weighted
decorrelation regularization during training. Compared with
results of LPN, “LPN + Ours” achieves 81.51% R@1 ac-
curacy (+5.58%) and 84.11% AP (+4.97%) on Drone →
Satellite and 88.30% R@1 accuracy (+1.85%) and 79.38%
AP (+4.89%) on Satellite → Drone. The feature expression
ability of Transformer is stronger than that of CNN, and
both Transformer-based methods [23], [22] obtain a better
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TABLE III
COMPARISON WITH PRIOR ART ON CVUSA AND CVACT. THE COMPARED METHODS ARE DIVIDED INTO 2 COLUMNS. COLUMN1: METHODS WITHOUT

THE POLAR TRANSFORM. COLUMN2: METHODS UTILIZING THE POLAR TRANSFORM. “POLAR TRANSFORM” IS THE BOUNDARY OF TWO GROUP
COLUMNS. ‡: THE METHOD IS IMPLEMENTED USING IMAGES PROCESSED BY THE POLAR TRANSFORM. ⋆: THE METHOD HARNESSES EXTRA

ORIENTATION INFORMATION AS INPUT. THE BEST RESULTS ARE IN BOLD.

Method Publication Backbone CVUSA CVACT val
R@1 R@5 R@10 R@Top1% R@1 R@5 R@10 R@Top1%

MCVPlaces [29] ICCV’15 AlexNet - - - 34.40 - - - -
Zhai [47] CVPR’17 VGG16 - - - 43.20 - - - -
Vo [33] ECCV’16 AlexNet - - - 63.70 - - - -
CVM-Net [34] CVPR’18 VGG16 18.80 44.42 57.47 91.54 20.15 45.00 56.87 87.57
Orientation⋆ [17] CVPR’19 VGG16 27.15 54.66 67.54 93.91 46.96 68.28 75.48 92.04
Zheng (Baseline) [1] MM’20 VGG16 43.91 66.38 74.58 91.78 31.20 53.64 63.00 85.27
Regmi [53] ICCV’19 X-Fork 48.75 - 81.27 95.98 - - - -
RKNet [15] TIP’22 USAM 52.50 - - 96.52 40.53 - - 89.12
Siam-FCANet [35] ICCV’19 ResNet-34 - - - 98.30 - - - -
CVFT [18] AAAI’20 VGG16 61.43 84.69 90.94 99.02 61.05 81.33 86.52 95.93
LPN [4] TCSVT’21 ResNet-50 85.79 95.38 96.98 99.41 79.99 90.63 92.56 97.03
LPN + USAM [15] TIP’22 ResNet-50 91.22 - - 99.67 82.02 - - 98.18

Polar Transform
SAFA [16] NIPS’19 VGG16 89.84 96.93 98.14 99.64 81.03 92.80 94.84 98.17
DSM [54] CVPR’20 VGG16 91.96 97.50 98.54 99.67 82.49 92.44 93.99 97.32
4SCIG [55] TGRS’24 VGG16 92.91 98.15 98.99 99.79 83.18 93.35 95.16 99.30
LPN‡ [4] TCSVT’21 ResNet-50 93.78 98.50 99.03 99.72 82.87 92.26 94.09 97.77
Baseline + Ours - VGG16 75.62 90.45 93.60 98.60 66.76 83.34 87.11 95.10
LPN‡ [4] + Ours - ResNet-50 94.33 98.54 99.09 99.80 83.73 92.78 94.53 97.78

performance than CNN-based methods. We further combine
our method with “Swin-B [23]”. “Swin-B” indicates the two-
branch baseline applying Swin-B as the backbone. “Swin-B +
Ours” on University-1652 achieves the state-of-the-art results,
i.e., 86.41% in R@1 accuracy and 88.41% in AP for Drone
→ Satellite and 91.30% in R@1 accuracy and 86.02% in AP
for Satellite → Drone.

Results on CVUSA and CVACT. Comparisons with other
competitive approaches on CVUSA and CVACT are summa-
rized in Table III. CVUSA and CVACT have a similar data
pattern, i.e., the satellite-platform images of aerial viewpoint
and the ground panoramas. The polar transform considers
the geometric correspondence of two-platform images and
transforms the aerial-view image to approximately align a
ground panorama at the pixel level. The aligned images help to
improve the performance of models. Depending on whether or
not the polar transform is harnessed, the compared method can
be divided into two columns. The first column reports methods
without using polar transform, and methods in the second
column employ the polar transform during training and testing.
Our method does not employ the polar transform. Experiments
on CVUSA and CVACT show phenomena similar to that on
University-1652. Our method first outperforms a dual-stream
baseline (i.e., the method of Zheng [1]) by a large margin,
i.e., 31.71% R@1 improvement on CVUSA and 35.56% R@1
raising on CVACT. At the same time, our method exceeds
most of existing methods in the first column. In particular,
our method obtains 75.62% R@1, 90.45% R@5, 93.60%
R@10, and 98.60% R@Top1% on CVUSA, and 66.76%
R@1, 83.34% R@5, 87.11% R@10, and 95.10% R@Top1%
on CVACT. In experiments of University-1652, we observe
that our method can combine with LPN [4] and achieve better
results. The same experiments are also carried out on CVUSA

and CVACT. There are two versions of LPN (i.e., LPN and
LPN‡) in Table III. LPN‡ applies the polar transform and has
achieved higher performance. We notice that our approach still
yields competitive results when complemented with the LPN‡.
For instance, “LPN‡ + Ours” boosts the R@1 accuracy from
93.78% to 94.33% on CVUSA and 82.87% to 83.73% on
CVACT.

Results on VIGOR. We conduct experiments on VIGOR
to further validate the applicability of our method. Ta-
ble IV presents six previous methods for comparisons with
our method. To ensure fairness, we report the accuracy of
TransGeo [56] without the generalization technology (ı.e.
ASAM [57]).The observation indicates that our method can
still significantly improve the performance of LPN and pushes
LPN to achieve competitive results. Specifically, under the
same-area protocols over VIGOR, ”LPN+Ours” goes up R@1
from 51.95% to 58.00% (+6.05%) and Hit Rate from 63.74%
to 69.38% (+5.64%). At the same time, in the cross-area
setting, R@1 and Hit Rate increase by 5.87% and 6.59%,
respectively.

The above experimental results on four cross-view geo-
localization datasets suggest two points. One is that our
method can be flexibly applied in different cross-view settings.
The other is that our method is able to encourage existing
approaches to mine more diverse patterns, yielding discrimi-
native features.

D. Ablation Studies
To further analyze our method, we design several ablation

studies. The ablation studies are mainly based on the drone-
view target localization (Drone → Satellite) and drone navi-
gation (Satellite → Drone) of University-1652 [1].

Analysis of parameters γ1 and γ2. The main contribution
of our paper is the proposed dynamic weighted decorrelation
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TABLE IV
COMPARISON WITH OTHER COMPETITIVE METHODS ON VIGOR. THE

BEST RESULTS ARE IN BOLD. ”SWIN-B” INDICATES EMPLOYING SWIN-B
AS THE BACKBONE. ”W/O ASAM” MEANS THE METHOD WITHOUT

ASAM.

Method R@1 R@5 Hit Rate
SAME
Siamese-VGG [58] 18.69 43.64 21.90
SAFA [16] 33.93 58.42 36.87
SAFA+Mining [48] 38.02 62.87 41.81
VIGOR [48] 41.07 65.81 44.71
LPN(Swin-B) [4] 51.95 81.06 63.74
TransGeo (w/o ASAM) [56] 52.65 78.29 59.60
LPN+Ours 58.00 84.47 69.38

CROSS
Siamese-VGG [58] 2.77 8.61 3.16
SAFA [16] 8.20 19.59 8.85
SAFA+Mining [48] 9.23 21.12 9.92
VIGOR [48] 11.00 23.56 11.64
LPN(Swin-B) [4] 12.62 27.81 13.45
TransGeo (w/o ASAM) [56] 13.30 36.20 14.50
LPN+Ours 18.49 37.51 20.04

TABLE V
ABLATION STUDY WITH DIFFERENT γ1 AND γ2 IN THE DYNAMIC

WEIGHTED DECORRELATION REGULARIZATION. BT REFERS TO BARLOW
TWINS [43].

Method γ1 γ2
Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

Baseline [1]+BT 0 0 67.91 71.99 80.17 68.03

Baseline [1]+Ours

0 1 66.83 71.01 77.89 68.01
1 0 67.57 71.62 78.03 67.93
1 1 69.77 73.73 81.46 70.45
2 2 69.40 73.33 80.88 70.05

LPN [4]+BT 0 0 80.93 83.60 86.02 78.33

LPN [4]+Ours

0 1 80.84 83.50 87.30 79.26
1 0 80.83 83.49 88.30 79.93
1 1 81.51 84.11 88.30 79.38
2 2 80.49 83.17 88.45 79.91

Swin-B [23]+BT 0 0 86.03 88.05 91.01 85.07

Swin-B [23]+Ours

0 1 85.94 88.00 91.01 85.33
1 0 86.07 88.09 90.30 85.68
1 1 86.41 88.41 91.30 86.02
2 2 85.54 87.73 90.58 85.65

regularization (DWDR). In DWDR, γ1 and γ2 are two key
parameters that flexibly adjust the rate at which well-regressed
elements of the Pearson cross-correlation coefficient matrix
are down-weighted. When γ1 = 0 and γ2 = 0, DWDR does
not apply two dynamic weights and can be viewed as Barlow
Twins [43]. We empirically tune γ1 and γ2, and the related
results are detailed in Table V. We first observe that applying
one dynamic weight, i.e., only γ1 = 1 or only γ2 = 1, achieves
similar results to Barlow Twins. The limited performance im-
provement reflects that ignoring poorly-regressed diagonal and
off-diagonal elements both induce the optimization plateau.
When both γ1 and γ2 are set to 1, i.e., using two dynamic
weights, we obtain the best results. Specifically, compared with
deploying Barlow Twins as regularization (“Baseline + BT”),
our method (“Baseline + Ours”) boosts R@1 from 67.91% to
69.77% (+1.86%) and AP from 71.99% to 73.73% (+1.74%)
on Drone → Satellite, and goes up R@1 from 80.17% to

TABLE VI
THE EXPLORATIONS OF DWDR ABOUT OPTIMIZING DIAGONAL AND

OFF-DIAGONAL REGULARIZATION TERMS. ” ✓” INDICATES THE
SELECTED REGULARIZATION TERM USED FOR OPTIMIZATION.

Method Diagonal Off-
diagonal

Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

Baseline+Ours

57.09 61.88 73.89 58.73
✓ 64.96 69.28 79.03 66.80

✓ 63.72 67.86 78.60 63.34
✓ ✓ 69.77 73.73 81.46 70.45

LPN+Ours

75.93 79.14 86.45 74.49
✓ 78.58 81.49 86.59 78.22

✓ 78.09 80.94 85.73 76.85
✓ ✓ 81.51 84.11 88.30 79.38

Swin-B+Ours

84.15 86.62 90.30 83.55
✓ 85.89 88.05 91.16 85.60

✓ 82.32 84.99 89.73 83.03
✓ ✓ 86.41 88.41 91.30 86.02

TABLE VII
SENSITIVITY ANALYSIS FOR SETTING DIFFERENT WEIGHT INTERVALS. β1

AND β2 DENOTE COEFFICIENTS USED TO ADJUST INTERVALS OF ω1 AND
ω2 , RESPECTIVELY.

Method β1 β2
Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

Baseline+Ours

1 1 69.77 73.73 81.46 70.45
2 1 66.10 70.26 77.60 67.02
1 2 69.05 72.96 80.46 68.82
2 2 67.45 71.61 79.17 67.63

LPN+Ours

1 1 81.51 84.11 88.30 79.38
2 1 80.17 82.91 87.45 79.61
1 2 80.86 83.53 88.59 80.46
2 2 80.33 83.05 86.73 79.15

Swin-B+Ours

1 1 86.41 88.41 91.30 86.02
2 1 85.11 87.29 89.02 84.49
1 2 86.16 88.26 91.16 85.86
2 2 85.85 87.98 90.01 85.28

81.46% (+1.29%) and AP from 68.03% to 70.45% (+2.42%)
on Satellite → Drone. When γ1 = 2 and γ2 = 2, the perfor-
mance gains slightly degrades. A reasonable speculation is that
large focusing parameters γ1 and γ2 cause the importance of
poorly-regressed elements in the optimization process to be
excessively reduced as well. To further verify the robustness
of selected parameters, we conduct the same experiments in
“LPN [4] + Ours” and “Swin-B [23] + Ours” and find the
same conclusion. That is, when both γ1 and γ2 are set to
1, models achieve competitive results. Therefore, we choose
γ1 = 1 and γ2 = 1 as default focusing parameters of DWDR.
All three groups of experiments also support that DWDR is
more effective than Barlow Twins for motivating networks to
learn low-redundancy visual embeddings.

Effect of diagonal and off-diagonal regularization terms.
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As shown in Eq. 8, DWDR consists of the diagonal and
off-diagonal regularization terms. The diagonal regularization
term boosts the positive linear correlation between two visual
embeddings with the same geo-tag, and the off-diagonal
regularization term tends to minimize redundancy among
embedding channels. Table VI recapitulates the results by
applying different regularization terms to three methods. First,
applying either the diagonal or the off-diagonal regularization
term alone yields competitive results compared to utilizing
neither. We then observe that the results obtained by inde-
pendently harnessing two regularization terms are close and
much lower than the method of applying both regularization
terms jointly. The experiments reveal two points. One is that
the diagonal and off-diagonal regularization terms are equally
important and can be deployed separately to improve model
performance. The other point is that two regularization terms
can complement each other and further facilitate the extraction
of discriminative features when used together.

Effect of different weight intervals. The default interval
of our dynamic weights is 0 to 1. We set β1ω1 ∈ [0, β1] and
β2ω2 ∈ [0, β2] to study the sensitivity of utilizing different
weight intervals. β1 and β2 are two coefficients that determine
the maximum right boundary of the dynamic weight. We
roughly select four sets of values and conduct experiments on
three methods. Two observations can be found in Table VII.
First, we achieve the best performance in the default condition
(i.e., β1 = 1 and β2 = 1). In addition, the model accuracy is
almost unchanged when only β2 = 2 but decreases slightly
when β1 = 2. The experimental results show that ω1 is more
sensitive to the weight interval. A main factor is the longer
regression distance for diagonal elements during optimization.
When the dynamic weight is changed, the loss generated by
the diagonal regularization term fluctuates more and destroys
the optimization balance of the training.

Effect of our sampling strategy and DWDR. Our sym-
metric sampling strategy is a combination of the drone-view
based sampling and the satellite-view based sampling. To
discuss the effectiveness of our sampling strategy, we conduct
three groups of experiments under the condition of only
changing the sampling strategy. Meanwhile, in each group
of experiments, we study the effectiveness of DWDR. The
experimental results are shown in Table VIII. We observe first
that utilizing DWDR alone does not give comparable results to
the baseline (“Instance Loss [1]”) shown in Table II. However,
when applied in conjunction with Instance Loss, DWDR sig-
nificantly improves the performance of the network, regardless
of the sampling strategy. Experiments within each group verify
from the side that DWDR concentrates more on the redundant
channels of the embedding itself rather than the distance
between cross-view embeddings. Second, when only Instance
Loss is harnessed, the drone-view based and the satellite-
view based sampling acquire similar results to the baseline
(“Instance Loss”) applying random sampling. In contrast, the
symmetric sampling strategy obtains the best geo-localization
accuracy. Furthermore, the symmetric sampling strategy is
also the most competitive in the other two experimental
settings, i.e., DWDR alone and Instance Loss plus DWDR.
The significant performance increment demonstrates that the

TABLE VIII
EFFECT OF THE SYMMETRIC SAMPLING STRATEGY AND THE DYNAMIC

WEIGHTED DECORRELATION REGULARIZATION (DWDR).

Method Instance
Loss DWDR

Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

Drone-view
based sampling

✓ 60.86 65.56 73.89 59.05
✓ 22.61 27.84 35.38 20.98

✓ ✓ 66.08 70.22 77.60 65.48

Satellite-view
based sampling

✓ 58.54 63.10 73.61 58.49
✓ 24.25 29.37 39.09 22.83

✓ ✓ 65.06 69.16 76.46 65.27

The symmetric
sampling strategy

(Ours)

✓ 64.74 68.96 77.75 64.32
✓ 34.38 40.02 50.07 34.28

✓ ✓ 69.77 73.73 81.46 70.45

symmetric sampling strategy as a by-product is effective.
Effect of the dimension of visual embeddings. We deploy

the final visual embeddings with different dimensions in geo-
localization to investigate the effect of embedding dimensions
on retrieval accuracy. The experimental results of the baseline
and “Baseline + Ours” are shown in Table IX. We observe that
with the increment of the dimension, both the baseline [1]
and “Baseline + Ours” have a persistent improvement since
the visual embedding possesses more information capacity.
However, the performance of the two methods encounters
the bottleneck when the feature dimension is 512. As the
dimension of the feature increases to 1024, the performance
of the baseline decreases significantly, and the performance
of “Baseline + Ours” tends to stabilize. The experimental
results reflect two aspects from the side. One is that features
with too high dimensions are prone to redundant channels,
which compromise the geo-localization accuracy of models.
The other is that our method can encourage networks to learn
low-redundancy embeddings and improve the robustness of the
model. In addition, as shown in Figure 4, we notice that when
the dimension raises from 64 to 128, the baseline achieves
a higher growth rate than “Baseline + Ours”. The short-
dimensional features with small information capacity limit the
performance of models. We speculate that our method allows
the model to include more primary discriminative patterns in
the limited feature dimension to mitigate the negative effects of
insufficient information capacity. Therefore, when the feature
dimension increases, our method produces fewer performance
fluctuations.

Effect of DWDR under different loss functions. Our
baseline applies the instance loss [36], [37] to optimize the
network while other loss functions are available. The triplet
loss and the soft margin triplet loss are broadly utilized
in previous works [34], [17], [18], [33]. We also evaluate
our DWDR by deploying baselines adopting these two loss
functions. The margin value of the triplet loss is 0.3, and
experimental results are shown in Table X. We notice that
both baselines combined with DWDR gain improved retrieval
accuracy on the “Drone → Satellite” task and the “Satellite
→ Drone” task of University-1652.

Effect of the intra-view DWDR. Our method applies the
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TABLE IX
ABLATION STUDY OF CROSS-VIEW GEO-LOCALIZATION APPLYING VISUAL

FEATURES WITH DIFFERENT DIMENSIONS. “DIM” DENOTES THE
DIMENSION OF FEATURES.

Method Dim Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

Baseline [1]
(Instance Loss)

64 49.20 54.36 62.91 49.68
128 56.76 61.74 72.04 58.14
256 57.26 62.17 73.18 58.70
512 57.09 61.88 73.89 58.73

1024 54.20 59.20 68.33 55.37

Baseline [1]+Ours

64 60.37 65.03 72.90 60.31
128 63.51 68.05 77.03 64.57
256 68.71 72.72 78.89 68.44
512 69.77 73.73 81.46 70.45

1024 70.55 74.56 80.60 70.51
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(a) Drone -> Satellite (b) Satellite -> Drone

Fig. 4. Impact of the dimension of features. The R@1 accuracy between the
baseline and our method is compared. The red line refers to the baseline [1],
and our method is shown using the blue line. (a) The drone-view target
localization task (Drone → Satellite). (b) The drone navigation task (Satellite
→ Drone). When the feature dimension changes from 128 to 64, the
performance of our method drops less than the baseline.

cross-view DWDR, in which the Pearson cross-correlation
coefficient matrix is computed employing cross-view im-
ages. The intra-view DWDR means that the Pearson cross-
correlation coefficient matrix of DWDR is calculated employ-
ing two distorted images from the same platform generated
by different data augmentations. In experiments, the method
only utilizing the symmetric sampling strategy is treated as the
baseline, and the comparison results are shown in Table XI. We

TABLE X
ABLATION STUDY OF DWDR UNDER DIFFERENT LOSS FUNCTIONS. “M”

DENOTES THE MARGIN OF THE TRIPLET LOSS.

Method
University-1652

Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

Triplet Loss (M = 0.3) [49] 52.16 57.47 63.91 52.24
Soft Margin Triplet Loss [34] 53.67 58.69 67.90 54.76
Triplet Loss (M = 0.3) + DWDR 54.14 59.28 67.90 54.76
Soft Margin Triplet Loss + DWDR 57.75 62.58 69.33 57.46

TABLE XI
ABLATION STUDY OF THE SYMMETRIC SAMPLING STRATEGY COMBINED

WITH DIFFERENT DWDR.

Method
University-1652

Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

Symmetric sampling (Baseline) 64.74 68.96 77.75 64.32
+ Intra-view DWDR 65.31 69.57 79.17 65.74
+ Cross-view DWDR 69.77 73.73 81.46 70.45
+ Intra & Cross-view DWDR 69.81 73.68 82.45 70.86

observe that the baseline combined with the intra-view DWDR
gains a slight increment. Although the intra-view DWDR
also encourages the network to learn independent embedding
channels, our cross-view DWDR significantly outperforms
applying the intra-view DWDR. It is because the cross-view
DWDR is aligned with the cross-view retrieval test setting,
which considers embeddings from different platforms for the
geo-localization task. It also explains the limited performance
increase of applying both intra-view and cross-view DWDR,
which relies on the cross-view DWDR.

E. Qualitative Results

We visualize some heatmaps generated by the baseline and
our method as an extra qualitative evaluation. Figure 5 shows
the acquired heatmaps in the drone and satellite platforms
of University-1652. Images in University-1652 possess an
obvious geographic target. Compared with the baseline [1], our
method activates a wider range of geographic target regions. In
addition, we show some retrieval results on different datasets
(see Figure 6). University-1652 supports two tasks. In the
drone-view target localization task, the drone-platform image
is the query, and in the drone navigation task, the satellite-
platform image is the query. The retrieval results of two tasks
are shown in Figure 6 (I) and (II). Figure 6 (III) and (IV) show
the retrieval results of the ground-to-satellite localization task
on CVUSA and CVACT. Given a randomly selected test query,
we notice that the proposed method has successfully retrieved
the most relevant results from the candidate gallery.

V. CONCLUSION

In this paper, we propose a dynamic weighted decorrela-
tion regularization (DWDR) to achieve the cross-view geo-

Inputs Baseline Ours Inputs Baseline Ours

D
rone

Satellite

University-1652

Fig. 5. Visualization of heatmaps. Heatmaps are produced by the baseline [1]
and ours on different platforms of University-1652, i.e., the drone platform
and the satellite platform.
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Drone Satellite (R@1 R@5)

Ⅰ. University-1652 (Drone Localization)

Satellite Drone (R@1 R@5)

Ⅱ. University-1652 (Drone Navigation) 

Ground Satellite (R@1 R@3)

Ⅲ. CVUSA (Localization) 

True-Matched Images False-Matched Images

Ground Satellite (R@1 R@3)

IV. CVACT (Localization) 

Fig. 6. Qualitative image retrieval results in different datasets. (I) and
(II) show Top-5 retrieval results on University-1652. Different query images
indicate the different tasks. (I) is the drone-view target localization task, and
(II) is the drone navigation task. (III) and (IV) exhibit Top-3 retrieval results
of geographic localization on CVUSA and CVACT, respectively. The true
matches are in yellow boxes, and the false matches are highlighted by blue
boxes.

localization. DWDR reduces the redundancy of visual em-
beddings by motivating the network to learn independent em-
bedding channels. Specifically, DWDR sets dynamic weights
to focus on the poorly-regressed elements when constraining
the objective matrix to be as close as possible to the identity
matrix. As a by-product of DWDR, the cross-view symmetric
sampling strategy is introduced to balance the example number
from different platforms in a training batch. The extensive
experiments on four datasets, i.e., University-1652, CVUSA,
CVACT and VIGOR, demonstrate that our method can learn
discriminative embeddings, which significantly improve the
retrieval accuracy. Moreover, our method also acquires com-

petitive results with the extremely short feature.
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