

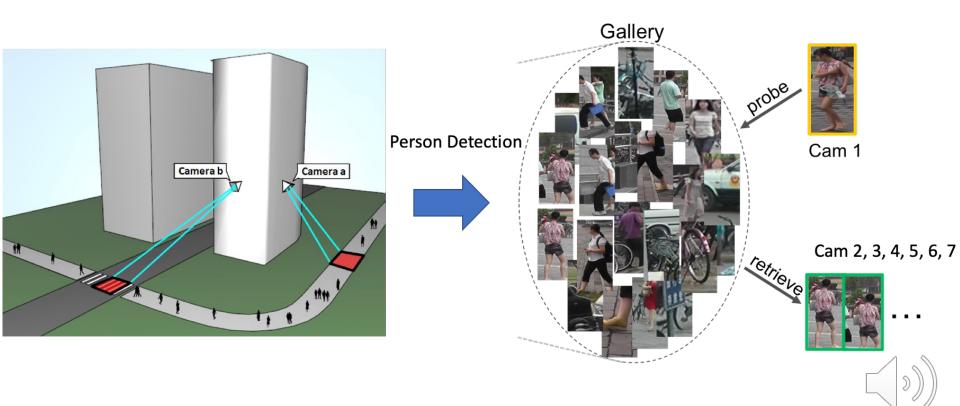
Pedestrian Alignment Network for Large-scale Person Re-Identification

Zhedong Zheng¹, Liang Zheng² and Yi Yang¹

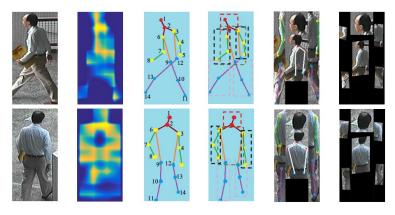
¹ University of Technology Sydney, Australia

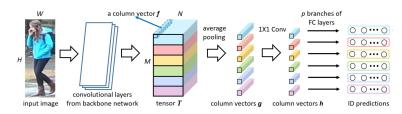
² Australian National University, Australia T-CSVT vol. 29(10), pp. 3037 - 3045. 2019

Outlines

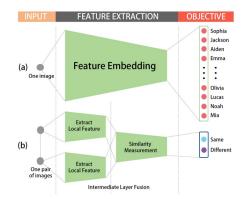

- ☐ Problem Background
- ☐ Existing Methods
- ☐ Challenges
- ☐ Our Method & Contributions
- **□** Experiments
- ☐ Conclusion and Academic Impacts

Problem Background


- ☐ Person re-identification (re-id) is to find the person of interest from different camera views.
- ☐ The emergence of this task can be attributed to 1) the increasing demand of public safety and 2) the widespread large camera networks in public space.


Existing Methods

- ☐ Structure Information
 - Part Alignment in the Pixel Level


Pose-driven CNN(Su et al., CVPR2017)

Part Alignment in the Feature Level

PCB: Part-based Convolutional Baseline (Sun et al., ECCV2018)

- ☐ Semantic Information
 - Discriminative Losses

Verification + Identification (Zheng et al., TOMM 2017)

Middle-level Features

A young man wear a yellow shirt, black pants, and a hat without a bag

> A young woman wear a blue shirt, black pants, and a bag without a hat

Improving reid via Pedestrian Attribute (Lin et al., Pattern Recognition 19)

Challenges

☐ However, one problem remains. In practice, person re-ID usually adopts automatic detectors to obtain cropped pedestrian images.

Is Input Pedestrian Image Good for Training?

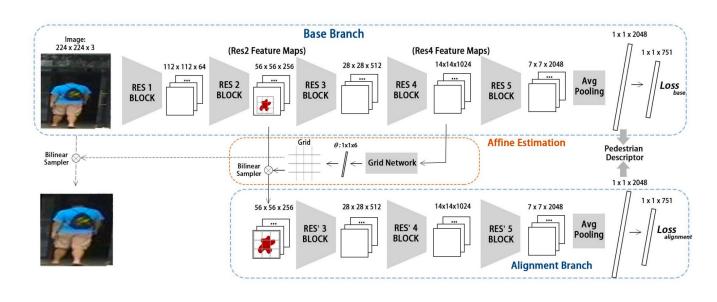
Excessive Background

Part Missing

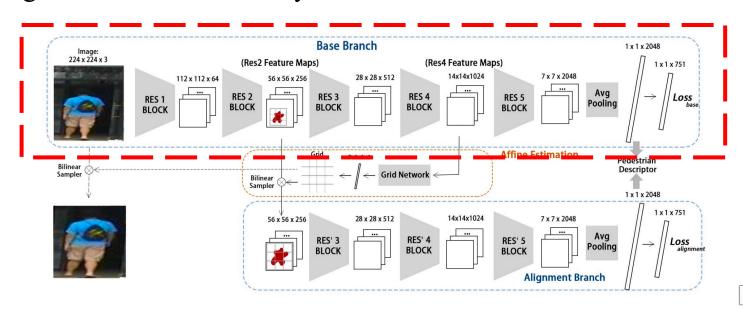
Contribution

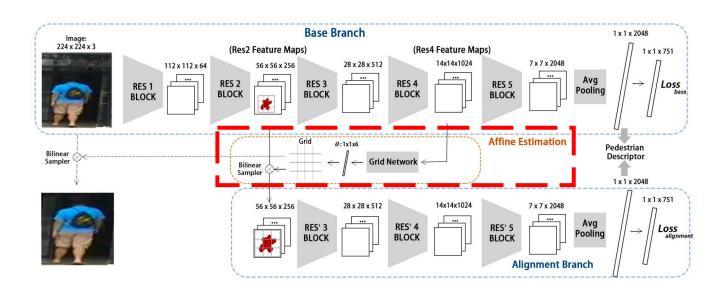
□We propose the pedestrian alignment network (PAN), which simultaneously aligns pedestrians within images and learns pedestrian descriptors. It addresses the misdetection problem and representation learning together, and improves the person re-ID accuracy without extra annotations.

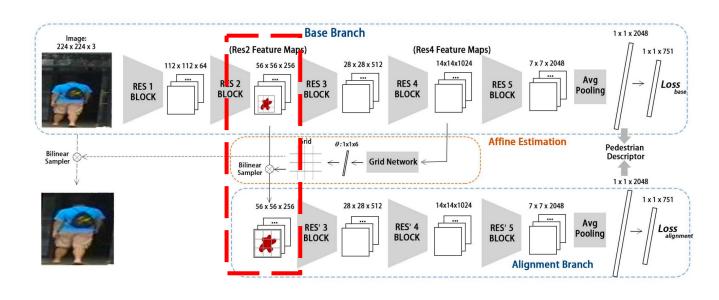
Align the off-centered object in images.

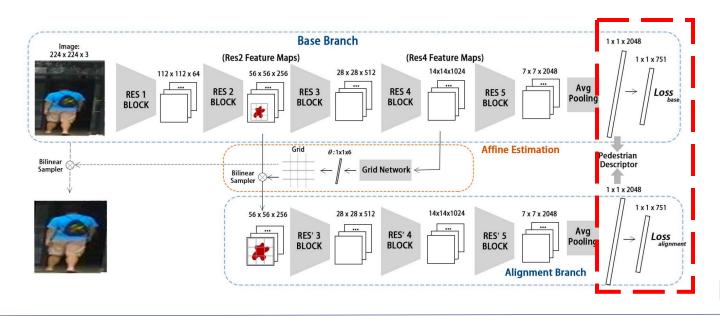

Better Alignment Better Representation

Find the most informative visual cues.


- ☐ Architecture of the pedestrian alignment network (PAN)
- **Base Branch**
 - Original Image → Identity Label
- > Affine Estimation
 - Feature Maps → Affine Grid
- > Alignment Branch
 - Aligned Features → Identity Label


- ☐ Architecture of the pedestrian alignment network (PAN)
- **Base Branch**
 - Original Image → Identity Label
- > Affine Estimation
 - Feature Maps → Affine Grid
- Alignment Branch
 - Aligned Features → Identity Label


- ☐ Architecture of the pedestrian alignment network (PAN)
- Base Branch
 - Original Image → Identity Label
- Affine Estimation
 - Feature Maps → Affine Grid
- > Alignment Branch
 - Aligned Features → Identity Label


- ☐ Architecture of the pedestrian alignment network (PAN)
- Base Branch
 - Original Image → Identity Label
- > Affine Estimation
 - Feature Maps → Affine Grid
- > Alignment Branch
 - Aligned Features → Identity Label

- ☐ Architecture of the pedestrian alignment network (PAN)
- Base Branch
 - Original Image → Identity Label
- Affine Estimation
 - Feature Maps → Affine Grid
- > Alignment Branch
 - Aligned Features → Identity Label

Quantitative Experiments

☐ Datasets:

- Market-1501
- CUHK03-NP
- DukeMTMC-reID

☐ Comparisons

TABLE II

RANK@1 ACCURACY (%) AND mAP (%) ON MARKET-1501. - THE RESPECTIVE PAPERS USE HAND-CRAFTED FEATURE, * THE RESPECTIVE PAPERS USE THEIR OWN SPECIFIC NETWORK

Methods	Backbone	Single	Query	Multi.	Query	
Methods	Backbone	Rank@	1 mAP	Rank@	1 mAP	
BoW+kissme [9]	r -	44.42	20.76	-	-	
MST CNN [63]	*	45.1	-	55.4	-	
FisherNet [64]	*	48.15	29.94	-	-	
SL [65]	-	51.90	26.35	-	-	
S-LSTM [33]	*	-	-	61.6	35.3	
DNS [66]	-	55.43	29.87	71.56	46.03	
Gated Reid [34]	*	65.88	39.55	76.04	48.45	
CADL [67]	*	73.84	47.11	80.85	55.58	
SOMAnet [68]	*	73.87	47.89	81.29	56.98	
PIE [53]	Res50	78.65	53.87	-	-	
VerifIdentif. [44]	Res50	79.51	59.87	85.84	70.33	
DCF [69]	*	80.31	57.53	86.79	66.70	
DPR [70]	GoogLe	81.0	63.4	-	-	
SSM [71]	Res50	82.21	68.80	88.18	76.18	
SVDNet [72]	Res50	82.3	62.1	-	_	
GAN+re-rank [47]	Res50	83.97	66.07	88.42	76.10	
Basel.	Res50	80.17	59.14	87.41	72.05	
Ours	Res50	82.81	63.35	88.18	71.72	
Ours+re-rank	Res50	85.78	76.56	89.79	83.79	
Ours (GAN)	Res50	86.67	69.33	90.88	76.32	
Ours (GAN)+re-rank	Res50	88.57	81.53	91.45	87.44	

TABLE IV

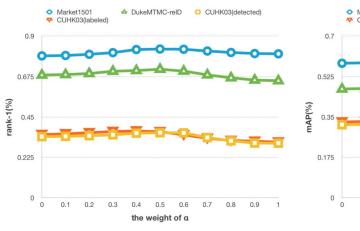
RANK@1 ACCURACY (%) AND mAP (%) ON CUHK03-NP.
WE EVALUATE THE PROPOSED METHOD ON THE
"DETECTED" AND "LABELED" SUBSETS ACCORDING
TO THE NEW PROTOCOL IN [19]. - THE RESPECTIVE
PAPERS USE HAND-CRAFTED FEATURE

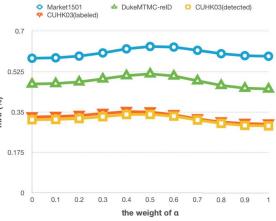
Methods	Back	Dete	cted	Labeled		
Wethous	bone	Rank@	1 mAP	Rank@1	mAP	
BOW+XQDA [9]	-	6.36	6.39	7.93	7.29	
IDE [1]	Res50	21.3	19.7	22.2	21.0	
IDE +DaF [74]	Res50	26.4	30.0	27.5	31.5	
IDE+XQDA [19]	Res50	31.1	28.2	32.0	29.6	
IDE+XQDA+re-rank [19]	Res50	34.7	37.4	38.1	40.3	
Basel.	Res50	30.5	29.0	31.1	29.8	
Ours	Res50	36.3	34.0	36.9	35.0	
Ours+re-rank	Res50	41.9	43.8	43.9	45.8	

TABLE V

RANK@1 ACCURACY (%) AND mAP (%) ON DukeMTMC-reID.
WE FOLLOW THE EVALUATION PROTOCOL IN [47]. - THE
RESPECTIVE PAPERS USE HAND-CRAFTED FEATURE

Methods	Backbone	Rank@1	mAP
BoW+kissme [9]	-	25.13	12.17
LOMO+XQDA [16]	-	30.75	17.04
Gan [47]	Res50	67.68	47.13
VerifIdentif. [44]	Res50	68.9	49.3
APR [43]	Res50	70.69	51.88
Basel. [47]	Res50	65.22	44.99
Ours	Res50	71.59	51.51
Ours+re-rank	Res50	75.94	66.74

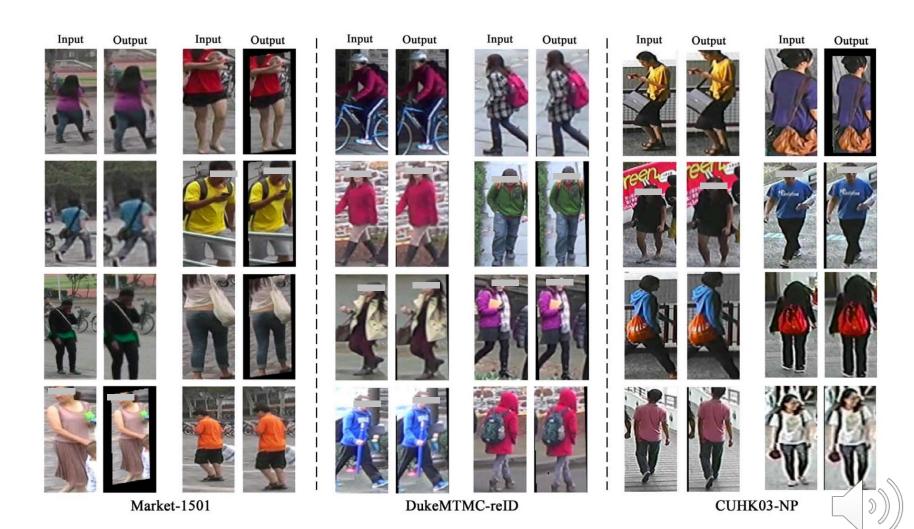

Ablation Studies


- ☐ Base Branch vs. Alignment Branch
 - Alignment Branch works well on the dataset with much detection noise.
 - Base Branch and Alignment Branch are complementary.

Methods	dim	Market-1501			CUHK03-NP (detected)			CUHK03-NP (labeled)				DukeMTMC-reID					
Methods	dilli	1	5	20	mAP	1	5	20	mAP	1	5	20	mAP	1	5	20	mAP
				96.59													
Alignment	2,048	79.01	90.86	96.14	58.27	34.14	54.50	72.71	31.71	35.29	53.64	72.43	32.90	68.36	81.37	88.64	47.14
PAN	4,096	82.81	93.53	97.06	63.35	36.29	55.50	75.07	34.00	36.86	56.86	75.14	35.03	71.59	83.89	90.62	51.51

☐ Hyper-parameter

alpha selection



Qualitative Experiments

☐ Alignment Results:

No extra location annotations are used in our work.

Conclusion and Academic Impacts

- □ Upon publishing (2018, early access), the paper reported ~5% improvement in rank-1 accuracy over the state-of-the-art methods on three benchmarks. After that, the proposed system has become a must-be-compared one in the community, and the idea of end-to-end alignment has been adopted in the highest-performing object re-identification systems. This paper has been cited for ~290 times according to Google Scholar.
- ☐ Besides, the winning solution of the AICity Challenge (in conjunction with CVPR 2020) used a mostly identical module as this paper, which outperformed the second-best team by a large margin (6% in mean average precision).

Rank	Team ID	Team Name	Score
1	73	Baidu-UTS	0.8413
2	42	RuiYanAl	0.7810
3	39	DMT	0.7322
4	36	IOSB-VeRi	0.6899
5	30	Bestlmage	0.6684
6	44	BeBetter	0.6683

Zheng Z, Jiang M, Wang Z, et al. Going beyond real data: A robust visual representation for vehicle reidentification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020: 598-599.

Thanks a lot for your attention.

Our code is available at

https://github.com/layumi/Pedestrian Alignment

