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Figure 1: Painting comparison between the baseline method and ours on three real-world domains (i.e., face, landmark and
art photos). Due to the domain gap between the training set and real-world test images, existing methods usually suffer from
over-smoothed textures and inconsistent brush granularity (highlighted in red circles). In contrast, the proposed test-time
adaptationmethod efficiently adapts to the target scenario, further refining the visual quality across arbitrary input resolutions.

Abstract
Neural oil painting synthesis is to sequentially predict brushstroke
color and position, forming an oil painting step by step, which
could serve as a painting teacher for education and entertainment.
Existing methods usually suffer from degraded generalization for
real-world photo inputs due to the training-test distribution gap, of-
ten manifesting as stroke-induced artifacts (e.g., over-smoothed tex-
tures or inconsistent granularity). In an attempt to mitigate this gap,
we introduce a domain-agnostic neural painting (DANP) frame-
work that aligns model to the test domain. In particular, we focus
on updating affine parameters of normalization layers efficiently,
while keeping other parameters frozen. To stabilize adaptation, our
framework introduces: (1) Asymmetric Dual-Branch with mirror
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augmentation for robust feature alignment via geometric transfor-
mations, (2) Dual-Branch Interaction Loss combining intra-branch
reconstruction and inter-branch consistency, and we also involve an
empirical optimization strategy to mitigate gradient oscillations in
practice. Experiments on real-world images from diverse domains
(e.g., faces, landscapes, and artworks) validate the effectiveness of
DANP in resolution-invariant adaptation, decreasing ∼11.3% recon-
struction error at 512px and ∼20.3% at 1024px compared to the base-
line model. It is worthy noting that our method is compatible with
existing methods, e.g., Paint Transformer, and further improve the
∼10.3% perceptual quality. Dataset and codewill be publicly released
at: https://domain-agnostic-neural-oil-painting.github.io/DANP.
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• Applied computing → Media arts; • Computing methodolo-
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1 Introduction
Neural painting techniques [12, 28, 28, 29, 35, 38], which enhance
the artistic expressiveness of automated painting systems through
parameterized brushstroke modeling and neural network optimiza-
tion, have established themselves as pivotal tools for digital art
synthesis [8, 22, 30, 32]. Capable of generating highly anthropo-
morphic artistic effects across portraiture, landscape, and abstract
art domains, these methods significantly surpass conventional me-
chanical painting systems [11, 21, 33] in simulating authentic brush-
stroke patterns. Current research efforts predominantly concentrate
on three methodological strands: reinforcement learning (RL)-based
feedforward networks [13, 14, 30, 35], iterative brushstroke opti-
mization [41], and Transformer-enabled parallel generation archi-
tectures [23].

However, two critical limitations persist across these approaches:
(1) Overreliance on training-test distribution consistency.
Liu et al. [23] proposed a self-training pipeline that formulates neu-
ral painting as a set prediction problem using a Transformer-based
framework (Paint Transformer), enabling parallel stroke generation
to significantly reduce inference time. While this approach en-
hances adaptability by eliminating the need for annotated datasets,
it frequently succumbs to domain gaps when confronted with real-
world images, resulting in brushstroke-content mismatches such
as inconsistent texture granularity and boundary artifacts. (2) Nar-
row focus on spatial stroke optimization. Prevailing methods
prioritize where to paint through stroke region optimization at the
expense of cross-domain generalization. For instance, Hu et al. [13]
trained an RL-based agent to dynamically determine painting re-
gions. However, this strategy exhibits severely degraded stability
when processing out-of-distribution images. Zou et al. [18, 41] devel-
oped an iterative brushstroke parameter search strategy to optimize
stroke precision. Despite its improved accuracy, the method’s exces-
sive computational complexity renders it impractical for real-time
deployment.

Traditional domain adaptation (DA) methods [7, 39], which ne-
cessitate simultaneous access to both source-domain (e.g., synthetic
canvases) and target-domain data alongside joint training via cross-
domain loss functions [6, 27, 34, 37], prove inapplicable to practical
artistic generation scenarios where source brushstroke data is un-
available post-deployment. While Test-Time Training (TTT) [31]
supports single-domain adaptation, its reliance on coupled optimiza-
tion of supervisory signals and self-supervised tasks risks [2, 25]
compromising artistic style consistency—a critical requirement for
preserving aesthetic integrity. In contrast, Test-Time Adaptation
(TTA) [15, 19, 36, 40] operates as an unsupervised paradigm that
dynamically adjusts model parameters using exclusively target-
domain data during inference, eliminating dependencies on source
data or labels. This capability positions TTA as a robust solution to
heterogeneous data distribution challenges inherent in artistic syn-
thesis, particularly in resolving discrepancies between real-world

images and synthetic brushstroke data, such as (1) Illumination
variances. Mismatches in lighting conditions between training sim-
ulations and real environments. (2) Material texture gaps. Diver-
gences in surface reflectance properties of digitally simulated versus
physical brushstrokes.

We present a domain-agnostic neural painting (DANP) frame-
work, a novel framework that pioneers the integration of Test-
Time Adaptation (TTA) into neural oil painting to resolve domain
gaps between synthetic brushstroke distributions and real-world
imagery. The framework’s core innovation lies in its multi-stage
adaptation architecture. First, input images undergo pyramidal hier-
archical decomposition, where a multi-resolution pyramid structure
enables progressive refinement—base layers prioritize boundary
feature extraction to preserve fine-grained details, while subse-
quent layers iteratively enhance global stroke-texture coherence.
Building upon this hierarchical representation, DANP implements
parameter-efficient domain alignment by selectively updating the
affine parameters of BatchNorm and LayerNorm layers, thereby
maintaining the pretrained backbone’s integrity while minimiz-
ing computational overhead. To stabilize adaptation under limited
test data without any manual annotation, we introduce an asym-
metric dual-branch architecture with geometry-aware mirror aug-
mentation. This design enforces cross-view consistency through
two complementary mechanisms. Complementing this approach, a
progressive learning rate scheduler phases in normalization layer
adjustments during initial adaptation steps, reducing statistical os-
cillation amplitudes and ensuring stable convergence. In summary,
our contributions are threefold:

• Domain-Agnostic Neural Painting (DANP) Framework: We
propose a new domain-agnostic framework for neural oil paint-
ing synthesis that mitigates the train-test distribution gap by
efficiently adapting the model to the test domain. It is achieved
through selective fine-tuning of the affine parameters in the nor-
malization layers, while freezing the majority of parameters.

• Selective Update of Normalization Affine Parameters via
Asymmetric Dual-Branch Architecture & Dual-Branch In-
teraction Loss: To ensure robust and stable adaptation to diverse
real-world inputs, our framework introduces asymmetric mir-
ror augmentation branches using geometric transformations to
promote robust feature alignment, and a dual-branch interaction
loss combining intra-branch reconstruction and inter-branch
consistency constraints.

• Significant PerformanceGains&Compatibility:Ourmethod
shows resolution-invariant adaptation, substantially reducing
reconstruction error (11.3% at 512px, 20.3% at 1024px) and im-
proving perceptual quality (10.3%) on diverse real-world images.
Crucially, DANP is compatible with existing methods (e.g., Paint
Transformer and Comoisitional Neural Painter), further enhanc-
ing the visual quality.

2 Related Work
Neural Painting. Current stroke-based neural painting meth-
ods primarily revolve around deep learning frameworks, encom-
passing reinforcement learning, feedforward neural networks, and
optimization techniques. Among these, the Compositional Neu-
ral Painter (based on reinforcement learning) [13] and the Paint
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Figure 2: Pipeline overview. Given one single input image of 512 × 512, we split it into different levels according to a pyramid
hierarchy as a training set. At each level, the resolution of the image gradually increases until the bottom layer generates
a boundary feature map of 544 × 544. At each layer, the feature map is divided into 32 × 32 image patches, which are then
input into the Pretrained model for further processing. II. During the Dual-Branch adaptative optimization process, we adopt a
freezing strategy for the pretrained model, freezing all other layers except BatchNorm and LayerNorm during the training
process to keep the remaining parameters unchanged. The test dataset obtained in the first stage is divided into two parallel
processing routes, one of which horizontally flips the image patch and the current patch, and inputs them in batches into the
pretrained model. These two parallel circuits use their respective pixel loss calculations to optimize the output results of image
blocks, gradually adjusting the parameters of the pretrained model.

Transformer (based on feedforward networks) [23] represent the
forefront of advancements in this field. Liu et al. [23] introduce
the Paint Transformer, which models the neural painting task as a
stroke set prediction problem and eliminates the dependency on
annotated data through a self-training mechanism. Its core lies
in leveraging the self-attention mechanism of the Transformer to
capture long-range dependencies within images, generating highly
stable painting results by incorporating contextual information.
However, this method suffers from issues such as blurred stroke
boundaries and granularity mismatches, limiting its application
in complex real-world scenarios. Hu et al. [13] propose a phase-
based reinforcement learning strategy in the Compositional Neural
Painter, where a synthesizer network dynamically predicts paint-
ing regions and a WGAN-driven [10, 13] stroke renderer generates
parameters. While this method addresses boundary artifacts from
traditional block-based rendering, the sensitivity of its reinforce-
ment learning agent to out-of-distribution images leads to reduced
stability in generated outputs, particularly in heterogeneous light-
ing scenarios where performance significantly degrades.
Test-Time Adaptation (TTA). Traditional test-time training [31]
requires joint optimization of supervised and self-supervised objec-
tives, which further exacerbates the instability of generated quality.
Therefore, we shift our focus to TTA, which has two main represen-
tatives: 1) hypothesis-transfer-based methods, such as SHOT [20],

that achieve target domain adaptation through self-supervised fine-
tuning of feature extractors; and 2) entropy minimization based
methods, such as Tent [34], that reduce distribution discrepancies
by optimizing the statistics of normalization layers. Although these
methods perform excellently in classification tasks, their applica-
tion to generative tasks faces two major limitations: 1) they fail
to maintain artistic style consistency, and 2) the parameter up-
date mechanisms are incompatible with the need for decoupling
hierarchical features in generative models. Our study is the first
to systematically introduce the TTA mechanism into the neural
oil painting generation task, proposing a layer normalization pro-
gressive adaptation strategy for generative models. This approach
resolves the aforementioned limitations while achieving zero-shot
domain alignment.

3 DANP: A Domain-Agnostic Neural Painting
Framework

The DANP framework pioneers TTA in neural oil painting by
introducing a resolution-agnostic domain alignment mechanism.
As illustrated in Figure 2, DANP operates in two stages: (1) Multi-
Resolution Pyramid Sampling. Hierarchical decomposition of
input images into pyramidal patches. (2) Dual-Branch Adaptive
Optimization. Parallel processing of original and mirrored patches
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with frozen backbone weights, selectively updating affine parame-
ters of normalization layers. This design achieves source-free un-
supervised adaptation while preserving artistic style consistency
across resolutions. The primary process is shown in Algorithm 1.

Algorithm 1 Painting Inference Algorithm
Input: Target image𝑇 with dimensions 𝐻 ×𝑊 ; Patch size 𝑃 ; Pre-trained

model net_g.
Output: Rendered image𝑇𝑡 and ordered stroke sequence 𝑆 .

1 Stage I: Multi-Resolution Pyramid Sampling
2 𝐾 = max(argmin𝐾 {𝑃 × 2𝐾 ≥ max(𝐻,𝑊 ) }, 0) ; #Scale calculation.
3 𝐶 = 𝑏𝑙𝑎𝑛𝑘_𝑐𝑎𝑛𝑣𝑎𝑠 and 𝑆=∅;
4 for 0 ≤ 𝑘 ≤ 𝐾 do
5 Resize𝑇 and𝐶 to dimensions (𝑃 × 2𝑘 , 𝑃 × 2𝑘 ) and partition𝑇 and𝐶

into uniform patches of size (𝑃, 𝑃 ) ;
6 Store corresponding patches from𝑇 and𝐶 with differential patches in

test dataset as 𝐼𝑡 and 𝐼𝑐 , then update 𝐼𝑐 using pre-trained model
net_g;

7 end
8 Extend𝑇 and𝐶 via padding to dimensions (𝑃 × 2𝐾 + 𝑃, 𝑃 × 2𝐾 + 𝑃 ) and

store boundary patches in test dataset as 𝐼𝑡 and 𝐼𝑐 ; #Boundary area
compensation.

9 Stage II: Dual-Branch Adaptative Optimization
10 Extract patches of 𝐼𝑡 and 𝐼𝑐 from test dataset for fine-tuning the net_g;
11 Generate horizontal mirror images 𝐼 ′𝑡 and 𝐼

′
𝑐 ;

12 Employ CNN encoder and Transformer architecture to predict stroke
parameters for dual branches, aggregating all patch strokes as (𝑆𝑡 ,𝐶𝑡 ) and
(𝑆 ′𝑡 ,𝐶

′
𝑡 );

13 Update canvas: 𝐼𝑐 = 𝐼𝑐 + 𝑟𝑒𝑛𝑑𝑒𝑟𝑒𝑟 (𝐼𝑐 , 𝑆𝑡 ,𝐶𝑡 ) ;
𝐼 ′𝑐 = 𝐼 ′𝑐 + 𝑟𝑒𝑛𝑑𝑒𝑟𝑒𝑟 (𝐼 ′𝑐 , 𝑆 ′𝑡 ,𝐶′

𝑡 ) ; # Only high-confidence strokes are
rendered.

14 Derive final stroke collection through 𝑆 = 𝑆 ∪ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑆 ) and update
canvases 𝐼𝑐 and 𝐼 ′𝑐 to obtain generated images 𝐼𝑝 and 𝐼 ′𝑝 ;

15 Calculate pixel-wise loss metrics: Update pre-trained model using
aggregate loss: L𝑡𝑜𝑡𝑎𝑙 = 𝛼L𝑚𝑖𝑟𝑟𝑜𝑟 + 𝛽L𝑐𝑟𝑜𝑠𝑠 , yielding fine-tuned
model net_g’;

16 Utilize fine-tuned model net_g’ to predict stroke parameter set 𝑆 and
render final image𝑇𝑡 approximating target artistic style;

17 return𝑇𝑡 and 𝑆

3.1 Multi-Resolution Pyramid Sampling
This study adopts a multi-resolution pyramid sampling method
based on a transformer network structure to enhance the diversity
of data and promote the model’s learning of image generation fea-
tures. Specifically, we use a recursive method that generates image
patches of different sizes from the input image T ∈ R512×512. This
process generates patches with hierarchical feature representations:

𝐼𝑡 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(T, P,K), (1)

where 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 represents the recursive sampling process, the
layer count 𝐾 is specifically calculated as shown in Algorithm 1.
Ultimately, this process generates the target patch 𝐼𝑡 at different
hierarchical levels. Each generated patch 𝐼𝑡 corresponds to a specific
image scale that varies in resolution, and with each increase in
layer, the image patch details are progressively refined. Therefore,
the hierarchical structure of the transformer model enables the
model to learn multi-resolution features of images, improving its
representation of artistic tasks.

The corresponding image patches 𝐼𝑡 are then processed by the
model to generate the final initial canvas 𝐼𝑐 that is subsequently used
for further fine-tuning. The model utilizes the generated data and
learning parameters in the fine-tuning process: 𝐼𝑐 = 𝑔(𝐼𝑡 ), where
𝑔(·) denotes the process of generating the initial canvas, using the
pre-trainedmodel. In this case, the image patch 𝐼𝑡 corresponds to the
target image in the transformer architecture, where the generated
canvas 𝐼𝑐 is resized to 32 × 32 pixels. The initial canvas created
at this stage is crucial for enhancing model performance during
the fine-tuning process. By incorporating meaningful brushstroke
information, it facilitates more efficient learning for the model and
serves as an optimal starting point for subsequent fine-tuning tasks.

3.2 Dual-Branch Adaptative Optimization
Selective Update of Normalization Affine Parameters. Nor-
malization layers, such as Batch Normalization (BatchNorm) [1]
and Layer Normalization (LayerNorm), are critical components
in deep neural networks. They stabilize training, accelerate con-
vergence, and mitigate issues like vanishing/exploding gradients
by normalizing layer inputs. Crucially, both incorporate learnable
affine parameters (scale 𝛾 and shift 𝛽) after normalization, allowing
the network to preserve or transform the normalized distribution.
The core distinction lies in the axis of normalization: BatchNorm
uses batch+spatial axes, making its statistics dependent on the batch
composition. LayerNorm uses the feature axis, making its statis-
tics sample-specific and independent of batch size. This difference
impacts their sensitivity to distribution shifts. The normalization
operation with affine transformation is defined as:

output = 𝛾 ·
(
𝑥 − 𝜇
√
𝜎2 + 𝜖

)
+ 𝛽, (2)

where 𝛾 and 𝛽 are learnable affine parameters (scale and shift),
𝜇 and 𝜎 are statistical moments (non-learnable), and 𝜖 is a small
constant for numerical stability. During adaptation, only affine pa-
rameters (𝛾 , 𝛽) are updated via gradient descent while all other
parameters (including 𝜇, 𝜎 and non-normalization layer weights)
remain frozen. Updating 𝛾 and 𝛽 allows the model to efficiently
re-calibrate feature scales and shifts in response to new data distri-
butions (e.g., artistic styles in image generation), without altering
the pre-trained convolutional filters or linear transformations that
encode high-level features. Freezing other parameters preserves
knowledge from large-scale pre-training and drastically reduces
overfitting risk. BatchNorm’s affine parameters are particularly sen-
sitive to domain shifts due to their dependence on batch statistics,
making their adaptation crucial. LayerNorm’s affine parameters
offer sample-wise adaptability beneficial for variable-length inputs
or small batches. This selective update strikes a balance between
adaptability and stability.
Asymmetric Dual-Branch Architecture. In the oil painting gen-
eration task, the symmetry and consistency of both local structures
and overall layouts of the image are crucial for producing high-
quality oil paintings. During the initial experiments, it was observed
that a single branch lacked robustness when handling diverse in-
puts (e.g., different levels and scales of image patches generated
in the first stage). As a result, the generated brushstrokes were
prone to instability when confronted with complex scenes. To ad-
dress this, we propose an asymmetric dual-branch architecture,
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which introduces horizontal image flipping into the original branch
structure. This allows the model to learn feature information from
different angles, ensuring that the generated brushstrokes main-
tain consistency regardless of the direction of the input image. The
inclusion of the asymmetric dual-branch architecture essentially
increases the input of flipped images, enabling the model to learn
more symmetric information and preventing inconsistencies in the
generated brushstrokes. Additionally, the asymmetric dual-branch
architecture adopts multi-view feature inputs, which implicitly en-
hance the input data. This design improves the model’s stability
and flexibility, making it more capable of handling complex scenes
during the generation process. The loss function for the asymmetric
dual-branch architecture can be expressed as:

L𝑚𝑖𝑟𝑟𝑜𝑟 = L𝑝1 + L𝑝2 = L𝑝𝑖𝑥𝑒𝑙 (𝐼𝑝 , 𝐼𝑡 ) + L𝑝𝑖𝑥𝑒𝑙 (𝐼 ′𝑝 , 𝐼 ′𝑡 ) . (3)

Dual-Branch Interaction Loss. Despite the inclusion of the asym-
metric dual-branch architecture, the use of a single pixel loss during
neural image painting still makes it challenging to guide the pre-
trained model towards the desired optimization direction. This is
especially true when generating brushstrokes, as we need to con-
sider not only matching the original image but also maintaining the
symmetry and consistency of the generated image. In other words,
finer brushstroke optimization details are required. To enhance this
refinement capability and ensure that the brushstrokes generated
by the model at different levels and perspectives remain consistent
with the real image, we have designed a multi-loss strategy.

In addition to the pixel loss between the target and generated
images in the original and mirror branches, we introduce two in-
teraction pixel losses between the branches. These loss functions
aim to benchmark the original branch and mirror branch outputs
against each other, ensuring that the generation results of each
branch align with the output of the other branch. This constraint
between the brushstrokes generated by different branches further
strengthens the model’s robustness and consistency during the
generation process. The cross-image loss can be formulated as:

L𝑝3 = L𝑝𝑖𝑥𝑒𝑙 (𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝐹𝑙𝑖𝑝 (𝐼 ′𝑝 ), 𝐼𝑡 ), (4)

L𝑝4 = L𝑝𝑖𝑥𝑒𝑙 (𝐼𝑝 , 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝐹𝑙𝑖𝑝 (𝐼 ′𝑡 )), (5)
L𝑐𝑟𝑜𝑠𝑠 = L𝑝3 + L𝑝4 . (6)

By introducing the dual-branch interaction loss, the model is able
to learn the comparison between the two branches, further improv-
ing the consistency of image quality generated by both branches.
Therefore, the final loss can be derived as:

L𝑡𝑜𝑡𝑎𝑙 = 𝛼L𝑚𝑖𝑟𝑟𝑜𝑟 + 𝛽L𝑐𝑟𝑜𝑠𝑠 , (7)

where 𝛼 and 𝛽 are weight coefficients that control the balance
between two branches.

4 Experiment
We conduct comprehensive experiments on various types of datasets
to validate the effectiveness and superiority of the proposed op-
timization strategy. The experiments are divided into several key
sections: dataset description, implementation details of the opti-
mization strategy, ablation studies, performance improvements on
images of different resolutions, and comparisons with state-of-the-
art methods.

4.1 Dataset Description
To evaluate the proposed method’s effectiveness and versatility
across various image generation tasks, we conducted experiments
on three representative datasets: the FFHQ dataset [17], which con-
tains high-quality facial images; the Landscapes dataset [3], consist-
ing of diverse natural scenery images; and the Wikiart dataset [26],
featuring a variety of artistic styles. To ensure the comprehen-
siveness and representativeness of the experiments, we randomly
selected 100 images from each dataset, with each image having a
resolution of 512x512. During testing, in order to fully leverage
the benefits of the TTA strategy, each image was processed in a
pyramid-like hierarchical manner, dividing it into image patches of
varying resolutions. Specifically, for each image, 630 pairs of tar-
get image patches 𝐼𝑡 and canvas image patches 𝐼𝑐 were generated,
providing ample patch information for further optimization.

4.2 Implementation Details
We utilize a convolutional neural network (CNN) module and a
Transformer generator to predict the brushstroke parameters from
the input real and canvas images. These predicted parameters are
then used in the subsequent rendering stage to generate the final im-
age. When the rendered brushstroke region exceeds 75% coverage,
the confidence of the renderer is set to 0 to prevent excessive overlap
of brushstrokes, which could lead to unnatural results. Additionally,
all hyperparameters for the loss functions are set as 𝜆𝑝1 = 𝜆𝑝2 = 10,
and weighted contributions are applied to balance the influence
of each loss term. The AdamW optimizer [24] is employed, with
a weight decay parameter of 0.05 to mitigate overfitting. The ex-
periments are conducted on a single Nvidia RTX 4090 GPU with
a batch size of 32 and run for a total of 32 epochs. To ensure the
model gradually adapts to the new task in the early training phases,
a warm-up learning rate strategy [9] is used. Specifically, during
the first two epochs, the learning rate linearly increases from the
initial value of 1 × 10−6 to the set learning rate of 1 × 7.5−3, after
which it remains constant in the third epoch. Starting from the
fourth epoch, a cosine decay strategy is applied, gradually reducing
the learning rate, which reaches its final value of 1 × 5−4 by the
32nd epoch, ensuring the stability and convergence of the training
process.

4.3 Ablation Studies and Further Discussion
Effect of different components. We thoroughly analyze the con-
tribution of each componentwithin the DANP framework to the
overall generation performance and present a quantitative com-
parison of pixel-level (L𝑝𝑖𝑥𝑒𝑙 ) and perceptual-level (L𝑝𝑐𝑝𝑡 ) recon-
struction errors, where lower values indicate higher reconstruction
quality. All results were generated at a resolution of 512 × 512 by
default, as shown in Table 1 (a). The "w/o" notation indicates the re-
moval of the corresponding components. We observe that removing
any component leads to a decrease in the model’s stability during
fine-tuning, resulting in varying degrees of increase in both pixel
and perceptual reconstruction.
Effect of different losses. Table 1 (b) displays the generated re-
sults under different branch loss combinations. Starting from the
baseline, when the mirror loss is introduced, both (L𝑝𝑖𝑥𝑒𝑙 ) and
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Table 1: The experiments demonstrate the necessity of all components—selectively updating the affine parameters of normal-
ization layers (BatchNorm, LayerNorm), the geometrically robust dual-branch architecture, and the interaction losses between
branches—for the effectiveness of the DANP architecture.

(a) Ablation study on the primary components.

Methods
FFHQ [17] Landscapes [3] Wikiart [26] Average

L𝑝𝑖𝑥𝑒𝑙 ↓ L𝑝𝑐𝑝𝑡 ↓ L𝑝𝑖𝑥𝑒𝑙 ↓ L𝑝𝑐𝑝𝑡 ↓ L𝑝𝑖𝑥𝑒𝑙 ↓ L𝑝𝑐𝑝𝑡 ↓ L𝑝𝑖𝑥𝑒𝑙 ↓ L𝑝𝑐𝑝𝑡 ↓
w/o BatchNorm 0.048 0.773 0.060 0.768 0.060 0.841 0.056 0.794
w/o LayerNorm 0.049 0.771 0.061 0.760 0.060 0.834 0.057 0.788

w/o Mirrored Branch 0.051 0.801 0.063 0.782 0.063 0.860 0.059 0.814
Ours 0.048 0.769 0.059 0.756 0.059 0.830 0.055 0.785

(b) Ablation study on different loss functions

Methods L𝑝1 L𝑝2 L𝑝3 + L𝑝4
Average

L𝑝𝑖𝑥𝑒𝑙 ↓ L𝑝𝑐𝑝𝑡 ↓
Baseline ✓ 0.057 0.798

𝑤 mirror_loss ✓ ✓ 0.056 0.786
𝑤 cross_loss (Ours) ✓ ✓ ✓ 0.055 0.785

Table 2: Quantitative Analysis on different input resolutions, i.e., 512 and 1024. We observe that the proposed method yields
better quality in both resolutions.

Methods Resolutions
FFHQ [17] Landscapes [3] Wikiart [26] Average

FID↓ [4]
L𝑝𝑖𝑥𝑒𝑙 ↓ L𝑝𝑐𝑝𝑡 ↓ L𝑝𝑖𝑥𝑒𝑙 ↓ L𝑝𝑐𝑝𝑡 ↓ L𝑝𝑖𝑥𝑒𝑙 ↓ L𝑝𝑐𝑝𝑡 ↓ L𝑝𝑖𝑥𝑒𝑙 ↓ L𝑝𝑐𝑝𝑡 ↓

Pretrained-model [23]
512×512

0.056 0.870 0.067 0.858 0.064 0.900 0.062 0.876 77.262

DANP 0.048 0.769 0.059 0.756 0.059 0.830 0.055 0.785 68.662

Pretrained-model [23]
1024×1024

0.050 0.723 0.065 0.805 0.061 0.812 0.059 0.780 40.424

DANP 0.036 0.570 0.055 0.709 0.052 0.742 0.047 0.674 31.854

(L𝑝𝑐𝑝𝑡 ) show a decrease. Further incorporating the cross loss re-
sults in a reduction of (L𝑝𝑖𝑥𝑒𝑙 ) from 0.057 to 0.055, while (L𝑝𝑐𝑝𝑡 )
decreases from 0.798 to 0.785.The gradual refinement of the loss
function design allows the model to generate high-quality images
more efficiently, ultimately demonstrating the superiority of the
full loss function combination.
Scalability to Different Resolution. To comprehensively evalu-
ate the effectiveness of the proposed neural painting framework, we
conduct experiments on images with a resolution of 512×512 and
further validated its generalization performance in high-resolution
1024×1024 scenes (as shown in Figure 1). The experiments use a
pre-trained model based on Paint Transformer as the baseline. The
results demonstrate that the images generated by the optimization
strategy significantly outperform those produced by the original
pre-trained model at both 512×512 and 1024×1024 resolutions. The
brushstroke fineness is improved, with finer details in the generated
images andmore accurate brushstroke rendering in detailed regions,
significantly reducing visible brush traces. The visual quality is en-
hanced, and image fidelity, color consistency, and boundary coher-
ence are systematically optimized. We also designed a quantitative
validation framework, incorporating perceptual loss in addition to

pixel loss to establish a dual-metric evaluation system, providing a
comprehensive measure of perceptual quality and detail recovery.
Table 2 shows that the average performance improvement exceeds
10% at 512×512 resolution, with a further increase of over 20% at
1024×1024 resolution, breaking through the traditional limitation
of "high-resolution requiring exponential growth in brushstrokes
with diminishing returns." Through the Fréchet Inception Distance
(FID) [4] to quantify the distribution differences between the train-
ing set (brushstroke domain) and the test set (real-world domain), it
is confirmed that the strategy effectively narrows the domain gap.

4.4 Comparison with the state-of-the-arts
Our method is rigorously compared with state-of-the-art neural
painting techniques, as shown in Figure 3 and Table 3. To assess its
generalization ability, we further apply DANP to the CNP frame-
work (denoted as CNP+DANP). Quantitative results demonstrate
that, at a resolution of 512×512, DANP surpasses the baseline meth-
ods in both pixel loss and perceptual loss, resulting in a significant
improvement in generated image quality. Although CNP, trained
on CelebA-HQ [16] and ImageNet [5] using reinforcement learning,
performs excellently in portrait generation, it exhibits significant
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FFHQ

Landscapes

Wikiart

GT SNP PT CNPPT + DANP CNP + DANP
Figure 3: Qualitative comparison with the state-of-the-art methods, including SNP (Stylized Neural Painting [41]), PT (Paint
Transformer [23]), and CNP (Composition Neural Painter [13]), on datasets from three domains, i.e., FFHQ, Landscapes, and
Wikiart. We observe that the proposed method with adaptation to the target scenario has achieved better visual quality.
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Table 3: Quantitative comparison with the state-of-the-art methods. We could observe two points that (1) the proposed method
is scalable to different approaches to further improve the output quality (2) CNP with the proposed DANP has achieves better
pixel reconstruction, while Paint transformer with ours yeilds better perceptual quality.

Methods
FFHQ [17] Landscapes [3] Wikiart [26] Average

Lpixel ↓ Lpcpt ↓ Lpixel ↓ Lpcpt ↓ Lpixel ↓ Lpcpt ↓ Lpixel ↓ Lpcpt ↓
Stylized Neural Painting [41] 0.070 1.043 0.083 1.098 0.086 1.148 0.079 1.096

Paint Transformer [23] 0.056 0.870 0.067 0.858 0.064 0.900 0.062 0.876

PT+DANP 0.048 0.769 0.059 0.756 0.059 0.830 0.055 0.785

Compositional Neural Painter [13] 0.038 0.873 0.048 0.875 0.048 0.908 0.045 0.885

CNP+DANP 0.036 0.838 0.046 0.843 0.045 0.858 0.042 0.846

mse_loss=0.0131 mse_loss=0.0044 mse_loss=0.0034 mse_loss=0.0032 mse_loss=0.0030

500 1500 3000 4500 5000

500 1500 3000 4500 5000

mse_loss=0.0045 mse_loss=0.0037 mse_loss=0.0030 mse_loss=0.0029 mse_loss=0.0027

GT

CNP

 CNP 
    + 
DANP

Figure 4: Comparison of generated images with varying numbers of brushstrokes, we observe that DANP achieves high-quality
reconstruction even with a low brushstroke count. As the number of brushstrokes increases, DANP consistently outperforms
existing method, maintaining a significant advantage.

stability issues in complex scenes, with extreme cases leading to
generation failure. In contrast, CNP+DANP not only achieves state-
of-the-art (SOTA) performance at the pixel level but also alleviates
the instability issues associated with CNP. This demonstrates that
DANP serves both as a performance enhancer and a stability stabi-
lizer. Similarly, PT+DANP reaches the optimal performance at the
perceptual level, highlighting DANP’s ability to amplify the advan-
tages of existing models and its strong generalization capacity.
Inference speed. During inference, we further compare the gen-
erated images with varying numbers of brushstrokes, as illustrated
in Figure 4. The results show faster convergence and higher recon-
struction accuracy, indirectly suggesting that fewer brushstrokes
are required to achieve comparable quality, thereby confirming its
superior balance between efficiency and accuracy. The proposed
framework efficiently selects the salient strokes.

5 Conclusion
This study proposes DANP, a Test-Time Adaptation (TTA)-based
Neural Oil Painting method to address the domain gap issue be-
tween the real-world test image and the training dataset. In partic-
ular, we selectively update the affine parameters of Norm layers,

set up mirror branches, and introduce multiple pixel loss func-
tions. While preserving the fidelity of the generated images, the
approach enhances brushstroke details, reduces brushstroke ar-
tifacts, and further resolves the boundary consistency issue. We
conducted extensive comparative experiments, and ablation studies
quantitatively demonstrated the necessity of each component of the
proposed optimization strategy. Furthermore, the Fréchet Inception
Distance (FID) metric confirmed a significant reduction in domain
bias. Additionally, we generalized DANP on the CNP framework,
and both qualitative and quantitative results show that our method
outperforms existing state-of-the-art Neural Painting techniques.
Moreover, under the condition of the same number of brushstrokes,
our approach is capable of generating more precise and meaningful
brushstrokes.
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