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Abstract

Depth completion can predict a dense depth map by taking a sparse depth map and

the aligned RGB image as input, but the acquisition of ground truth annotations is

labor-intensive and non-scalable. Therefore, we resort to semi-supervised learn-

ing, where we only need to annotate a few images and leverage massive unlabeled

data without ground truth labels to facilitate model learning. In this paper, we

propose SEED, a SElf-Ensembling Depth completion framework to enhance the

generalization of the model on unlabeled data. Specifically, SEED contains a pair

of the teacher and student models, which are given high-density and low-density

sparse depth maps as input respectively. The main idea underpinning SEED is to

enforce the density-aware consistency by encouraging consistent prediction across

different-density input depth maps. One empirical challenge is that the pseudo-

depth labels produced by the teacher model inevitably contain wrong depth values,

which would mislead the convergence of the student model. To resist the noisy

labels, we propose an automatic method to measure the reliability of the gener-
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ated pseudo-depth labels adaptively. By leveraging the discrepancy of prediction

distributions, we model the pixel-wise uncertainty map as the prediction variance

and rectify the training process from noisy labels explicitly. To our knowledge, we

are among the early semi-supervised attempts on the depth completion task. Ex-

tensive experiments on both outdoor and indoor datasets demonstrate that SEED

consistently improves the performance of the baseline model by a large margin

and even is on par with several fully-supervised methods.

Keywords:

Depth Completion, Semi-supervised Learning, Density-aware Consistency,

Uncertainty Estimation.

1. Introduction

Dense and accurate depth perception is critical for subsequential applications,

such as simultaneously localization and mapping (SLAM), autonomous driving,

and augmented reality (AR). To obtain the depth of the surrounding environment,

various depth sensors have been developed such as RGB-D cameras, stereo cam-

era systems, and LiDAR sensors. Among these devices, the RGB-D cameras are

not applicable for outdoor scenarios due to the short-ranging distance. Stereo

algorithms usually fail to predict accurate depth in ill-posed areas and texture-

less regions. At present, the LiDAR scanners are the most accurate depth per-

ception sensors and have been widely adopted in autonomous driving vehicles

and mobile robots. However, current LiDARs can only obtain sparse depth per-

ceptions because the number of horizontal scan lines is limited, e.g., the 32-line

Velodyne scanner. The sparse depth is insufficient for many practical applica-

tions such as navigation and planning [1]. Depth maps, as 2.5D representations,
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have been widely used in real-world applications such as scene understanding and

scene representation [2, 3]. A promising way to recover the dense depth map

from the sparse depth input is depth completion [4, 5]. In the past few years,

the deep learning-based depth completion algorithms have achieved significant

performance. The widely-used image-guided depth completion approaches [6, 7]

take a sparse depth map and the aligned RGB image as input, and require densely-

annotated ground truth for training. Despite the remarkable success, existing

methods typically rely on sufficient annotated training data. In the real world,

the cost of acquiring ground truth labels for supervised learning is challenging

and not easily scalable [1]. Due to the massive sparse and noisy points captured

by the LiDAR, the ground truth labels (dense depth maps) of depth completion are

scarce, which are a major limitation of supervised depth completion. Therefore,

one problem occurs: how to improve the generalization of the model on massive

unlabeled data. In this work, we regard the training data with ground truth depth

annotations as labeled data, in contrast, only the raw sparse depth captured by

LiDARs without annotations are viewed as unlabeled data.

Inspired by the huge success of semi-supervised learning methods, we propose

a SElf-Ensembling Depth (SEED) completion framework to bring performance

gain by leveraging both the labeled data and unlabeled data. We resort to semi-

supervised learning, where we only need to annotate a few training samples and

leverage the rest unlabeled data to facilitate model training. Theoretically, a robust

depth completion model should make consistent predictions when given sparse

depth maps with different densities as input. However, we observe that the pre-

dicted depth values inherently fluctuate when the density of input depth changes.

This observation inspires us to improve the generalization ability of the model on
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unlabeled and unseen data by encouraging consensus predictions with different-

density depth maps as inputs. Specifically, we design a self-ensembling paradigm

to explore the density-aware consistency of unlabeled data by reducing the predic-

tion gap between high-density and low-density input depth maps. Taking the raw

depth and color image pairs as input, the teacher model of SEED first generates

pseudo-depth with the unlabeled data as input. Then the student model is super-

vised by the pseudo-depth when fed a low-density version of the depth map. With

the output of the teacher model as supervision, the student model is forced to mine

more geometry information from the input data and ensure prediction consistency

across high density su and low density s̃u input depth maps.

One empirical challenge is that the generated pseudo-depth maps [3] inevitably

contain incorrect predictions, which would mislead the convergence of the student

model. Existing semi-supervised methods [8, 9] filter out the low-score pseudo-

labeled samples by manually setting the threshold. But these approaches cannot

be directly extended to depth completion because the predictions of regression

tasks do not have class scores. Therefore, to evaluate the reliability of the pseudo-

depth labels, we propose an adaptive method to perform uncertainty estimation

automatically. By leveraging the distribution discrepancy of outputs, we model

the uncertainty as the prediction variance without introducing extra modules

and parameters. Then we incorporate the uncertainty rectification into the op-

timization to tackle the problem of noisy pseudo-depth labels. SEED can dy-

namically filter out unreliable predictions from the teacher model and focus the

student model on reliable pseudo annotations according to the uncertainty crite-

rion [10]. Besides, we perform iterative training by updating the parameters of the

teacher model with the current student model and re-train a new student. During
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inference, SEED only requires the student model to perform depth completion

without the teacher model.

In general, SEED distills the reliable knowledge (high-confidence pseudo-

depth labels) from the teacher model to the student model, then the knowledge

learned by the student model is fed back to the teacher model (self-training).

Therefore, we call the semi-supervised training algorithm a self-ensembling paradigm.

Overall, the contributions are as follows:

• We present a semi-supervised depth completion method (SEED) for a real-

world scenario, i.e., limited annotations and massive unlabeled data. (1) To

boost the generalization of the model, we propose a self-ensembling frame-

work by enforcing the density-aware consistency on the unlabeled data. (2)

To resist the noisy pseudo labels, we propose a variance-based uncertainty

estimation method to rectify the learning from unreliable pseudo-depth la-

bels.

• We demonstrate the effectiveness of the proposed approach by evaluating

on both outdoor and indoor datasets, i.e., KITTI [4] and NYUv2 [11]. Ex-

tensive experiments substantiate that SEED consistently improves the per-

formance of the baseline model by a large margin and even is on par with

several fully-supervised methods.

2. Related Work

Depth Completion. Based on the modality of input data, previous works can

be divided into two categories, i.e., depth-only methods [4] and image-guided

methods [12, 13, 14]. The depth-based methods [4] only take a sparse depth
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map scanned from the LiDAR [15] as the input. In the early years, traditional

approaches mainly perform depth completion with classical image processing al-

gorithms. However, with the rising of deep neural networks, convolutional neu-

ral network-based models have drawn wide attention due to their extraordinary

performance on computer vision tasks. Uhrig et al. [4] integrate an effective

sparse convolution operator into neural networks to process the sparse depth data.

Similarly, Huang et al. [16] propose more complex sparsity-invariant layers with

multi-scale and hierarchical architectures. To tackle the noisy input data, Eldes-

okey et al. [17] propose to learn the uncertainty of depth maps in a self-supervised

manner. The normalized convolutional neural networks [17] improve the inter-

pretability of models and outperform existing Bayesian deep networks by a large

margin.

Another line of depth completion approaches are image-guided methods [12],

which employ an additional RGB image as the guidance to further improve the

performance. Tang et al. [18] introduce a novel three-stage multi-scale training

framework (BP-Net) with three-stage training strategy, incorporating depth refine-

ment and multi-modal fusion with bilateral propagation. Yan et al. [19] model the

scene geometry with tri-Perspective view decomposition (TPVD).

Recently, SPN-based approaches [6, 7, 20] have gained a surge of interest

due to the extraordinary performance for depth completion. Specifically, they

adopt the spatial propagation networks (SPNs) to refine the dense depth map

progressively, producing a sequence of output predictions in the refine process.

Cheng et al. [6] first introduce the convolutional spatial propagation network to

learn the affinity of neighboring pixels. To further improve the effectiveness and

efficiency of the convolutional spatial propagation network, Cheng et al. [7] pro-
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pose to learn the number of iterations and the kernel sizes adaptively.

Semi-Supervised Learning. Semi-supervised learning aims to facilitate model

training with limited labels. Early works utilize discriminators to calibrate the

distributions of unlabeled data and labeled data with an adversarial loss. Pseudo-

labels-based methods [9] first generate pseudo-labels on unlabeled data and then

perform self-training with strong augmentations. Chen et al.[21] introduce a

multi-task mean teacher model for semi-supervised shadow detection. Although

semi-supervised learning has made significant progress in classification, there is a

paucity of literature focusing on depth regression tasks. Kuznietsov et al. [22] in-

troduce an image alignment loss to guide the model to predict the photo-consistent

depth maps.

Uncertainty Estimation. Understanding whether a model is under-confident or

falsely over-confident can help us to evaluate the reliability of the prediction [23].

Kendall et al. [23] present a Bayesian framework to map the input data to the

aleatoric uncertainty. Recently, several approaches are proposed to estimate the

uncertainty of depth regression tasks. Poggi et al. [24] make a comprehensive

evaluation of uncertainty estimation approaches. Eldesokey et al. [17] introduce

a probabilistic convolutional network with meaningful statistical interpretability

for the prediction. However, it remains unexplored how to employ uncertainty to

resist the noisy pseudo-depth labels of the depth completion task. In this paper,

we attempt to fill this gap by incorporating uncertainty estimation to rectify the

training from unreliable pseudo-depth labels.
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3. Approach

3.1. Problem Definition

For depth completion, the samples with ground truth depth annotations are

regarded as labeled data, while only the raw sparse depth maps captured by Li-

DARs without annotations are viewed as unlabeled data. Given both labeled and

unlabeled data, we intend to address depth completion in a semi-supervised man-

ner. Here we use Dl = {(xl
i, s

l
i, yi)}N

l

i=1 and Du = {(xu
i , s

u
i )}N

u

i=1 to represent the

labeled and unlabeled training set respectively. N l and Nu denote the number of

images in labeled and unlabeled training sets separately. Concretely, x, s, and y

represent the RGB image, the input sparse depth map, and the ground truth depth

labels respectively. It is worth noting that the sparse input depth s is the scanned

raw data captured by LiDAR sensors, x is the RGB image aligned with s, and y is

the densely-annotated ground-truth depth map.

3.2. Preliminaries

Spatial propagation networks. Spatial propagation networks (SPNs) [25] have

proven to be an effective depth refinement module for depth completion [6, 7, 20].

The SPN-based model mainly contains a U-Net module and a spatial linear prop-

agation module. The U-Net module learns the affinity matrix among neighboring

pixels and predicts an initial depth map, while the spatial linear propagation mod-

ule performs propagation from the initial depth map under the guidance of the

learned affinity matrix. After propagating T steps progressively, we can obtain

the refined depth map dT . In the fully-supervised setting, the predicted depth map

is supervised by the ground-truth labels with L1 and L2 loss:

Llabeled
reconstruct =

1

|V|
∑

ρ∈{1,2}

∑
v∈V

∣∣dgtv − dTv
∣∣ρ , (1)
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where dTv is the T -th prediction (final prediction) of point v, and V represents

the valid point set of the ground truth depth map. The combined reconstruction

loss is the sum of L1 loss (ρ = 1) and L2 loss (ρ = 2). In this paper, we adopt

SPN-based model as the baseline to be compatible with most state-of-the-art depth

completion models [6, 7, 20].

3.3. Overview

The brief pipeline of SEED is shown in Fig. 1. SEED contains a pair of the

teacher and student models, which are given high-density and low-density sparse

depth maps as input respectively. We first follow the common practice of fully-

supervised approaches [6, 7, 20] to train the initial teacher model on limited la-

beled data (Fig. 1 I). On the unlabeled data, we aim to evolve both the teacher and

student models via the density-consistent mechanism (see Sec. 3.4 and Fig. 1 II).

Taking the RGB image and the aligned raw depth map (high-density) as input,

the teacher model generates the pseudo labels by refining the predictions progres-

sively. The student model fed with low-density depth is trained to be consistent

with the prediction of the teacher model. However, the pseudo-depth labels in-

evitably contain depth values with large errors, which would mislead the conver-

gence of the student model. Therefore, we aim to filter out the unreliable noisy

pixels from the pseudo-depth labels. We observe that some pseudo-labels con-

verge at an early stage of the refinement, while predictions on other pixels do not

converge to a stable depth value during the refine process. The disconvergence of

depth estimation on these pixels indicates that the teacher model is not confident

about the predictions and these pseudo-depth labels are not reliable. Therefore,

we formulate the uncertainty as the variance of T predicted depth maps (generate

in the refine process) to measure the reliability of the pseudo-depth labels. The
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Figure 1: Overview of SEED. I. The teacher model is first trained on limited labeled data with

ground-truth annotations. II. For unlabeled data, we train the models in a self-ensembling manner

via the density-aware consistency. Given the high-density depth map su and RGB image xu as

input, the teacher model generates T predictions in the refine process progressively (from d̂1 to

d̂T ). III. The uncertainty is modeled as the prediction variance, which can be estimated from the

distribution of T predicted depth maps. Given the low-density depth map s̃u (subsampled) and the

corresponding RGB image xu, the student model is trained to maintain density-aware consistency

under the guidance of uncertainty rectification. Finally, we perform iterative bootstrapping by up-

dating the parameters of the teacher model with current student model and re-train a new student.

estimated uncertainty is explicitly involved into the density-aware consistency to

rectify the student model training (see Sec. 3.5 and Fig. 1 III). Finally, we update

the parameters of the teacher model with the current student model and iterate the

process to re-train a new student. During inference, only the student model is re-

quired to conduct depth completion. In general, we perform the self-ensembling

paradigm by distilling the reliable knowledge from the teacher model to the stu-

dent model, and then push the knowledge the student model learned back to the

teacher model.

3.4. Density-Aware Consistency

We propose SEED, a semi-supervised learning framework to improve the gen-

eralization of the model on unlabeled and unseen data. Ideally, a robust depth
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completion model should output consistent predictions when given depth maps

with different densities as input. However, we notice that the predictions inher-

ently fluctuate when the density of input depth changes. As observed in [4], the

performance drops significantly with the density of the input depth map decreas-

ing. This observation inspires us to promote the generalization of the model of un-

labeled data by encouraging consistent predictions across different-density depth

maps. Specifically,we design a teacher-student paradigm to explore the density-

aware consistency of unlabeled data by reducing the prediction gap between high

density and low density. We first use the labeled data to train a teacher model

with the conventional supervised learning method [6, 7, 20]. The widely-used

spatial propagation networks (SPNs) are employed to refine the predicted depth

maps progressively. Taking the raw depth and the color image as input, SEED

can generate pseudo-depth labels on the unlabeled data (see Fig. 1 II). Under the

supervision of the teacher model, the student model learns to recover the dense

depth map by minimizing the combined reconstruction loss as follows:

Lunlabeled
reconstruct =

1

|V|
∑

ρ∈{1,2}

∑
v∈V

|d̂Tv − dTv |ρ, (2)

where d̂Tv is the pseudo-depth label (the final prediction of the teacher model)

of point v, dTv is the T -th prediction (final prediction) of the student model at

point v, and V represents the point set of the full depth map. By reducing the

input density of the student model deliberately, we enforce consistent predictions

between high-density and low-density input. Considering the teacher model is

provided with more input depth information, there exist certain regions where the

prediction of the student is not accurate enough while the teacher performs better.

By mimicking the output of the teacher model, the student is forced to learn harder
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Figure 2: Visualization of the uncertainty and the error map. (a) We calculate the uncertainty

and the error map of the final prediction produced by the teacher model. (b) We make a comparison

between the uncertainty and the error map. For the uncertainty map, the yellow area denotes the

high variance in the uncertainty map while the blue region represents the small variance. The error

map depicts correct predictions in blue and wrong predictions in the red-color pixels. As shown in

the red dotted box, the high uncertainty area has remarkable overlaps with the large-error region.

from pseudo-depth labels, and explore the structural information from the RGB

guidance with limited depth information.

3.5. Noise-robust Uncertainty Rectification

The pseudo-depth labels generated by the teacher model inevitably contain

incorrect predictions, which can mislead the convergence of the student model.

Here we cannot directly use the error map to measure the reliability of pseudo-

depth maps, because the error map is calculated as the difference between the pre-

dictions and the ground truth labels, which are unavailable to the unlabeled data.

Therefore, we resort to the uncertainty [23] to evaluate the reliability of pseudo-

depth maps. Specifically, aleatoric uncertainty encompasses the inherent noise

present in observations, such as sensor or motion noise. This type of uncertainty

persists, regardless of the quantity of collected data. In contrast, epistemic uncer-

tainty addresses the uncertainty associated with model parameters. This uncer-
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tainty reflects our lack of knowledge about which model generated the collected

data, often referred to as model uncertainty. In this paper, we strive to incorporate

both epistemic and aleatoric uncertainty into a unified model. This is particularly

relevant for the semi-supervised depth completion task, where both sensor noise /

motion noise and insufficient data contribute to uncertainties in prediction results.

For the SPN-based baseline [6, 7, 20], the teacher model generates the pseudo

labels through a refinement process, producing a sequence of intermediate predic-

tions progressively. During the refine process, the spatial propagation is conducted

iteratively with the confidence-incorporated learnable affinity normalization. The

intermediate predictions (from 1-st to T-th step) are generated in different steps of

the refine process. Ideally, every pixel of the pseudo-depth maps tends to converge

to a stable depth value (from d̂1v to d̂Tv ). However, some hard pixels and regions

do not converge after the refinement, which indicates that the teacher model is

not confident about the predictions and the pseudo-depth labels are unreliable.

Therefore, we propose to model the uncertainty by the prediction variance of the

teacher model’s output (see Fig. 1 III), because the variance between the inter-

mediate outputs (generated in the refine process) and final outputs can measure

the predictive stability of the teacher model. Specifically, the uncertainty σv of the

point v is calculated from the distribution of T predictions:

σv =

√√√√ 1

T

T∑
t=1

(d̂tv − µv)2, µv =
1

T

T∑
t=1

d̂tv, (3)

where d̂tv represents the t-th prediction of the teacher model, µv denotes the pre-

diction mean of the point v. To further verify the effectiveness of the proposed

uncertainty estimation, we also make a comparison between the error map and

uncertainty map and qualitatively and quantitatively. For the qualitative compar-
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ison, we visualize both the calculated uncertainty map and the error map. As

illustrated in the Fig. 2, the red region of the error map denotes the significant er-

ror while the bright yellow area denotes high variance in the uncertainty map. We

observe that the large-error region (highlighted in the red dotted box) has remark-

able overlaps with the high-variance area, which indicates the strong correlation

between the errors and the uncertainties. It is worth noting that plenty of highly-

uncertain pixels are concentrated in the middle part of the picture, which validates

the accuracy of the uncertainty map because these remote areas are beyond the

perception range of the depth sensor (corresponding to the black area in the error

map). For the quantitative comparison, we sort all pixels of the depth maps in the

ascending order of uncertainty and then calculate the average errors. We observe

that the pixels with higher uncertainties have larger RMSE (see more details in

Sec. 4.3 and Fig. 3).

To resist the noise of pseudo-depth annotations, we explicitly incorporate un-

certainty rectification into the optimization. We reshape the loss function to down-

weight noisy labels and focus the training on reliable pseudo-depth labels. The

new loss function is formulated as:

Lunlabeled
reconstruct =

1

|V|
∑

ρ∈{1,2}

∑
v∈V

αv|d̂Tv − dTv |ρ, (4)

where αv is the newly-added weighting factor compared to Eq. 2 and depends on

the uncertainty σv. Our goal is to reduce the contribution of the noisy points by

assigning a lower weighting factor to the point with higher uncertainty. We adopt

the mapping function αv = e−σv to adjust the weights according to the uncertainty

criteria. Here αv serves as a dynamic threshold to filter out the noisy pseudo-depth

labels automatically. When the uncertainty σv equals to zero, it indicates that the

teacher model is very confident about the prediction. In this case, the optimization
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loss degrades to conventional supervised learning with ground truth labels (αv =

1). In contrast, for the points with ambiguous predictions ( σv → +∞ ), the

proposed uncertainty rectification can guide the model to neglect noisy pseudo-

depth labels (αv → 0). After finishing the uncertainty rectification, following

the self-training manner, we iterate the process by updating the parameters of the

teacher model with the student model and re-train a new student. In the inference

stage, SEED only requires the student model to make predictions without the

teacher model. In general, our method takes advantage of the multiple outputs of

the model itself to estimate the uncertainty without introducing extra modules

or Gaussian noise. Besides, the proposed uncertainty rectification mechanism

can also be incorporated with other uncertainty estimation methods [26, 23, 27]

(see more details in Sec. 4.3).

4. Experiment

We conduct comprehensive experiments on both indoor and outdoor datasets.

We first give a brief description of datasets and evaluation metrics, and then de-

scribe the implementation details of the proposed method. After that, we conduct

extensive ablation experiments to study the individual component of the proposed

framework. Next, we make a comparison with the state-of-the-art methods in both

semi-supervised and fully-supervised settings. Finally, to further demonstrate the

generalization ability, we also extend our approach to a more challenging task,

i.e., domain adaptation.

4.1. Datasets and Evaluation Metrics

KITTI. The KITTI depth completion dataset [4] is a large outdoor autonomous

driving dataset. The standard training, validation, and test sets contain 85,898,
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Table 1: The partition protocols of two datasets. The Framesl and Sequencesl represent the number

of labeled frames and sequences under different partition protocols respectively. For example, 1/8

denotes that there are 1/8 labeled samples while the rest are unlabeled data.

Labeled Datasets
KITTI NYUv2

1/2 1/4 1/8 1/8 1/16 1/32
# Framesl 41,042 22,048 13,792 6,443 3,016 1,598
# Sequencesl 69 34 17 35 17 8

1,000, and 1,000 frames separately. For the training data, there are 138 record-

ing image sequences in total. Each sequence contains a set of consecutive depth

frames and RGB images captured by the sensors and cameras. Following the

partition protocols of previous semi-supervised works [9], we divide the training

set into two groups, i.e., labeled and unlabeled data, with different proportions.

Specifically, we randomly choose 1/8, 1/4, and 1/2 sequences data from the

training dataset as the labeled set and regard the remaining sequences as the

unlabeled data. The number of labeled frames and sequences under different

partition protocols can be found in Tab. 1.

NYUv2. The NYUv2 dataset [11] is an indoor dataset collected by Microsoft

Kinect and consists of RGBD sequences from 464 scenes. The standard training

dataset consists of 47,584 RGBD images. In order to make a fair comparison with

exisiting approaches[12, 6, 20], we down-size the input frames to the resolution

of 320 × 240, and use the center-crop to the resolution of 304 × 228. Following

early methods [20, 7], we randomly sample 500 points from the depth map as

the input sparse depth map. Similar to the semi-supervised partition protocols of

KITTI, we divide the standard training sequences into labeled and unlabeled sets.

Considering NYUv2 [11] is simpler than KITTI DC [4], we randomly subsample

with smaller ratios: 1/16, 1/32, and 1/64 of total training sequences to construct
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the labeled set. The number of labeled frames and sequences in different partition

protocols is shown in Tab. 1.

TartanAir. TartanAir [28] is a large-scale virtual dataset collected in the syn-

thetic simulation environments for robot navigation and autonomous driving tasks.

There are 1037 sequences in total, which cover a wide range of scenarios in the

real world, from the unstructured natural environments to the structured indoor

scenes. To conduct the domain adaptation experiments, we select two indoor se-

quences, i.e., office and office2, to construct the source dataset for domain adap-

tation experiments (126,924 images in total), and the NYUv2 [11] are chosen as

the target dataset.

Evaluation Metrics. To make a fair comparison with existing works [12, 6, 7, 20]

on the KITTI benchmark [4], we adopt four widely-used metrics for quantitative

evaluation: root mean squared error of the inverse depth (iRMSE), root mean

squared error (RMSE), mean absolute error (MAE), and mean absolute error of

the inverse depth (iMAE). For the indoor dataset NYUv2 [11], we select three

evaluation metrics: the mean absolute relative error (REL), the root mean squared

error (RMSE), and δτ (the percentage of predicted pixels where the relative error

is less than the threshold τ ) [29, 12, 6]. These metrics are formulated as follows:

RMSE:
√

1
|V|

∑
v∈V

∣∣dgtv − dTv
∣∣2, MAE: 1

|V|
∑

v∈V

∣∣dgtv − dTv
∣∣,

iRMSE:

√
1
|V|

∑
v∈V

∣∣∣ 1

dgtv
− 1

dTv

∣∣∣2, iMAE: 1
|V|

∑
v∈V

∣∣∣ 1

dgtv
− 1

dTv

∣∣∣,
REL: 1

|V|
∑

v∈V

∣∣∣dgtv −dTv
dgtv

∣∣∣, δτ : max
(

dgtv
dTv

, dTv
dgtv

)
< τ ,

where dgtv is the ground truth of pixel v. It is worth noting that we choose RMSE

as the primary metric in all experiments by default.
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Table 2: Ablation study of designed components. ”PL” means pseudo labels. ”DC” means density-

aware consistency. ”UR” indicates the proposed uncertainty rectification. ”IS” represents the

iterative self-training.

Group PL DC UR IS
RMSEKITTI (mm) ↓

1/8 1/4 1/2

I 884.2 858.8 830.7
II ✓ 880.1 856.3 828.3
III ✓ ✓ 859.9 850.2 820.2
IV ✓ ✓ ✓ 853.5 836.1 810.8
V ✓ ✓ ✓ ✓ 851.6 834.2 808.1

4.2. Implementation Details

We adopt a representative spatial propagation network (SPN) framework NL-

SPN [20] to conduct experiments. If not specified, our approach is implemented

based on the NLSPN [20]. For a fair comparison, we follow the previous works [6,

7, 20] to set the number of refine steps T = 18. The growth of the prediction per-

formance tends to be flat after about half of the total refine steps. Therefore, we

calculate the variance on the second-half sequences of predictions. We adopt an

ADAM optimizer with β1 = 0.9, β2 = 0.999, and the initial learning rate of 0.001.

For the unlabeled data, we take the original raw input as the high-density depth

and generate the low-density version by randomly sub-sampling. The sub-sample

ratio is a dynamic number randomly sampled from the range of [0.5, 1.0].

4.3. Ablation Studies

Effects of Density-aware Consistency. As shown in Tab. 2, we conduct experi-

ments on KITTI [4] under 1/8, 1/4, and 1/2 partition protocols respectively. We

first train the supervised baseline model on the labeled data with reconstruction

loss in Eq. 1. For the baseline with supervised learning, the RMSE for 1/8, 1/4, and

1/2 annotated settings is 884.2mm, 858.8mm, and 830.7mm (Group I). As shown

in the Tab. 2 Group II, only performing prediction mimicking (pseudo-labeling)
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Figure 3: Chart of RMSE with different uncertainties. In all experiments, we observe that the pix-

els with higher uncertainty have larger errors. Specifically, the pixels with the lowest uncertainty

((0.00, 0.05]), have the smallest RMSE, while the pixels with the highest uncertainty ([0.20, +∞))

have a very large average RMSE.

can lead the student model to converge to the teacher model (the baseline model),

which can only bring slight performance improvement (4.1mm, 2.5mm, 2.4mm

performance gain on 1/8, 1/4, and 1/2 settings). With the random-sampling depth-

aware consistency, SEED can further improve the performance significantly and

reduce the RMSE by 20.2mm, 6.1mm, and 8.1mm on 1/8, 1/4, and 1/2 settings

respectively (Group III).

Effects of Uncertainty Rectification. We also study the effectiveness of the pro-

posed uncertainty rectification. From Tab. 2, we find that our algorithm can better

handle the noisy pseudo-depth annotations. Specifically, the RMSE can signifi-
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cantly reduce from 859.9mm to 853.5mm, 850.2mm to 836.1mm, and 820.2mm

to 810.8mm on 1/8, 1/4, and 1/2 settings respectively (Group IV). Besides, we

also observe that the iterative self-training can further improve the performance

slightly (Group V).

Quality of Uncertainty Estimation. To evaluate the quality of the estimated un-

certainty, we calculate the RMSE with different uncertainties on both KITTI [4]

and NYUv2 [11] datasets under different partition protocols. Specifically, we first

sort all the pixels in the ascending order of uncertainty and divide the pixels into

different groups according to the uncertainty values ([0.00, 0.05), [0.05, 0.10),

[0.10, 0.15), [0.15, 0.20), [0.20, +∞)). Then we calculate the average RMSE of

each group and draw the corresponding chart. As shown in Fig. 3, we observe

that the pixels with higher uncertainty have larger RMSE. The results verify that

the proposed uncertainty estimation method is a robust way to measure the reli-

ability of pseudo-labels. Furthermore, we also conduct experiments to compare

different uncertainty estimation approaches [23, 26, 27] (see Tab. 3). We follow

previous works [24, 27] to set the hyper-parameters for a fair comparison. For

the Monte Carlo dropout sampling [23], we perform 8 forwards for the model at

test time. In the snapshot ensemble experiments [26], we set the number of snap-

shots models to 8 and the number of cycles C = 20. To perform the bootstrapped

ensemble [27], we randomly initialize 8 instances and train each instance on a

randomly extracted 25% subsets of the entire training set separately. To estimate

uncertainty by image flipping we calculate the difference between the original

prediction and the horizontally flipped counterpart prediction. We observe that

the Monte Carlo dropout sampling [23] slightly outperforms the baseline, while

Snapshot [26], Bootstrap [30], and Flipping achieve better performance. In com-
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Table 3: Comparison of different uncertainty estimation methods. We provide a comparison with

other uncertainty estimation methods. The experimental results show that the proposed method

achieves the best performance.

Method
RMSEKITTI (mm)↓ RMSENY Uv2 (m) ↓

1/8 1/4 1/2 1/32 1/16 1/8

Baseline 884.2 858.8 830.7 0.118 0.112 0.104
Dropout [23] 881.3 864.5 830.7 0.121 0.114 0.107
Snapshot [26] 879.4 855.7 826.0 0.114 0.109 0.103
Bootstrap [27] 875.3 854.9 824.8 0.115 0.110 0.101
Flipping 856.6 843.3 815.8 0.113 0.107 0.101
Ours 851.6 834.2 808.1 0.106 0.102 0.097

Table 4: Performance with different baselines. We implement our approach with two commonly-

used depth completion models: CSPN [6], CSPN++ [7], and NLSPN [20]. Our approach consis-

tently improves the performance of three models under different partition protocols. The results

verify that our algorithm can generalize well on different depth completion models.

Method Model
RMSEKITTI (mm) ↓ RMSENY Uv2 (m) ↓
1/8 1/4 1/2 1/32 1/16 1/8

Baseline CSPN 904.2 868.2 844.6 0.1247 0.1168 0.1083
Ours CSPN 885.5 854.6 833.6 0.1149 0.1090 0.1042
Baseline CSPN++ 889.2 859.9 844.6 0.1210 0.1137 0.1041
Ours CSPN++ 860.9 841.6 821.7 0.1101 0.1076 0.0998
Baseline NLSPN 884.2 858.8 830.7 0.1181 0.1122 0.1036
Ours NLSPN 851.6 834.2 808.1 0.1060 0.1016 0.0970

parison, our method outperforms all these methods by a large margin. Besides, all

other methods require multiple forwards or multiple model instances for uncer-

tainty estimation. In contrast, our method models the uncertainty by leveraging

the outputs of the refine process, which only forwards one time with one model.

Scalability to Different Basic Model Structures. To demonstrate the generaliza-

tion of our algorithm, we also adopt other state-of-the-art models to conduct ex-

periments on KITTI [4] and NYUv2 [11]. We implement our approach with three

commonly-used depth completion models, i.e., CSPN [6], CSPN++ [7] and NL-

SPN [20]. As shown in Tab 4, SEED consistently improves the performance on all
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(a) RGB

(b) PL

(c) FM

(d) Ours

Figure 4: Qualitative comparison on the KITTI validation dataset [4]. (a) the color images.

(b) Pseudo-Lebeling. (c) FixMatch [9], and (d) our method. As shown in the zoom regions, we

observe the proposed method can generate better depth maps with detailed structure.

models for different split protocols. On the KITTI dataset [4], the NLSPN-based

model [6] significantly reduces the RMSE by 32.6mm, 24.6mm, and 22.6mm for

1/8, 1/4, and 1/2 labeled settings respectively, while on CSPN [6], the perfor-

mance gain is 18.7mm, 13.6mm, and 11.0mm. Besides, we also observe similar

improvement in NYUv2 dataset [11]. The results verify that SEED has strong

generalization and is compatible with different depth completion models.

4.4. Comparison with the State-of-the-arts

Comparison with Semi-supervised Methods. On the semi-supervised setting,

we compare our method with some recent competitive semi-supervised meth-

ods, i.e., Pseudo-labeling, Mean Teacher [31], Temporal Ensemble [30], and Fix-

Match [9]. We compare them using the same baseline architecture and partition

protocols. Table 5 shows the comparison results on KITTI validation set [4] and
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Table 5: Comparison with the semi-supervised state-of-the-art methods. ”PL” means Pseudo-

Labeling ”MT” indicates Mean Teacher [31], and ”TE” denotes Temporal Ensemble [30]. ”FM”

represents FixMatch [9].

Method
RMSEKITTI (mm)↓ RMSENY Uv2 (m) ↓

1/8 1/4 1/2 1/32 1/16 1/8
PL 880.1 856.3 828.3 0.115 0.110 0.102
MT [31] 878.2 857.0 828.8 0.116 0.110 0.101
TE [30] 876.1 854.6 827.9 0.114 0.109 0.101
FM [9] 863.4 850.7 821.0 0.113 0.108 0.100
UDR [32] 878.1 856.3 838.6 0.117 0.115 0.108
CUPL [33] 875.1 870.6 858.0 0.116 0.114 0.104
UDL [34] 860.1 856.8 818.4 0.115 0.110 0.102
Ours 851.6 834.2 808.1 0.106 0.102 0.097

Table 6: The training time comparison with the semi-supervised state-of-the-art methods. ”PL”

means Pseudo-Labeling ”MT” indicates Mean Teacher [31], and ”TE” denotes Temporal Ensem-

ble [30]. ”FM” represents FixMatch [9].

Method
TimeKITTI (hours) TimeNY Uv2 (hours)

1/8 1/4 1/2 1/32 1/16 1/8
PL 24.3 24.3 24.3 8.4 8.4 8.4
MT [31] 28.6 28.6 28.6 11.2 11.2 11.2
TE [30] 29.5 29.5 29.5 12.6 12.6 12.6
FM [9] 24.5 24.5 24.5 8.6 8.6 8.6
Ours 24.7 24.7 24.7 8.7 8.7 8.7

NYUv2 test set [11]. In the Pseudo-labeling experiment, we use the final output

of the teacher model as the pseudo-depth labels to train the student model. For

Mean Teacher [31], the weights of the teacher model are updated as an exponen-

tial moving average with EMA decay set to 0.999 during the training phase. In

the Temporal Ensemble implementation [30], the ensembling momentum is set

to 0.6. We perform the weak and strong augmentation methods as described in

FixMatch [9]. The weak augmentation is a standard flip augmentation strategy

that flips both RGB images and depth maps with a probability of 50%. For strong

augmentation, we perform RandAugment for RGB images, and randomly inject
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noises on the input sparse depth maps. In comparison with other semi-supervised

methods, SEED achieves the best performance on all partition protocols. For

example, our method achieves 851.6mm RMSE with 1/8 annotations on KITTI

dataset [4], which outperforms Mean Teacher [31], Temporal Ensemble [30] and

FixMatch [9] by 26.6mm, 24.5mm, and 11.8mm respectively. Compared to other

methods, SEED can filter out unreliable predictions from the teacher model and

focus the student model on reliable pseudo annotations, which verifies the pro-

posed uncertainty rectification method can effectively tackle the problem of the

noise of pseudo-labels. As shown in the right part of Tab. 5, SEED acquires

remarkable performance on NYUv2 dataset [11]. We also visualize the recovered

depth maps KITTI [4] dataset for qualitative comparison. As shown in the Fig. 4,

we find that SEED can preserve the fine structure information near depth bound-

aries, which demonstrates the effectiveness of the proposed method. We further

compare the training time in Tab. 6. We observe the proposed method costs less

training time than Mean Teacher [31] and Temporal Ensemble [30], while achiev-

ing much better performance than FixMatch and Pseudo-labeling with comparable

time cost.

Comparison with Fully-supervised Methods. To further verify the effectiveness

of our approach, we also compare our method with fully-supervised state-of-the-

art methods. Our goal is to narrow the gap between semi-supervised and fully-

supervised learning methods with limited annotations. The detailed quantitative

comparison results on the NYUv2 dataset [11] are illustrated in Tab. 7. With only

1/32 and 1/16 ground-truth annotations, SEED consistently performs better than

most of the previous works and is even on par with the latest works. In particular,

SEED yields close performance to the best performing fully-supervised model
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Table 7: Comparisons with the fully-supervised state-of-the-art on the NYUv2 test dataset [11].

With only the 1/8 ground-truth annotations, our method yields close performance to the best-

performing fully-supervised model.

Method Labels
RMSE↓ REL↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑

m m
S2D [12] 47,584 0.123 0.026 99.1 99.9 100.0
DepthCoeff [35] 47,584 0.118 0.013 99.4 99.9 -
CSPN [6] 47,584 0.117 0.016 99.2 99.9 100.0
CSPN++ [7] 47,584 0.116 - - - -
DeepLiDAR [29] 47,584 0.116 0.022 99.3 99.9 100.0
PRNet [36] 47,584 0.104 0.014 99.4 99.9 100.0
TWISE [37] 47,584 0.097 0.013 99.6 99.9 100.0
NLSPN [20] 47,584 0.092 0.012 99.6 99.9 100.0
Ours 1,598 0.106 0.015 99.5 99.9 100.0
Ours 3,016 0.102 0.014 99.5 99.9 100.0
Ours 6,443 0.097 0.013 99.5 99.9 100.0

with only 1/8 ground truth annotations. We also provide the comparison results

of experiments on the KITTI benchmark [4]. From Tab. 8, we observe that the

SEED achieves 816.75mm, 794.01mm, and 778.96mm under the 1/8, 1/4, and 1/2

partition protocols respectively. The results verify that SEED can significantly

close the gap between semi-supervised and fully-supervised learning methods.

Table 8: Comparison with the fully-supervised state-of-the-art on the KITTI test dataset [4].

Method Labels
RMSE↓ MAE↓ iRMSE↓ iMAE↓

mm mm 1/km 1/km
CSPN [6] 85,898 1019.64 279.46 2.93 1.15
HMS [16] 85,898 841.78 253.47 2.73 1.13
TWISE [37] 85,898 840.20 195.58 2.08 0.82
DDP [38] 85,898 832.94 203.96 2.10 0.85
S2D [12] 85,898 814.73 249.95 2.80 1.21
3dDepthNet [39] 85,898 798.44 226.27 2.36 1.02
NLSPN [20] 85,898 741.68 199.59 1.99 0.84
Ours 13,792 816.75 217.17 2.12 0.91
Ours 22,048 794.01 213.52 2.10 0.90
Ours 41,042 778.96 211.41 2.08 0.89
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Table 9: Comparison with the state-of-the-art semi-supervised methods. As shown in the table,

SEED outperforms other methods by a large margin.

Method RMSE (m) ↓ REL (m) ↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑
Baseline 0.134 0.020 99.0 99.8 99.9
MT [31] 0.128 0.019 99.1 99.8 99.9
TE [30] 0.127 0.018 99.1 99.8 99.9
FM [9] 0.121 0.018 99.2 99.8 99.9
Ours 0.110 0.016 99.4 99.9 100.0

4.5. Experiments on Domain Adaptation

In this section, we extend our approach to a more challenging scenario: do-

main adaptation. Domain adaptation deals with scenarios where a model trained

on a source distribution is used in a different but related target distribution. More

specifically, domain adaptation uses labeled data in a source domain to solve new

tasks in a target domain. A case in point is to exploit synthetic data, where the

annotations are more accessible compared to the costly labeling of real-world im-

ages [40]. In the depth completion, the ground truth annotations are hard to access

but easy for synthetic data in simulated environments. Therefore, we choose a syn-

thetic dataset, i.e., TartanAir [28], as the source dataset, and take the NYUv2 [11]

as the target dataset. We observe that the depth distributions of different datasets

can vary to a large extent, which is very challenging for the depth completion task.

To bridge the large domain gap between the synthetic and real-world datasets, we

first train the teacher model using the labeled data on the TartanAir [28] and then

perform our algorithm on the NYUv2 dataset [11] (unlabeled data).

As shown in Tab. 9, we observe that without SEED, the baseline model only

achieves the RMSE with 134.0mm. In contrast, our algorithm can improve the

performance by 24mm and outperforms all other semi-supervised methods [31,

30, 9]. Although a large domain gap exists between the source and target datasets,
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Table 10: Comparisons with the state-of-the-art of on fully-supervised methods the NYUv2

test dataset. Without any labeling on NYUv2 (target dataset), SEED outperforms most fully-

supervised approaches which require full real-data annotations.

Method
Label RMSE↓ REL↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑

(NYUv2) m m

S2D [12] 47,584 0.123 0.026 99.1 99.9 100.0
DepthCoeff [35] 47,584 0.118 0.013 99.4 99.9 -
CSPN [6] 47,584 0.117 0.016 99.2 99.9 100.0
CSPN++ [7] 47,584 0.116 - - - -
DeepLiDAR [29] 47,584 0.116 0.022 99.3 99.9 100.0
NLSPN [20] 47,584 0.092 0.012 99.6 99.9 100.0
Ours 0 0.110 0.016 99.4 99.9 100.0

SEED can still efficiently exploit both the labeled and unlabeled data. From

Tab. 10, we can see that SEED can even outperform many fully-supervised meth-

ods with only annotations on synthetic data. It is worth noting that we do not

use any ground-truth depth annotations on the target dataset (NYUv2).

5. Conclusion

To explore the feasibility of leveraging unlabeled data, we introduce SEED,

a semi-supervised learning algorithm to boost the performance of depth com-

pletion. By enforcing the density-aware consistency, we perform self-training

on the unlabeled data while ensembling the reliable information of the student

and teacher models. We further propose to exploit the uncertainty to resist the

noisy pseudo-depth labels in the training process. Extensive experiments demon-

strate that density-aware consistency and uncertainty-regularizing optimization

can bring significant performance gain. We hope SEED can serve as a solid base-

line and pave the way for future work on semi-supervised depth completion.
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6. Limitations and Discussion

Although our method can leverage the unlabeled to boost the performance of

depth completion, there is still room for improvement. One limitation is that it

still requires a certain amount of labeled data to train the initial teacher model

To address this issue, we could consider using some synthetic data to mimic

other real LiDAR inputs to evolve the training quality for our teacher model pre-

training. Moreover, we will explore incorporating extra supervision such as se-

mantic masks, to extend to other real-world scenarios, e.g., view synthesis and

instance detection.
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