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Abstract

Unsupervised 3D object detection aims to identify objects of
interest from unlabeled raw data, such as LiDAR points. Re-
cent approaches usually adopt pseudo 3D bounding boxes
(3D bboxes) from clustering algorithm to initialize the
model training. However, pseudo bboxes inevitably contain
noise, and such inaccuracies accumulate to the final model,
compromising the performance. Therefore, in an attempt to
mitigate the negative impact of inaccurate pseudo bboxes,
we introduce a new uncertainty-aware framework for un-
supervised 3D object detection, dubbed UA3D. In particu-
lar, our method consists of two phases: uncertainty estima-
tion and uncertainty regularization. (1) In the uncertainty
estimation phase, we incorporate an extra auxiliary detec-
tion branch alongside the original primary detector. The
prediction disparity between the primary and auxiliary de-
tectors could reflect fine-grained uncertainty at the box co-
ordinate level. (2) Based on the assessed uncertainty, we
adaptively adjust the weight of every 3D bbox coordinate
via uncertainty regularization, refining the training process
on pseudo bboxes. For pseudo bbox coordinate with high
uncertainty, we assign a relatively low loss weight. Ex-
tensive experiments verify that UA3D is robust against the
noisy pseudo bboxes, yielding substantial improvements on
nuScenes and Lyft compared to existing approaches, with
increases of +3.9% APBEV and +1.5% AP3D on nuScenes,
and +2.3% APBEV and +1.8% AP3D on Lyft.

1. Introduction
Unsupervised 3D object detection [20, 24, 41], given a
3D point cloud, is to identify objects of interest accord-
ing to the point locations without relying on manual an-
notations [43, 50, 53, 54], largely saving extra costs and
time [25]. The applications span various domains, includ-
ing autonomous driving [8, 32, 51, 58], traffic manage-
ment [26, 34], and pedestrian safety [5, 6]. Existing unsu-
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Figure 1. Our Motivation. Pseudo boxes generated by clustering-
based algorithms often contain noise (comparing (a) and (b)). Pre-
vious methods [50, 53, 54] directly utilize those noisy pseudo
boxes to train detection model, leading to suboptimal perfor-
mance (see (c)). In contrast, we introduce uncertainty-aware
pseudo boxes by assigning coordinate-level uncertainty. High un-
certainty is assigned to inaccurate coordinates, and during train-
ing, the weights of these uncertain coordinates are adaptively
reduced. This approach mitigates the negative impact of noisy
pseudo boxes, yielding robust detection (comparing (c) and (d)).

pervised 3D object detection works generally follow a self-
paced paradigm [54], i.e., estimating some initial pseudo
boxes and then iteratively updating both the pseudo label
sets and the model weights [50, 52]. However, we observe
that the initial pseudo boxes inevitably contain misalign-
ments (see Fig. 1 (a, b)). The accuracy of the pseudo boxes
is significantly affected by the inherent characteristics of Li-
DAR point clouds, such as point sparsity, object proximity,
and unclear boundaries between foreground objects and the
background. In particular, large and nearby objects are usu-
ally easy to detect, and thus most estimated pseudo bboxes
are accurate. In contrast, most small, distant objects with
less sensor information pose inaccurate pseudo bboxes at
the beginning. Without rectifying such erroneous pseudo
bboxes, the wrong predictions can be accumulated, consis-
tently compromising self-paced training (see Fig. 1 (c)).



Figure 2. Statistical Overview of Our Estimated Uncertainty
on nuScenes. Generally, UA3D reliably assigns low uncertainty
to accurate pseudo boxes and high uncertainty for noisy ones. For
illustration, we average coordinate-level uncertainty to box level.

To mitigate the adverse impacts of inaccurate pseudo
bboxes during iterative updates, we introduce Uncertainty-
Aware bounding boxes for unsupervised 3D object detec-
tion (UA3D). As the name implies, we explicitly conduct
the uncertainty estimation [7, 12, 16] for every pseudo bbox
quality (see Fig. 2). The proposed framework consists of
two phases: uncertainty estimation and uncertainty regular-
ization. (1) In the uncertainty estimation phase, we intro-
duce an auxiliary branch into the existing detection model,
attaching to an intermediate layer of the 3D feature ex-
traction backbone. This branch differs from the original
primary detection branch in terms of the number of chan-
nels. The uncertainty is assessed by comparing the box
predictions from primary and auxiliary detectors. Notably,
fine-grained uncertainty estimation on coordinate level is
achieved by comparing 7 box coordinates of predictions,
i.e., position (x, y, z coordinates), length, width, height,
and rotation, from two detectors. The intuition is that if
the pseudo bboxes are with high uncertainty, two detec-
tion branches will lead to prediction discrepancy dur-
ing training procedure. We could explicitly leverage such
discrepancy as the uncertainty indicator. (2) In the uncer-
tainty regularization phase, we adjust the loss weights of
different pseudo box coordinates based on the estimated
uncertainty during iterative training process. Specifically,
with the obtained coordinate-level certainty, the sub-loss
computed from each box coordinate is divided by its cor-
responding uncertainty. Meanwhile, to prevent the model
from predicting high uncertainty for all samples, the uncer-
tainty value is also added to the sub-loss for each coordi-
nate. This strategy effectively regularizes the iterative train-
ing process from noisy pseudo boxes on coordinate level
(see Fig. 1 (d)). For example, if a pseudo box is imprecise
in its length but accurate in other coordinates, uncertainty is
elevated only for length, thereby reducing loss for that spe-
cific coordinate. Quantitative experiments on nuScenes [2]
and Lyft [11] validate effectiveness of our method, which
consistently outperforms existing approaches. Qualitative
analyses reveal that our model generates robust box esti-
mations and achieves higher recall on challenging samples.

Furthermore, uncertainty visualization confirms the corre-
lation between high estimated uncertainty and inaccurate
pseudo box coordinates. Our contributions are:
• To mitigate negative effects of inaccurate pseudo boxes

for unsupervised 3D object detection, we introduce fine-
grained uncertainty estimation to assess the quality of
pseudo boxes in a learnable manner. Following this, we
leverage the estimated uncertainty to regularize the iter-
ative training process, realizing the coordinate-level ad-
justment in optimization.

• Quantitative experiments on nuScenes [2] and Lyft [11]
validate the efficacy of our uncertainty-aware framework,
yielding consistent improvements of 3.9% in APBEV and
1.5% in AP3D on nuScenes, and 2.3% in APBEV and
1.8% in AP3D on Lyft, compared with existing methods.
Qualitative analysis further verifies that our uncertainty
estimation successfully identifies inaccuracies in pseudo
bounding boxes.

2. Methodology
2.1. Fine-Grained Uncertainty Estimation
Our approach of uncertainty estimation employs an auxil-
iary detector architecture (see Fig. 3). Typically, 3D object
detection models consist of 3D backbone extracting fea-
tures from point clouds, and 3D detection heads to generate
predicted 3D boxes from these features. We introduce an
additional 3D detection branch appended to an intermedi-
ate layer of the feature extraction backbone. The auxiliary
branch mirrors the structure of original branch but differs in
channel configuration. We refer to this branch as the auxil-
iary detector and the original branch is termed the primary
detector. We estimate uncertainty as the prediction differ-
ence between these two detectors, which can be considered
as the degree of disagreement between two different minds.
In practice, we use the dense outputs from both detectors,
which provide point-wise box predictions across the entire
point cloud. For uncertainty estimation, we calculate the
ℓ1 difference between the point-wise predicted boxes of the
primary and auxiliary detectors. This difference is com-
puted at the coordinate level to quantify fine-grained un-
certainty:

∆x = |xp − xa|,∆y = |yp − ya|,∆z = |zp − za|,
∆l = |lp − la|,∆w = |wp −wa|,∆h = |hp − ha|,
∆θ = |θp − θa|,

(1)
where xp,yp, zp, lp,wp,hp,θp ∈ Rn×1 refer to dif-
ferent coordinate vectors of primary detector dense pre-
diction, namely x, y, z for 3D position, length, width,
height, and orientation, xa,ya, za, la,wa,ha,θa ∈
Rn×1 denote coordinate vectors of auxiliary detector
dense prediction, ∆x,∆y,∆z,∆l,∆w,∆h,∆θ ∈ Rn×1
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Figure 3. Overall Pipeline. Given an input point cloud, an auxiliary detector predicts the bounding boxes B̂a concurrently with the primary
detector predictions B̂p. We leverage the discrepancy between the two detector predictions as the uncertainty indicator U . Specifically,
high coordinate-level uncertainty is assigned to inaccurate pseudo box coordinates. For uncertainty regularization, the original detection
loss is rectified by the estimated uncertainty as Lu

p and Lu
a , reducing the weight of inaccurate pseudo boxes on coordinate level. Note: SA

refers to Set Abstraction, and FP refers to Feature Propagation. For uncertainty visualization, purple box represents the uncertainty of
length, width, and height, i.e., ∆l, ∆w, and ∆h; purple orthogonal lines indicate the uncertainty of the x, y, and z positions, i.e., ∆x,
∆y , and ∆z; and purple diagonal line denotes the uncertainty of orientation, i.e., ∆θ . In this example, orientation of pseudo box on the
right is inaccurate. Our method assigns high uncertainty for the orientation and reduces its weight during model training.

are estimated uncertainty vectors of different coordi-
nates based on prediction discrepancy between two de-
tectors, and n indicates the number of boxes which
is same as the number of points in the point cloud.
Furthermore, B̂p = [xp,yp, zp, lp,wp,hp,θp] ∈
Rn×7 refers to primary detector dense predictions,
B̂a = [xa,ya, za, la,wa,ha,θa] ∈ Rn×7 de-
notes auxiliary detector dense predictions, and U =
[∆x,∆y,∆z,∆l,∆w,∆h,∆θ] ∈ Rn×7 represents the
estimated fine-grained uncertainty. Notably, each coordi-
nate of the 3D box is assigned an estimated value, which
reflects the uncertainty of that specific coordinate.
Discussions. Why utilize an auxiliary detector to esti-
mate uncertainty, instead of directly regressing uncer-
tainty, as done in previous works [3, 10]? We have studied
the additional channel method, which involves introducing
extra channels to regress the uncertainty. However, this ap-
proach did not yield satisfactory results, as it suffers from
overfitting issues, such as predicting zero uncertainty for all
samples or uniformly high uncertainty. We attribute this to
the inherent complexity of unsupervised 3D detection: sim-
ply adding extra channels introduces too few model param-
eters to effectively capture uncertainty, which is insufficient
to manage the complexities involved.

2.2. Adaptive Uncertainty Regularization
Our objective is to adaptively reduce the negative effects
of inaccurate pseudo boxes at coordinate level. To achieve
this, we rectify original detection loss by incorporating our

estimated uncertainty:

Lu
p =

7∑
i=1

(
Lp,i

exp (Ui)
+ λ ·Ui),Lu

a =

7∑
i=1

(
La,i

exp (Ui)
+ λ ·Ui),

(2)
where Lu

p ,Lu
a denote the uncertainty-regularized loss of pri-

mary and auxiliary detectors. For brevity, we represent
7 coordinates of 3D box (see Eq. 1) by i = 1, 2, ..., 7.
Lp,i,La,i represent the original dense head losses of pri-
mary and auxiliary detectors for the i-th coordinate, which
are calculated by the ℓ1 loss between corresponding coordi-
nate of the predicted boxes and pseudo boxes. Specifically,
Lp,i = |B̂p,i − Bpseudo,i|,La,i = |B̂a,i − Bpseudo,i|,
where Bpseudo,i ∈ Rn×1 is the i-th coordinate of assigned
dense pseudo boxes. Ui denotes the estimated fine-grained
uncertainty of the corresponding coordinate in U . To pre-
vent divide-by-zero errors and stabilize the learning pro-
cess, we normalize estimated uncertainty with exponential
function. Additionally, we incorporate term λ · Ui to pre-
vent the model from consisting predicting high uncertainty,
where λ controls penalty strength. Empirically, when uncer-
tainty of certain coordinate is high, weight of that inaccurate
pseudo box coordinate is diminished, thereby reducing its
impact on training process. Conversely, when uncertainty
is low, for instance, nearing zero, the loss reverts to original
detection loss, preserving the full influence of that pseudo
box coordinate. As a result, our uncertainty regularization
dynamically mitigates negative effects of inaccurate pseudo
boxes on coordinate level.



The regularization process is uniformly applied to both
primary and auxiliary detectors. Each detector takes into
account the prediction of the other and adjusts weights of
pseudo box coordinates accordingly, who diminishes influ-
ence of pseudo box coordinates when significant prediction
disagreement is evident, and reserves impact of pseudo box
coordinates when two predictions concur. Therefore, the
final loss Ltotal can be formulated as:

Ltotal = Lu
p + µ · Lu

a , (3)

where Lu
p is the uncertainty-regularized loss for the primary

detector, Lu
a is the uncertainty-regularized loss for the aux-

iliary detector, µ denotes the auxiliary detector loss weight.
Discussions. Why not leverage rule-based methods to
pre-calculate box uncertainty? Our uncertainty-aware
framework is learnable and more adaptive (see Tab. 3). Un-
certainty can be caculated by human-observed knowledge,
e.g., the further the box, the higher the uncertainty. How-
ever, such rules can lead to errors. For example, a distant
box can be very accurate, but under rule-based uncertainty,
its influence can be unjustly diminished, potentially degrad-
ing model performance. Our learnable uncertainty avoids
this pitfall by not only assimilating human-observed rules
and knowledge but also adaptively handling different cases.
For instance, if a distant pseudo box is very accurate, both
the primary and auxiliary detectors can provide similar pre-
dictions, resulting in low uncertainty and ensuring that the
box is appropriately valued during training.

3. Experiment
3.1. Settings
Datasets. Our experiments are conducted on nuScenes [2]
and Lyft [11]. nuScenes consists of 1,000 complex scenes
collected in urban environments. Each scene sequence con-
tains 20 seconds data. In total, nuScenes contains 400K
key sample and 390K LiDAR point clouds. Lyft includes
1,000 hours driving data, 170,000 scenes (25 seconds per
scene), covering both LiDAR point cloud and image data.
It is worth noting that we do not use any ground truth 3D
boxes during the training phase and ground truth boxes are
exclusively used for evaluation.
Backbone. PointRCNN utilizes PointNet++ [31] for ex-
tracting point-wise features from the LiDAR point clouds.
Within PointNet++, Set Abstraction layers first perform
point grouping and local feature extraction, Feature Prop-
agation layers then conduct feature upsampling and prop-
agate abstract features back to point-wise representation.
Following this, dense head predicts a 3D box for each point
based on these extracted features. Lastly, region of inter-
est (ROI) head aggregates object proposals from the point-
wise predictions into final predictions.
Implementation Details. Channel numbers in the original
Feature Propagation layers are (C1, C2, C3, C4), while in

the auxiliary Feature Propagation layers, they are scaled to
(γ · C1, γ · C2, γ · C3, γ · C4), where γ represents ratio
coefficient. We then integrate a new dense head and ROI
head after the introduced Feature Propagation layers to es-
tablish the auxiliary detector. For both nuScenes and Lyft,
the uncertainty regularization coefficient λ is set to 1e−5.
For the hyper-parameters, we only tune them on nuScenes
and directly apply them to Lyft. During training, we fol-
low the self training paradigm established by previous work
MODEST [50]. Specifically, we conduct seed training and
10 rounds of self training in all our experiments.

3.2. Comparison with State-of-the-Art Methods
Quantitative Results on nuScenes. We present the re-
sults for nuScenes [2] in Table 1. UA3D outperforms the
state-of-the-art method LiSe [54] by 3.9% in APBEV and
1.5% in AP3D under LiDAD-based setting. Those general
performance enhancement underscores the efficacy of our
proposed fine-grained uncertainty estimation and adaptive
uncertainty regularization in refining learning process from
noisy pseudo boxes. It confirms that reducing the negative
impact of inaccurate pseudo boxes on coordinate level can
significantly boost model detection performance. Notably,
for objects in the long-range (50-80m), APBEV sees a re-
markable increase. This significant boost is attributed to
the typically lower accuracy of long-range pseudo boxes,
where uncertainty plays a pivotal role in dynamically ad-
justing the weights of pseudo boxes coordinates according
to their varying qualities. Moreover, we observe consistent
improvement in LiDAR-image fusion settings. The clear
improvement on both LiDAR-based MODEST and LiDAR-
image-based method LiSe shows our method is compatible
with various baseline methods.
Quantitative Results on Lyft. We further conduct exper-
iments on Lyft [11] (see Table 2). Our uncertainty-aware
method surpasses baselines by 2.3% in APBEV and 1.8% in
AP3D under LiDAR-based setting, and 2.5% in APBEV and
1.7% in AP3D under LiDAR-based setting. Notably, we use
the same hyper-parameter settings as those in nuScenes ex-
periments, validating the generalizability and effectiveness
of our uncertainty-aware approach. We observe the most
prominent improvements are from the long-range (50m-
80m), which verifies the efficacy of our method in enhanc-
ing the detection capability of distant objects. These objects
are typically challenging to recognize.

3.3. Ablation Studies and Further Discussion
Comparison with Other Uncertainty Mechanism. We
compare our proposed learnable uncertainty-aware method
with rule-based, regression-based, ensemble-based, and
Monte Carlo Dropout-based uncertainty to validate the su-
periority of our learnable approach (see Table 3). The rule-
based baselines are motivated by CPD [44] and [17]. The



Method Conference Data Round 0m-30m 30m-50m 50m-80m 0m-80m
APBEV AP3D APBEV AP3D APBEV AP3D APBEV AP3D

Supervised [50] - - - 39.8 34.5 12.9 10.0 4.4 2.9 22.2 18.2

LiDAR-Based

MODEST [50] CVPR’22 L 0 16.5 12.5 1.3 0.8 0.3 0.1 7.0 5.0
MODEST [50] CVPR’22 L 10 24.8 17.1 5.5 1.4 1.5 0.5 11.8 6.6
OYSTER [53] CVPR’23 L 0 14.7 12.3 1.5 1.1 0.5 0.3 6.2 5.4
OYSTER [53] CVPR’23 L 2 26.6 21.3 4.4 1.8 1.7 0.4 12.7 8.0
LiSe [54] ECCV’24 L 0 14.8 12.3 1.5 0.4 0.4 0.2 6.1 4.2
LiSe [54] ECCV’24 L 10 31.4 21.1 7.0 2.5 2.6 0.5 15.7 9.0

UA3D (ours) - L 0 13.7 11.5 0.9 0.6 0.5 0.2 5.4 4.9
UA3D (ours) - L 2 30.1 19.8 7.8 2.9 3.1 0.5 15.1 9.1
UA3D (ours) - L 10 38.3 23.8 10.1 3.5 4.3 0.7 19.6 10.5

LiDAR-Image Fusion

LiSe [54] ECCV’24 L & I 0 5.8 4.7 0.6 0.2 0.3 0.2 2.1 1.8
LiSe [54] ECCV’24 L & I 10 35.0 24.0 11.4 4.4 4.8 1.3 19.8 11.4

UA3D (ours) - L & I 0 8.4 7.3 0.8 0.5 0.4 0.8 3.5 2.4
UA3D (ours) - L & I 10 38.2 24.7 12.5 4.9 5.0 1.7 21.3 12.1

Table 1. Quantitative Results on nuScenes [2]. UA3D significantly surpasses the state-of-the-art LiSe [54] across all evaluated metrics.
This validates the efficacy of proposed coordinate-level uncertainty estimation and regularization in mitigating negative impacts of noisy
pseudo boxes, thereby enhancing detection performance. We report APBEV / AP3D at IoU=0.25. ‘L’ for LiDAR data and ‘I’ for image
data. Round refers to the number of self-training round. The best results are in bold, and the second-best results are underlined.

Method Conference Data Round 0m-30m 30m-50m 50m-80m 0m-80m
APBEV AP3D APBEV AP3D APBEV AP3D APBEV AP3D

Supervised [50] - - - 82.8 82.6 70.8 70.3 50.2 49.6 69.5 69.1

LiDAR-Based

MODEST-PP [50] CVPR’22 L 0 46.4 45.4 16.5 10.8 0.9 0.4 21.8 18.0
MODEST-PP [50] CVPR’22 L 10 49.9 49.3 32.3 27.0 3.5 1.4 30.9 27.3
MODEST [50] CVPR’22 L 0 65.7 63.0 41.4 36.0 8.9 5.7 42.5 37.9
MODEST [50] CVPR’22 L 10 73.8 71.3 62.8 60.3 27.0 24.8 57.3 55.1
LiSe [54] ECCV’24 L 0 42.9 42.6 11.0 10.7 0.5 0.4 20.0 19.6
LiSe [54] ECCV’24 L 10 76.0 73.4 64.7 61.8 28.5 24.9 59.8 56.1

UA3D (ours) - L 0 66.0 63.3 43.8 36.3 8.9 5.1 43.2 38.0
UA3D (ours) - L 10 76.5 73.6 64.6 62.0 36.8 29.0 62.1 57.9

LiDAR-Image Fusion

LiSe [54] ECCV’24 L & I 0 54.5 54.0 24.2 22.8 1.4 1.2 29.2 27.5
LiSe [54] ECCV’24 L & I 10 76.7 74.0 66.1 64.4 46.6 43.7 65.6 62.5

UA3D (ours) - L & I 0 60.3 57.4 35.5 28.6 2.4 2.5 35.8 31.1
UA3D (ours) - L & I 10 78.2 74.6 67.3 65.1 49.2 46.0 68.1 64.2

Table 2. Quantitative Results on Lyft [11]. UA3D outperforms LiSe [54] by a clear margin, under both LiDAR-based and LiDAR-image
fusion settings. Notably, we employ same hyper-parameters as those in nuScenes, validating robustness of UA3D across different datasets.

former one estimates the quality score of pseudo boxes
based on distance and point number within box grids. The
latter one utilizes the volume ratio to estimate box confi-
dence. For distance-rule uncertainty, the uncertainty of a
pseudo box is quantified as u = min(bx,τx)

τx
, where bx de-

notes the distance of the box from the ego vehicle, and
τd represents the selected distance threshold. We empiri-
cally set τx = 100m. For Num. Point-rule uncertainty, the
uncertainty is formulated as u = τn

min(bnum_pts,τn)
, where

bnum_pts refers to the number of points within the 3D
pseudo box, and τn is the selected points threshold set at
τn = 100. For Volume-rule uncertainty, the uncertainty is
computed as u = τv

min(bl·bw·bh,τv) , where bl, bw, and bh in-
dicate the length, width, and height of the 3D pseudo box,
and τv is the chosen volume threshold set at τv = 10m3.
UA3D outperforms all rule-based uncertainties by effec-
tively addressing scenarios where rule-based approaches
fail. Our learnable uncertainty is capable of assigning high
uncertainty to challenging cases due to prediction discrep-

ancies between the primary and auxiliary detectors. We
also conduct comparisons with additional uncertainty es-
timation methods, e.g., regression-based uncertainty, en-
semble methods, and MC Dropout methods. Our predic-
tion discrepancy-based method consistently outperforms all
these baselines. Specifically, we find that regression-based
uncertainty suffers from overfitting, often predicting either
all zeros or uniformly high uncertainty. We attribute this
to the complexity of unsupervised 3D detection, where
adding extra channels introduces too few model parame-
ters to effectively capture uncertainty. For ensemble and
MC Dropout methods, their performance is limited by the
pretrained detection model. Moreover, they typically re-
quire around 10–20 ensemble members or 10–20 inference
passes, resulting in significantly higher memory and com-
putation costs. In contrast, our prediction discrepancy ap-
proach only requires a single forward pass to obtain the final
uncertainty, making it much more efficient and effective.
Ablation of Uncertainty Granularity. We present an abla-



Method 0m-30m 30m-50m 50m-80m 0m-80m
BEV 3D BEV 3D BEV 3D BEV 3D

Rule-Based

Distance Rule 29.6 19.6 7.2 2.2 3.2 0.5 14.8 8.1
Volume Rule 25.7 17.7 5.6 2.2 2.5 0.4 12.3 7.4
Num. Point Rule 27.3 17.6 7.3 2.8 2.3 0.3 13.7 7.5

Regression-Based

Additional Channel 26.3 18.8 4.9 2.2 2.0 0.3 12.1 7.7
Additional FC 27.2 19.7 4.0 1.9 1.2 0.1 12.5 8.1

Ensemble-Based

10 Members 32.5 20.7 5.5 2.3 3.1 0.4 15.0 8.6
20 Members 32.1 23.8 10.1 3.5 3.6 0.7 15.3 9.1

Monte Carlo Dropout-Based

p = 0.1, N = 10 29.6 19.6 7.2 2.2 3.2 0.2 14.8 8.1
p = 0.2, N = 20 28.1 20.3 8.0 3.3 3.9 0.5 15.7 9.2
UA3D (ours) 38.3 23.8 10.1 3.5 4.3 0.7 19.6 10.5

Table 3. Comparison with Other Uncertainty. Our learnable
uncertainty surpasses all other types of uncertainty, validating its
superiority in handling complex cases. Results are from nuScenes.
BEV is short for APBEV , and 3D for AP3D .

Granularity 0m-30m 30m-50m 50m-80m 0m-80m
BEV 3D BEV 3D BEV 3D BEV 3D

Point cloud-level 27.7 18.7 3.6 1.2 1.2 0.1 12.1 6.7
Box-level 34.9 24.6 7.5 2.8 3.6 0.1 17.2 9.9
Coordinate-level 38.3 23.8 10.1 3.5 4.3 0.7 19.6 10.5

Table 4. Ablation of Uncertainty Granularity. We find that our
proposed coordinate-level uncertainty outperforms other coarse-
grained uncertainty, such as box-level and point cloud-level. By
addressing inaccurate box coordinates individually, we mitigate
the negative impact of noisy pseudo boxes adaptively. Our default
setting is marked with gray .

γ
0m-30m 30m-50m 50m-80m 0m-80m

BEV 3D BEV 3D BEV 3D BEV 3D

0.25 32.6 23.5 8.6 3.1 4.3 0.2 16.9 9.9
0.5 38.3 23.8 10.1 3.5 4.3 0.7 19.6 10.5
1 29.6 22.3 6.0 2.3 3.3 0.1 14.7 8.5
2 29.5 20.5 7.9 3.0 4.4 0.3 15.8 8.9

Table 5. Ablation of Channel Number Ratio between Auxiliary
and Primary Detector. γ denotes the channel number coefficient
of the auxiliary detector, with the best performance achieved at
0.5. Default setting is in gray .

tion study on the uncertainty granularity in Table 4. For our
proposed coordinate-level uncertainty, the uncertainty esti-
mation and regularization is applied at the coordinate level,
where the loss weight for each coordinate of each box is
adjusted adaptively based on its uncertainty value. For box-
level uncertainty, we sum and average the uncertainty val-
ues of the 7 coordinates for each box. For point cloud-level
uncertainty, we aggregate the uncertainty of all boxes in the
point cloud to represent overall uncertainty. We observe that
the best results are achieved with our coordinate-level un-

λ
0m-30m 30m-50m 50m-80m 0m-80m

BEV 3D BEV 3D BEV 3D BEV 3D

1e−4 33.8 20.4 6.1 1.5 2.9 0.3 15.2 7.4
1e−5 38.3 23.8 10.1 3.5 4.3 0.7 19.6 10.5
1e−6 18.1 13.7 3.2 1.3 1.6 0.2 8.4 5.6

Table 6. Ablation of Uncertainty Regularization Coefficient λ.
We obtain the best result at λ = 1e−5, as it ensures uncertainty
estimation and regularization play a proper role, preventing the
uncertainty from vanishing or exploding. Default setting in gray .

µ
0m-30m 30m-50m 50m-80m 0m-80m

BEV 3D BEV 3D BEV 3D BEV 3D

0.25 33.9 22.2 5.5 2.2 2.1 0.3 15.4 8.8
0.5 32.5 20.7 5.5 2.3 3.1 0.4 15.0 8.6
1 38.3 23.8 10.1 3.5 4.3 0.7 19.6 10.5
2 33.2 20.8 4.9 1.9 2.1 0.3 14.5 8.4

Table 7. Ablation of Auxiliary Detector Loss Weight µ. The
balanced learning process, i.e., equal weights for both detectors,
leads to optimal results. Our default setting is in gray .

Layer 0m-30m 30m-50m 50m-80m 0m-80m
BEV 3D BEV 3D BEV 3D BEV 3D

SA Layer 4 38.3 23.8 10.1 3.5 4.3 0.7 19.6 10.5
FP Layer 1 34.4 21.2 9.4 3.1 4.6 0.6 18.0 9.3
FP Layer 2 31.3 19.4 6.6 2.1 2.5 0.3 15.1 8.0

Table 8. Ablation of Backbone Layer Auxiliary Detector At-
taches. From shallow to deeper, we study through SA Layer 4, FP
Layer 1, and FP Layer 2. We observe that attaching the auxiliary
detector to a shallower layer, e.g., the SA Layer 4, yields the best
performance. gray line is our default setting.

certainty. This approach corrects inaccurate pseudo boxes
in a more fine-grained and adaptive manner, effectively mit-
igating the negative impact of noise. In contrast, box-level
uncertainty regularization treats the entire box as either cer-
tain or uncertain, ignoring differences among the coordi-
nates. The coarse-grained box-level approach can compro-
mise the efficacy of regularization. At the point cloud level,
the regularization effect is weak, resulting in performance
degradation to the baseline (MODEST).
Design of Uncertainty Estimation. We present an ablation
study on the design of the auxiliary detector in Table 5. The
configuration with γ = 0.5 yields the best results. This con-
figuration provides enough model capacity to fit accurate
pseudo boxes while avoiding over-fitting to noisy pseudo
boxes. As a result, the primary and auxiliary detector pre-
dictions tend to diverge for inaccurate pseudo boxes, lead-
ing to more effective uncertainty estimation and regulariza-
tion. γ = 0.25 indicates a smaller auxiliary detector with
weaker capacity in fitting even accurate pseudo boxes. Con-
versely, larger auxiliary detectors, such as those with γ = 1
and γ = 2, exhibit learning capacities similar to primary
detector, which diminishes efficacy of uncertainty learning.
Design of Uncertainty Regularization. We explore the ef-
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Figure 4. Calibration Between Estimated Uncertainty and Er-
rors in Pseudo Boxes. Our estimated coordinate-level uncertainty
closely calibrates with inaccuracies in pseudo box coordinates,
with high uncertainty assigned to erroneous pseudo box coordi-
nates. (a) Length and width of the pseudo box are inaccurate,
the uncertainty for these coordinates is correspondingly high. (b)
A similar pattern is observed for inaccuracies in the length and
x-position coordinates. (c) Pseudo box orientation is highly inac-
curate, a distinctly high uncertainty is assigned to the orientation.
(d) Conversely, pseudo box orientation is highly accurate, its as-
sociated uncertainty is nearly zero.

fects of varying the uncertainty regularization coefficient λ
(see Eq. 2) in Table 6. The optimal performance is observed
with λ = 1e−5, which allows uncertainty estimation and
regularization to play a proper role and avoids uncertainty
vanishing or explosion. Other settings yield sub-optimal re-
sults compared with λ = 1e−5. A high λ = 1e−4 imposes a
strong penalty for high uncertainty and suppresses the role
of uncertainty during training. Conversely, a low λ = 1e−6,
which imposes a minimal penalty for high uncertainty, leads
to excessively high uncertainty values across all samples.
Ablation of Auxiliary Detector Loss Weight. We conduct
an ablation study on the loss weight µ of auxiliary detec-

tor (see Table 7). We observe that µ = 1 yields the best
detection performance. This suggests that applying equal
weights to both branches fosters a balanced learning pro-
cess, enhancing overall model performance.
Ablation of Auxiliary Detector Attached Layer. Addi-
tionally, we present an ablation study on the feature extrac-
tion backbone layer to which the auxiliary detector is at-
tached (see Table 8). When attaching to the sa_layer_4, we
utilize all the FP layers, which facilitates the construction
of an independent auxiliary detection branch endowed with
full capacity. This maximizes the effectiveness of our pro-
posed uncertainty-aware framework.

3.4. Qualitative Analysis
Calibration Between Estimated Uncertainty and Pseudo
Label Inaccuracy. We provide visualizations of the cali-
bration between uncertainty and pseudo box inaccuracy in
Fig. 4. We observe that our UA3D effectively learns uncer-
tainty that aligns closely with pseudo box inaccuracies at the
coordinate level. This alignment facilitates subsequent un-
certainty regularization, where pseudo box coordinates with
high uncertainty are assigned lower weights.
Qualitative Comparison. We compare the predictions
from our uncertainty-aware method against those from
MODEST [50] and OYSTER [53] (see Fig. 5). Notably,
our method achieves more accurate predictions in terms of
shape, location, and orientation (see (a)). Furthermore, we
observe an increase in the recall rate, especially for distant
and smaller objects (see (b)). The pseudo boxes for these
objects are often less reliable due to the challenges in es-
timating such boxes. Our approach selectively discounts
these unreliable boxes, allowing high-quality boxes to play
a more prominent role. Consequently, UA3D enhances re-
call performance for these categories.

4. Related Work
Unsupervised 3D Object Detection. One trajectory fo-
cuses on object discovery from LiDAR point clouds [15,
43]. MODEST [50] pioneers the use of multi-traversal
method to generate pseudo boxes for moving objects. OYS-
TER [53] builds on this approach by advocating for learn-
ing in a near-to-far fashion. Recently, CPD [43] enhances
this methodology by employing precise prototypes for var-
ious object classes to boost detection accuracy. The sec-
ond trajectory focuses on harnessing knowledge from 2D
space [48, 54]. Yao et al. [48] propose the alignment of con-
cept features from 3D point clouds with semantic data from
2D images. LiSe [54] fuses LiDAR and 2D knowledge to
discover the far and small objects. However, owning to the
inherent noise in pseudo boxes, the final efficacy of these
approaches can be compromised [15, 18, 43, 49]. Different
from existing works, we utilize fine-grained uncertainty es-
timation and regularization to mitigate the negative effect of
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Figure 5. Qualitative Comparison with Previous Methods. We compare UA3D with MODEST [50], and OYSTER [53]. (a) Generally,
our method shows a clear improvement in box accuracy over previous methods. (b) For some challenging objects with few points or far
away, our method can still retain a higher recall rate. Green boxes denote ground truth and red boxes are predictions.

inaccurate pseudo boxes.

Uncertainty Learning. Single deterministic methods [14,
28, 33, 36] adapt the original model to directly estimate
prediction uncertainty, though the extra uncertainty esti-
mation usually compromises the original task. Bayesian
methods [21, 27, 29, 42] utilize probabilistic neural net-
works to estimate uncertainty by assessing the variance
across multiple forward passes of the same input, which
are limited by high computational costs. Similarly, recent
works [55, 56] tune temperatures of large models for uncer-
tainty estimation via multiple inference. Ensemble meth-
ods [13, 23, 30, 35, 59] estimate uncertainty through the
combined outputs of various deterministic models during
inference, aiming primarily to enhance prediction accuracy.
Test-time augmentation methods [4, 19, 22, 37] create mul-
tiple predictions by augmenting input samples during test-
ing, with primary challenge in selection of appropriate aug-
mentation. Different from existing techniques [7, 9, 57], we
devise auxiliary detection branch alongside primary detec-
tor to enable quantification of fine-grained uncertainty.

3D Object Detection Framework. Works in this do-
main can primarily be divided into 3 categories based
on point representation [1, 32]. First, voxel-based meth-
ods [45, 60] transform unordered point clouds into com-
pact 2D or 3D grids, subsequently compressing them into
a bird’s-eye view (BEV) 2D representation. These ap-

proaches are generally more computationally efficient and
hardware-friendly but sacrifice fine-grained details. Sec-
ond, point-based approaches utilize permutation-invariant
operations to directly process the original geometry of raw
point clouds [38, 40, 47], thereby excelling in capturing de-
tailed features at the expense of increased model latency.
Lastly, voxel-point based methods [39, 46] aim to merge the
computational advantages of voxel-based techniques with
the detailed accuracy of point-based methods, marking a
progressive trend in this field. Notably, UA3D enhances
performance of those detection models in unsupervised set-
ting, with fine-grained uncertainty learning.

5. Conclusion

We propose an uncertainty-aware framework that identifies
inaccuracies in pseudo boxes at a fine-grained coordinate
level and mitigates their negative effects. In the uncertainty
estimation phase, we introduce an auxiliary detector to cap-
ture the prediction discrepancy between the auxiliary and
primary detectors, harnessing these discrepancies as fine-
grained indicators of uncertainty. In the uncertainty regular-
ization phase, the estimated uncertainty is utilized to refine
the training process, adaptively minimizing the negative im-
pact of inaccurate pseudo boxes. Experiments on nuScenes
and Lyft validate our approach, with qualitative results link-
ing high uncertainty to label inaccuracy.
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6. More Discussions
Does detection backbone in UA3D only use a dense pre-
diction head? No, UA3D does not alter the overall detec-
tion pipelines of the original 3D detection backbone. For
example, in PointRCNN, the detection process still includes
both a dense prediction head and an ROI head. However, the
uncertainty estimation and regularization process are con-
ducted during the dense prediction head for two reasons: (1)
The number of dense predictions corresponds to the num-
ber of points in the point cloud, which remains consistent
across different inferences on the same point cloud. This
makes it convenient for the uncertainty estimation process,
as primary and auxiliary dense predictions can be directly
matched and compared. (2) Dense predictions cover the
full prediction of the 3D detector, facilitating a more com-
prehensive uncertainty estimation process.
Can the discrepancy between primary and auxiliary de-
tector predictions effectively capture uncertainty? Yes.
For accurate pseudo-boxes (with low uncertainty) that
match the distribution of object points, both detectors tend
to generate similar detection results. Conversely, for inac-
curate pseudo-boxes (with high uncertainty), one detector
could produce accurate results based on knowledge learned
from other training data, while the other can overfit to the in-
accurate pseudo-boxes. Consequently, discrepancies in pre-
dictions can be observed, effectively capturing uncertainty.
Is UA3D limited to PointRCNN? No, UA3D is not lim-
ited to specific detection backbones. For 3D detectors with
various structures, the detection process typically concludes
with different detection heads. UA3D can achieve uncer-
tainty estimation by duplicating an existing head to cre-
ate primary and auxiliary detectors. The discrepancy be-
tween these two detectors’ predictions can be utilized to
estimate uncertainty and implement the regularization pro-
cess. Based on this principle, in PointRCNN, we choose
the dense head to perform fine-grained uncertainty estima-
tion and regularization.
How is the auxiliary detector initialized? The auxiliary
detector is trained from scratch. We do not rely on pre-
trained checkpoints. The initialization step is the same as
that of the original primary detector. This ensures general-
izability across various 3D detector structures, as no specific
or fixed design is adopted.
Why can uncertainty estimation reflect the inaccuracy
of pseudo boxes? Accurate pseudo boxes are well-aligned
with the object regions in the input point cloud, typically
exhibiting consistent characteristics such as tightly enclos-

ing specific point groups and maintaining a reasonable size.
In contrast, inaccurate pseudo boxes show significant and
unpredictable variations, making them harder to interpret.
This inherent uncertainty can confuse the model, leading
to highly varying predictions for the same object. Conse-
quently, discrepancies between the two detector predictions
indicate elevated uncertainty, reflecting the inaccuracy of
pseudo boxes.
Why choose dense predictions for uncertainty estima-
tion instead of using predictions from the Region-of-
Interest (ROI) head? Since the dense outputs predict a
box for each point in the point cloud, they generate the
same number of predictions regardless of the model struc-
ture, ensuring consistency between primary and auxiliary
detectors. This consistency naturally simplifies the calcu-
lation of differences between two detector predictions for
estimate uncertainty. In 3D detection model, ROI head ag-
gregates point-wise predictions into certain numbers of final
bounding boxes, and the numbers of predicted boxes can
vary between the primary and auxiliary detectors. While
it is feasible to utilize the output from ROI head for un-
certainty estimation, the different numbers of boxes from
primary and auxiliary detectors require a matching process.
Matching boxes between two detectors introduces signifi-
cant computational overhead. Given the additional training
cost, we choose not to rely on the predictions from ROI
head.
Why is uncertainty regularization fine-grained? Our cal-
culation process operates at the box coordinate level. This
allows our method to identify coordinate-specific inaccura-
cies in pseudo boxes and dynamically mitigate their nega-
tive influence. During the pseudo box generation process,
pseudo boxes can exhibit inaccuracies in specific coordi-
nates, such as only in the orientation angle. In such cases,
treating the entire box as fully certain or uncertain is not
reasonable. Our fine-grained regularization approach can
selectively reduce the negative influence of the inaccurate
coordinate while preserving the efficacy of other accurate
coordinates.
What differentiates our work from the model ensemble
approaches [35]? We focus on improving the performance
of a single model. Our final detection results benefit from
regularization gained from both the primary and auxiliary
detectors. During the inference phase, we only enable the
primary detector, rather than typical model ensemble ap-
proaches that aggregate multiple different models. Notably,
our approach is also scalable and can be applied to individ-



ual models within an ensemble, if desired.
Why not conduct experiment on Waymo? We choose
datasets with multi-traversal data, which is essential for
a fair comparison with existing method MODEST. Since
Waymo does not contain multi-traversal data, we do not uti-
lize this dataset.
Could two branches yield similar predictions for noisy
pseudo boxes? Or could auxiliary branch introduce
noise for accurate pseudo boxes? Those cases could hap-
pen, while as corner cases. To provide an overview of
UA3D uncertainty estimation results, we present the statis-
tical uncertainty distribution (see Fig. 2). We observe a clear
gap between uncertainty distributions of accurate pseudo
boxes and noisy ones. Overall, UA3D could not address
100% noisy cases. However, for most inaccurate pseudo
labels, they are assigned with high uncertainty. UA3D mit-
igates negative influence of most noisy pseudo labels, and
finally improves detector performance.
Why not utilize data augmentation to cause variance in
predictions? Data augmentation-based methods are time-
consuming as they require multiple inferences. In contrast,
UA3D processes data with an auxiliary branch in a single
forward pass, making uncertainty estimation more efficient.
Can uncertainty be pre-calculated, so that no calcula-
tion is needed during training? Pre-calculated pseudo la-
bel uncertainty like confidence score is good for initializa-
tion, but tends to degrade in quality as training progresses.
For instance, certain samples that initially exhibit high un-
certainty become increasingly reliable over the course of
training. Therefore, UA3D adopt the on-the-fly uncertainty,
which surpass the pre-defined uncertainty (see Tab. 3).
Does UA3D have tendency to predict high uncertainty?
We add uncertainty U into loss to suppress this tendency.
Losses for two detectors are Lu

p =
∑7

i=1(
Lp,i

exp(Ui)
+λ ·Ui),

and Lu
a =

∑7
i=1(

La,i

exp(Ui)
+ λ ·Ui) (see Eq. 2). The λ ·Ui

serves as penalty term for consistently high uncertainty.
Can UA3D improve detector recall? UA3D does im-
prove both precision and recall. Noisy or inaccurate labels
are given less weight, while all accurate labels keep their
weights. This means reliable labels naturally get more em-
phasis within every iteration. By focusing more on these
accurate labels, UA3D not only improves precision but also
helps increase recall (see Fig.5 (b)).
Why not apply different augmentations to the input
point cloud for the primary and auxiliary detectors to
better capture uncertainty? Different perturbations in the
input point cloud could enhance the uncertainty estimation
process. However, we have observed that the proposed pri-
mary and auxiliary detector design is already sufficient to
capture uncertainty. Therefore, we do not adopt additional
point cloud augmentation.
Can UA3D improve fully supervised training processes?
Yes, UA3D can enhance training using human labels. Even
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Figure 6. Detailed explanation of our uncertainty visualization
in Bird’s Eye View (BEV). (1) Uncertainty of length: it is visu-
alized by the gap between the length coordinates of the purple
and yellow boxes. (2) Uncertainty of width: it is similarly repre-
sented by the gap between the width coordinates of the two boxes.
(3) Uncertainty of height: it is depicted as the gap between the
height coordinates of the two boxes, though it is omitted in BEV
for brevity. (4) Uncertainty of position x: it is shown by the length
of the purple line extending horizontally (left-to-right). (5) Uncer-
tainty of position y: it is represented by the length of the purple
line extending vertically (top-to-bottom). (6) Uncertainty of posi-
tion z: it is visualized by the length of the purple line along the
z-axis, but it is not shown in BEV for simplicity. (7) Uncertainty
of orientation: it is denoted by the length of the purple diagonal
line.

annotations from human experts can contain inaccuracies
and noise, due to the inherent difficulty in annotating pre-
cise 3D boxes for distinct objects. UA3D can mitigate the
negative impact of such noisy labels and potentially im-
prove model performance. However, the issue of inaccu-
rate pseudo-boxes is more severe in unsupervised settings.
Therefore, we focus on this setting to better demonstrate the
effectiveness of UA3D.

7. Explanation of Uncertainty Visualization

Here we first elaborate our uncertainty visualization in
Fig. 6. The uncertainties in length, width, and height are
represented by the gap between the corresponding coordi-
nates of the purple and yellow boxes. For the uncertainties
in position (x, y, z) and orientation, they are visualized by
the lengths of the purple lines along the respective direc-
tions.

8. More Qualitative Results

Detection Results Comparison. We present additional
qualitative results in Fig. 7. As shown in Fig. 7 (a), our
uncertainty-aware framework generates more accurate pre-
dictions regarding object shape, location, and orientation.
This improvement is attributed to our proposed uncertainty
estimation and regularization, which mitigate the negative



effects of inaccurate pseudo boxes at a fine-grained coor-
dinate level. Fig. 7 (b) further shows that our method is
more effective in recalling difficult object categories, e.g.,
far and small objects. Our uncertainty-aware framework en-
hances the prominence of accurate pseudo boxes for these
challenging objects, facilitating more effective recognition
of those objects.
Correspondence Between Noisy Pseudo Box and High
Uncertainty. We further present a detailed analysis for the
correspondence between noisy pseudo box and high esti-
mated uncertainty (see Fig. 8).

9. Implementation Details
Hyper-parameters. We follow MODEST [50] settings. for
nuScenes [2], the batch size is set to 2 per GPU. We con-
duct training for 80 epochs using the Adam optimizer with
a one-cycle policy. The initial learning rate is 0.01, with
a weight decay of 0.01 and a momentum of 0.9. Learning
rate decay is applied at epochs 35 and 45 with a decay rate
of 0.1. Additionally, a learning rate clip of 1e−7 and a gradi-
ent norm clip of 10 are employed. We perform one round of
seed training followed by 10 rounds of self-training for all
experiments. Each round of training takes approximately 4
hours, resulting in a total training time of about 44 hours (4
hours × 11 rounds). For Lyft [11], we reduce the number of
epochs to 60 for efficiency, considering that the Lyft dataset
is 3 times larger than nuScenes. The self-training pipeline
for Lyft also consists of one round of seed training and 10
rounds of self-training. Each training round takes approxi-
mately 12 hours, leading to a total training time of around
131 hours (12 hours × 11 rounds). Other settings remain the
same as those for nuScenes, without specific tuning, to vali-
date the generalizability of our proposed uncertainty-aware
framework.
Data Processing. For both nuScenes and Lyft, we apply
several data augmentations. We sample 6,144 points per
point cloud for nuScenes, while for Lyft, we sample 12,288
points per point cloud, as the point clouds in Lyft are gen-
erally denser than those in nuScenes. We perform random
world flipping of the entire point cloud along the x-axis. We
also apply random world rotation within the angle range of
[-0.785, 0.785] and random world scaling within the scale
ratio range of [0.95, 1.05]. Point shuffling is applied to the
training set but not to the test set. We focus on object dis-
covery, following the trajectory of previous works such as
MODEST, OYSTER, and LiSe. We do not explicitly con-
sider object categories during the experiments.
Self-training Pipeline. Our uncertainty-aware framework
operates within a self-training pipeline, following the com-
mon settings in previous works [50]. In general, a self-
training pipeline consists of two stages: seed training and
self-training. Initial generated pseudo boxes are referred to
as seeds. During the seed training, an initial detection model

is trained based on those seeds. Then the trained model
from previous round is first applied to the training set to ob-
tain refined pseudo boxes. During the self-training, a new
detection model is trained on the refined pseudo boxes. The
process is iteratively repeated for T rounds.

We visualize the obtained uncertainty in Fig. 8 and
such analysis further validates the correspondence between
the pseudo boxes inaccuracies and estimated uncertainty.
Specifically, we observe that accurate pseudo boxes, which
typically lead to consistent predictions from both the pri-
mary and auxiliary detectors, exhibit low uncertainty. In
contrast, when a pseudo box shows inaccuracies in certain
coordinates, the estimated uncertainty for those coordinates
is significantly higher since the predictions from the pri-
mary and auxiliary detectors diverge on those coordinates.

10. Real-world Application and Limitations
Application. There are several potential ways in which
unsupervised 3D object detection could benefit real-world
applications. The unsupervised setting enables large-scale
pretraining on vast amounts of unlabeled data. Additionally,
the generated pseudo labels can serve as initial raw annota-
tions, which can then be refined through human filtering,
thereby reducing annotation costs.
Limitations. We provide a statistical overview of our es-
timated uncertainty in Fig. 2. We observe that most in-
accurate pseudo boxes are assigned with high uncertainty.
However, a few cases with incorrectly estimated uncertainty
cannot be fully avoided in our framework and our proposed
method tends to fall short in addressing these cases.
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Figure 7. Further qualitative comparison between different methods. We compare our uncertainty-aware framework with previous
works, e.g., MODEST and OYSTER. Green boxes denote the ground-truth and red boxes represent predictions from the detection model.
(a) Our uncertainty-aware framework shows more accurate perceptions of various foreground objects. (b) In challenging scenarios, such
as distant objects with sparse point clouds or small objects, our method achieves a higher recall rate.
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Figure 8. Correspondence between pseudo label inaccuracy and high uncertainty. (a) We present ground truth and pseudo boxes in
two different point clouds (left and right columns). Each point cloud contains both accurate and inaccurate pseudo boxes. We observe
that pseudo boxes can be significantly inaccurate in terms of the shape, location, and rotation. Direct usage of these boxes for training
can easily impair the performance of the detection model. (b) We present the predictions from the primary and auxiliary detectors. Two
detector predictions align closely for objects with accurate pseudo boxes but diverge for those with inaccurate ones. The mismatch between
inaccurate pseudo boxes and the actual point cloud distribution can confuse the model, resulting in varying interpretations. (c) We present
our uncertainty-aware pseudo boxes. Fine-grained coordinate-level uncertainty is estimated, e.g., the orientation uncertainty for the right
object (in left column) is high (as indicated by the long purple diagonal line), due to its inaccuracy in the pseudo box. The colors follow
the same conventions in Fig. 3.


	Introduction
	Methodology
	Fine-Grained Uncertainty Estimation
	Adaptive Uncertainty Regularization

	Experiment
	Settings
	Comparison with State-of-the-Art Methods
	Ablation Studies and Further Discussion
	Qualitative Analysis

	Related Work
	Conclusion
	More Discussions
	Explanation of Uncertainty Visualization
	More Qualitative Results
	Implementation Details
	Real-world Application and Limitations

