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Abstract

Aerial-view geo-localization tends to determine an unknown position through

matching the drone-view image with the geo-tagged satellite-view image. This

task is mostly regarded as an image retrieval problem. The key underpinning

this task is to design a series of deep neural networks to learn discriminative

image descriptors. However, existing methods meet large performance drops

under realistic weather, such as rain and fog, since they do not take the domain

shift between the training data and multiple test environments into consider-

ation. To minor this domain gap, we propose a Multiple-environment Self-

adaptive Network (MuSe-Net) to dynamically adjust the domain shift caused

by environmental changing. In particular, MuSe-Net employs a two-branch

neural network containing one multiple-environment style extraction network

and one self-adaptive feature extraction network. As the name implies, the

multiple-environment style extraction network is to extract the environment-

related style information, while the self-adaptive feature extraction network uti-

lizes an adaptive modulation module to dynamically minimize the environment-

related style gap. Extensive experiments on three widely-used benchmarks, i.e.,
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University-1652, SUES-200 and CVUSA, demonstrate that the proposed MuSe-

Net achieves a competitive result for geo-localization in multiple environments.

Furthermore, we observe that the proposed method also shows great potential

to the unseen extreme weather, such as mixing the fog, rain and snow.

Keywords: Cross-view Geo-localization, Deep Learning, Image Retrieval,

Multi-source Domain Generalization, Multi-platform Collaboration

1. Introduction

Aerial-view geo-localization generally refers to retrieving the corresponding

images between drone and satellite platforms. It recently could be deployed to

many fields, such as drone navigation, event detection, aerial photography, and

so on [1, 2, 3]. In application, given a drone-view image as the query, the retrieval5

system intends to search the most relevant satellite image from the candidate

gallery. The satellite-view images possess geo-tag information, such as GPS.

Thus the drone can naturally determine its geographic location. Compared with

ground-view images with more occlusion, e.g., tree, drone-view images support

excellent visibility. However, aerial-view geo-localization remains challenging10

due to the cross-view domain shift caused by the viewpoint and the environment.

Convolutional neural networks (CNNs) have recently received primary sup-

port in aerial-view geo-localization due to the strong potential to learn invariant

image representations. Relying on CNNs, a two-branch network [4, 5] as the pro-

totype has been widely employed in related studies. The metric learning [6, 7]15

and the classification loss [1, 2] are two predominant choices to optimize this

prototype. A number of extension works adjust the spatial layout of image se-

mantics [8] to extract view-invariant features or deploy part-based matching [2]

to roughly align local information. All these existing methods concentrate on

mitigating the cross-view domain gap introduced by viewpoint change. One20

scientific problem raises: how can the model cope with the environmental do-

main shift? Recently, some researchers [9] point out that a trained network is
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Figure 1: Examples of synthesized environments on University-1652 [1], which raise challenges

on the robustness of the drone vision. Specifically, we generate these images by adding different

environmental styles into the normal drone-view images. Each column and row corresponds

to different geographical locations and environments.
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easy to collapse for unfamiliar input distributions. As a result, existing net-

works are likely to fail in multi-environment inference of geo-localization. Our

research does not focus on improving the general matching accuracy. In con-25

trast, we mainly study the robustness of current methods on cross-platform

media against different environments. Specifically, we aim to relieve the neg-

ative impact of geo-localization in noisy environments, such as rain and fog.

This robustness task is also non-trivial since the drone can easily encounter en-

vironmental changes during flight. It is well known that bad weather can lead30

to invisibility of geographic targets and even cause serious flight accidents [10].

Therefore, employing the aerial-view geo-localization system to retrieve in mul-

tiple environments is a meaningful and practical topic. This topic touches on

domain generalization (DG) [11], and a direct effort is to let the geo-localization

model ’remember’ the distribution of a location in different environments dur-35

ing training. However, many studies [11, 12, 13] in domain generalization have

demonstrated that forcing the entire model or features to be domain invariant

is challenging. We know that humans recognize a previously seen location again

by eliminating the interference caused by environmental changes rather than re-

membering how the location looked under different environments. This human40

cognitive mechanism inspires our research. Specifically, when testing, we hope

that the trained drone-to-satellite geo-localization system can adaptively filter

out the domain shift caused by environmental changes. While achieving this

goal is non-trivial, two issues need to be discussed. One is the reproduction of

the environmental style information. We consider a reasonable assumption that45

the seen environments can replay in a new scenario. Therefore, we need the

system to be able to independently reproduce different environmental style in-

formation from the inputs during testing. Then the style information is utilized

to balance the environmental domain shift. To do so, we expand the training

data for environmental diversity first. The data collection is expensive and dif-50

ficult since one fixed position calls for images shot in different weather. Another

reason is that unlike the acquisition of ground-level images, the collection of

drone-view images needs to be operated by professionals. Generative adversar-
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ial networks (GANs) [14] and data augmentation are two appealing choices to

replace manual dataset production. GANs recently can synthesize images that55

are not only of high quality but also possess sufficient diversity. However, the key

of our research is not to generate stylized images with high quality. Considering

the speed and flexibility, we abandon GANs and choose an off-the-shelf image-

based style transformation library [15] to pre-process images. After processing

images, we obtain nine synthetic environmental images for one geographical lo-60

cation, i.e., fog, rain, snow, fog add rain, fog add snow, rain add snow, dark,

overexposure, and wind (see Figure 1). We then require the system to be able

to extract different environment knowledge to achieve reproduction. In vanilla

CNNs, the image information contained in extracted features is tangled. Some

methods [13, 12] suggest that representations can be disentangled into different65

parts using specific domain labels or domain-related prior knowledge. We follow

this idea and encode the environmental information from input images by su-

pervised learning, where the environmental labels are automatically annotated

during the image transformation. Another issue is how to utilize the style infor-

mation to minimize the environmental style gap. We suppose that the identity70

information is domain-agnostic and the environmental style is domain-specific

for one location. Some reference methods retain only the domain-agnostic in-

formation for downstream visual tasks [16, 11] or employ instance normaliza-

tion [17] to resist the effect of image style changes [18]. Unlike these methods,

our system aims to align the domain-specific distribution on the fly. To achieve75

this goal, we first borrow experience from IBN-Net [18] to process images and

obtain visual features. IBN-Net integrates batch normalization (BN) [19] and

instance normalization (IN) into residual blocks of shallow layers. BN is used

to retain the discrimination of features [20, 21], and IN is employed to filter out

domain-specific style information from the content [18]. However, IN applies80

the same treatment to multiple styles of content. To satisfy the dynamic adapt-

ability, we further introduce spatially-adaptive denormalization (SPADE) [22]

and integrate SPADE into a residual structure, called Residual SPADE, in our

system. Same as SPADE, Residual SPADE is a conditional normalization mod-
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ule that allows flexible modulation of image styles by scales and biases learned85

from the external data. In light of the above analysis, we propose a two-branch

learning framework called Multiple-environment Self-adaptive Network (MuSe-

Net). The design of MuSe-Net is based on IBN-Net yet with more scalability. In

particular, we insert Residual SPADE after the instance normalization layer of

IBN-Net as the self-adaptive feature extraction network to construct one branch90

of MuSe-Net. The other branch of MuSe-Net is a multiple-environment style

extraction network, which parameterizes the environment information as inputs

of Residual SPADE. Two branches have the same inputs, ensuring that the

self-adaptive feature extraction network can utilize the corresponding environ-

mental information from the style extraction network to dynamically close the95

environmental style gap.

The main contributions of this work are summarized as follows.

• We identify one key challenge, i.e., the weather and illumination changes,

when applying the visual geo-localization system to the real-world sce-

nario. The large visual changes usually compromise the reliability of the100

existing methods. To address this limitation, based on simulated multi-

weather data, we adopt an adaptive adjustment strategy of style infor-

mation and present an end-to-end learning framework called Multiple-

environment Self-adaptive Network (MuSe-Net). MuSe-Net applies a dual-

path CNN model to extract the environment-related style information and105

dynamically minimize the environment-related style gap, such as weather

and light changes.

• To motivate the model to learn discriminative feature, we further introduce

a module called Residual SPADE, which utilizes the residual structure to

optimize the training of MuSe-Net.110

• Extensive experiments on three prevailing multi-platform geo-localization

benchmark, e.g., University-1652 [1], SUES-200 [23] and CVUSA [24],

show that our method achieves superior results for geo-localization in mul-
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tiple environments. Meanwhile, for an unseen extreme weather, i.e., mix-

ing the fog, rain and snow, MuSe-Net still arrives at competitive results.115

2. Related Work

In this section, we briefly discuss the relevant works in two aspects, including

CNN-based cross-view geo-localization and domain generalization.

2.1. CNN-based Cross-view Geo-localization

Existing cross-view geo-location methods mostly focus on solving the visual120

gap caused by the changing appearance in different viewpoints. In order to gain

the discriminative image representation, some pioneering works [25] make many

efforts on hand-crafted feature matching. Due to the powerful capability on im-

age representation [26], deep convolutional neural networks (CNNs) become the

prevalent choice for feature extraction. Follow this line, Workman et al. [27] first125

attempt to employ an AlexNet [28] pre-trained on Imagenet [26] and Places [29]

to extract deep features for cross-view geo-localization. They prove that the

top layers of CNN include rich information of geographic location. Further,

Workman et al. [30] extend their work by minimizing the distance of cross-view

features and gaining improved performance. Lin et al. [31] define the match-130

ing task as similar to the face verification, and deploy the contrastive loss [32]

to optimize a modified Siamese Network [33]. Later on, Hu et al. [7] insert

a NetVLAD into the high-level layer of a Siamese-like architecture to aggre-

gate the local feature, which facilitates image descriptors against the viewpoint

changes. Considering the importance of orientation, Liu et al. [4] encode the135

corresponding coordinate information into the network for the discriminative

feature. Tian et al. [34] propose an orientation normalization network to alle-

viate the effect of the variation of orientation. Wang et al. [2] design a square-

ring partition strategy to cope with the image rotation. Discussing on a limited

Field of View (FoV) setting, DSM [6] provides a dynamic similarity matching140

module to align the orientation of cross-view images. In order to align the
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spatial layout information, Zhai et al. [24] encode and transfer the semantic

information of ground images to aerial images. Regmi and Shah [35] apply

a generative model to synthesize an aerial image from a panoramic image of

the ground. Shi et al. [5] resort to the optimal transport theory to compare145

and adjust pairwise image distribution in the feature level. Another work of

Shi et al. [8] directly utilize the polar transform to accomplish the pixel-level

alignment of semantic information between ground images and satellite images.

Lin et al. [3] exploit keypoints to enrich the model capability of learning ro-

bust features against viewpoints. Dai et al. [36] employ the heat distribution150

of the feature map to find and align critical regions in images from different

viewpoints. In the aspect of optimizing different training objectives, Vo and

Hays [37] investigate a variety of CNN architectures for cross-view matching

and gain the best performance through employing a soft margin triplet loss to

optimize a triplet CNN. Hu et al. [7] design a weighted soft-margin ranking loss155

that speeds up the convergence rate. Cai et al. [38] introduce a hard exemplar

reweighting triplet loss to improve the retrieval. Zheng et al. [1] imitate the

classification tasks and use instance loss [39] as the proxy targets to solve the

cross-view image retrieval. Sun et al. [40] treat the multiview features as prob-

ability distributions and eliminate the feature differences by constraining the160

transmission loss. There are also some works [38, 8] that employ the atten-

tion mechanism to locate the interesting areas, which effectively promotes the

discrimination of features.

In contrast to existing works, we study a new real-world scenario

where the drone may encounter different weather and illumination,165

which leads to the same location with multiple domain distributions.

For this multiple domain problem, we explicitly parameterize environmental

information to align the domain distribution. Therefore, the drone is able to

localize unseen positions in previously seen environments.
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2.2. Domain Generalization170

Generally, domain generalization (DG) is mentioned in multi-source domain

problem. Similar to the topic of domain adaptation (DA), domain generaliza-

tion tends to address the domain shift introduced by the statistical differences

of multiple domains. However, compared with domain adaptation that employs

the labeled or unlabeled data of target domain during training, domain gener-175

alization concentrates on only leveraging the multi-source data to learn robust

data representations which could be potentially useful in different marginal dis-

tributions, e.g., unseen target domains.

There are many strategies that attempt to achieve domain generalization.

Some researchers argue that minimizing various well-designed distribution met-180

rics [41, 42, 43] can realize multi-domain alignment. The statistical learning

theory [44] suggests that the diversity of training samples can boost the gen-

eralization of learning models. Therefore, other researchers propose advanced

augmentation algorithms [45, 46] to lessen the domain gap. Adversarial ap-

proaches [47] rely on confusing a domain discriminator to learn domain-invariant185

features, which can also alleviate the domain shift. Meta-learning [48] enables

the model to learn new concepts and skills fast with a few training examples.

Based on meta-learning, MAML [49] gains great success in domain generaliza-

tion, and some improved MAML frameworks are also subsequently presented

in [50, 51]. Disentangled representation learning intends to learn the common190

and exclusive information from multiple domains and then processes these infor-

mation separately to obtain robust features for future predictions. According to

that, one group of approaches considers the disentanglement at the feature level.

Khosla et al. [16] decompose a classifier based on the SVM into common vectors

and bias vectors, and abandon the bias part when applying in unseen domains.195

Later, Li et al. [11] employ the neural network to re-implement this concept.

DMG [12] adopts a learnable mask to select and balance the domain-invariant

and domain-specific features and demonstrates that analysing domain-specific

components can assist to the prediction at test-time. Another solution supports

encoding the multiple knowledge into different latent spaces. Ilse et al. [13] pro-200
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vide a VAE [52]-type framework to learn three complementary sub-spaces for

domain-invariant classification. There is also literature documenting the use of

GANs [53] to construct two latent spaces: one for identity confirmation and the

other serving the domain-related information.

3. Proposed Method205

In this paper, we consider a more practical problem where the drone could en-

counter multiple environments, which cause the domain shift and drop the per-

formance of aerial-view geo-localization. We challenge the problem by proposing

a Multiple-environment Self-adaptive Network (MuSe-Net) (see Figure 2). In

Section 3.1, we first provide the problem definition and notations. We then210

revisit the relevant technologies of our method in Section 3.2. Finally, we detail

MuSe-Net in Section 3.3.

3.1. Problem Definition and Notations

The multiple environment aerial-view geo-localization task assumes the sce-

nario that satellite-view images are constant while the style of drone-view images215

is variable with environmental changes. The different environmental informa-

tion induces the existing methods which are difficult to search geographic tar-

get images with the same identities between different viewpoints. Our research

focuses on reducing the interference of environmental styles when retrieving

between two aerial viewpoints. Let X =
{
xi
}N

i=1
, YID =

{
yiID

}N

i=1
be the220

inputs and identity labels, respectively, for one multiple environmental aerial-

view geo-localization dataset. N is the number of images, and yID ∈ [1, C], and

C indicates the number of identities. Conventional, the inputs X consist of j

domains, and j ∈ {1, 2}. X1 denotes the satellite-view domain and X2 denotes

the drone-view domain. These two domains share the same identity labels YID.225

In our setting, we follow the previous definition and add one style space. In

particular, holding YID constant, we expand the original drone-view domain

X2 to multi-environment drone-view domain X2 k. The subscript k ∈ [1,K],
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and K indicates the number of environmental styles. Since the style of the

satellite-view domain is constant, we denote this domain as X1 k and k = 0.230

Therefore, the added style label Ystyle =
{
yistyle

}N

i=1
includes K +1 styles, i.e.,

ystyle ∈ [0,K].

3.2. Relevant Technologies Revisit

IBN-Net [18].Batch normalization (BN) maintains the discrimination of

features by utilizing the global statistics (i.e., mean and variance) recorded in235

training to normalize the testing sample. Instance normalization (IN) discards

the global statistics. With the learned affine parameters, IN intends to close the

style gap between each testing and training sample. Therefore, IN resists the

effect of the style discrepancy but damages the discrimination simultaneously.

Considering the advantages of BN and IN, IBN-Net integrates IN and BN as240

building blocks to extract style-invariable features and achieves a competitive

result in the cross-domain scene parsing task.

Spatially-adaptive denormalization (SPADE) [22]. SPADE is a con-

ditional normalization module that first requires external data to generate the

learned affine parameters. Then the normalized activations are modulated by

the learned affine parameters. SPADE can be simplified formulated as:

SPADE(u, v) = σ(v) · u− µ(u)

σ(u)
+ µ(v), (1)

where u is the input feature and v is the corresponding style feature. µ(u) and

σ(u) compute the mean and variance of feature u, respectively. σ(v) and µ(v)

are the learned scale and bias to modulate the normalized feature u.245

Discussion. Instance normalization (IN) plays a crucial role in improving

the generalization capability of IBN-Net. However, as mentioned above, IN

dilutes the content discrimination. Unlike IBN-Net trained on Cityscapes, our

approach deploys multiple environmental style images to train MuSe-Net. When

there are significant discrepancies between these styles, we suggest that IN could

diminish more useful information in order to learn compromise parameters for

style alignment of features. Therefore, we propose an adaptive adjustment

11
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Figure 2: (I) A schematic overview of MuSe-Net. One batch of inputs contains the same

number of satellite and drone images, and the style of satellite images is invariable. MuSe-Net

consists of two branches. Purple blocks indicate the multiple-environment style extraction

branch (purple branch), and pink blocks denote the self-adaptive feature extraction branch

(pink branch). The purple branch is employed to group the same style features. Then style

features extracted from the style encoder are fed into Residual SPADE. Residual SPADE is

embedded into the content encoder, which belongs to the pink branch. The pink branch is

applied to narrow down the distance of inputs with the same geo-tag. (II) Detailed demon-

stration of information interaction between the style encoder and the content encoder. The

extracted style information is first convolved to produce the modulation parameters in Resid-

ual SPADE. After that, we utilize the learned modulation parameters to modulate middle

features of inputs in the content encoder. (III) Illustration of the location of Residual SPADE

in one bottleneck of the content encoder (a) and the calculation flow of the modulation oper-

ation (b). In Residual SPADE, a group of modulation parameters w and b comes from two

convolutional layers, i.e., Conv w1 and Conv b1. Afterwards the learned w and b are applied

to modulate the activation of instance normalization (IN).
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strategy of style information which inserts the Spatially-adaptive denormal-

ization (SPADE) after IN and employs the style information of images as the

external condition to dynamically adjust the activation of IN. It is worth noting

that we do not directly follow Equation 1 to modulate the normalized activa-

tions. We reserve the affine parameters of IN and apply a residual structure to

adjust the feature. We call the modified SPADE as Residual SPADE, which

can be formulated as:

R SPADE(u, v) = σ(v) · IN(u) + µ(v) + IN(u)

= IN(u) · (1 + σ(v)) + µ(v), (2)

where R SPADE denotes Residual SPADE. Characters u, v, σ(v) and µ(v)

have the same meaning as in Equation 1, IN(·) is the operation of instance nor-

malization. R SPADE is a generalization of IN . When the learned parameters

σ(v) and µ(v) converge to zero, R SPADE can arrive at IN . Compared with

Equation 1, R SPADE has a residual structure that has been shown to facili-250

tate the learning of network parameters [21]. With the dynamic fine-tuning by

R SPADE, the final depth features tend to retain the discrimination as much as

possible while reducing the interference of their respective styles. Experiments

in Section 4 demonstrate the effectiveness of MuSe-Net.

3.3. Overview of MuSe-Net255

The proposed Multiple-environment Self-adaptive Network (MuSe-Net) is

illustrated in Figure 2 (I). MuSe-Net consists of two branches: the multiple-

environment style extraction branch and the self-adaptive feature extraction

branch. These two branches have the same inputs. The multiple-environment

style extraction branch is employed to extract features with different style in-260

formation. Then these style features as the control data are fed into Residual

SPADE to conduct a learnable transformation. Subsequently, the self-adaptive

feature extraction branch employs the learned affine parameters of Residual

SPADE to dynamically align the style information of inputs and pulls the con-

tent features with the same identity together.265
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The multiple-environment style extraction branch. This branch has

two components: a style encoder and a style classifier. The style encoder is

intercepted from ResNet-50 [21]. In particular, ResNet-50 contains four stages

with repeated bottlenecks named stage1, stage2, stage3 and stage4. Following

the analysis [18] that the style discrepancy is mostly preserved in shallow layers,

we pick the first two stages of ResNet-50 as the style encoder to extract the

style feature, as shown in Figure 2 (II). The style classifier consists of a batch

normalization layer (BN), a dropout layer (Dropout), and a fully-connected layer

(FC). Given an aerial-view image xi
j (i.e., drone or satellite) of size 256×256×3,

we first utilize the style encoder to acquire the style feature f i
j k with the shape

of 32 × 32 × 512. Then we employ the average pooling layer to transform f i
j k

into a 512-dim feature gij k. In the end, we deploy the style classifier to predict

the style of the input and utilize the cross-entropy loss to optimize this branch.

The above process could be formulated as:

f i
j k = Estyle(x

i
j), (3)

gij k = Avgpool(f i
j k), (4)

p(yistyle|xi
j) = softmax(Φs(g

i
j k)), (5)

Lstyle =
∑
i,j

−log(p(yistyle|xi
j)), (6)

where Φs denotes the style classifier. p(yistyle|xi
j) is the predicted probability of

xi
j belonging to the corresponding style label yistyle. In Equation 6, we calculate

the cross-entropy loss.

The self-adaptive feature extraction branch. This branch consists of a

content encoder with Residual SPADE embedded and an identity classifier. The

content encoder is proposed relying on IBN-Net [18]. IBN-Net has the similar

structure with ResNet-50. Specifically, the number of bottlenecks in stage1 of

IBN-Net is 3. We embed Residual SPADE in the second and last bottlenecks

14



of stage1 as the content encoder (see Figure 2 (II)). Residual SPADE contains

two convolutional layers, i.e., Conv w1 and Conv b1. One convolutional layer is

employed to learn the scale, and another is for the bias (see Figure 2 (III)). The

identity classifier has the same component with the style classifier, i.e., a batch

normalization layer (BN), a dropout layer (Dropout), and a fully-connected layer

(FC). The content encoder accepts the same input xi
j with the style encoder, and

is employed to extract the content feature f i
j c of size 16× 16× 2048. Residual

SPADE serves as an important role in the content encoder. In Residual SPADE,

the style feature f i
j k is first interpolated to the same size as the activation

of instance normalization (IN) in the content encoder. Then the interpolated

feature is convolved to produce the scale and bias to modulate the activation of

IN, and the modulation operation is shown in Figure 2 (III-b). The extracted

content feature is further transformed into a 2048-dim feature gij c by an average

pooling layer. Finally, we harness the identity classification loss as the proxy

target to force the content encoder to extract the discriminative feature, and

this loss can be formulated as:

p(yID
i|xi

j) = softmax(ΦID(gij c)), (7)

LID =
∑
i,j

−log(p(yID
i|xi

j)), (8)

where ΦID indicates the identity classifier. p(yID
i|xi

j) is the predicted proba-

bility that xi
j belongs to the geo-tagged identity label yID

i.270

Optimization. We train MuSe-Net by jointly employing the style loss Lstyle

and the identity loss LID:

Ltotal = Lstyle + LID. (9)

The style loss forces features with different style information to stay apart, and

the identity loss brings matching image pairs of the same geo-tag closer. Also,

the identity loss serves the optimization of Residual SPADE.

The pseudocode for MuSe-Net is shown as Algorithm 1.

15



Algorithm 1 PyTorch-style pseudocode for MuSe-Net.

# model: MuSe_Net

# N: The batch size of one platform , \ie, drone or satellite.

# style_list: A list containing 10 transformations of the environmental style

.

# x: The input image.

# X: One batch of input images.

# ys: The style label which belongs to [0, 10]. The style label of all

satellite images is 0. The style labels of drone images are determined

by the index of the style transformations in the style_list. For

instance , the index of the rain style is 2, then the style label of a

rain -style drone image is 3, \ie , index + 1.

# Ys: One batch of ys

# yi: The identity label of cross -platform geo -localization images.

# Yi: One batch of yi.

# CE: The cross entropy loss.

# _s: The satellite platform.

# _d: The drone platform.

# _sty: The images with environmental styles.

for data_s , data_d in loader_s , loader_d: # load a satellite batch and a

drone batch with N samples , separately.

X_s , Yi_s = data_s

X_d , Yi_d = data_d

X_d_sty = []

Ys_d = []

for x_d in X_d:

generator , ys_d = random_select(style_list) # generator is a function

of the style transformation , and ys_d is the corresponding

style label.

x_d_sty = generator(x_d)

X_d_sty.append(x_d_sty)

Ys_d.append(ys_d)

X_s_sty = X_s

Ys_s = [0] * N

Yi_s’,Yi_d’,Ys_s’,Ys_d’ = model(X_s_sty , X_d_sty) # The outputs are the

prediction vectors

sty_loss = CE(Ys_s’,Ys_s)+CE(Ys_d’,Ys_d) # Equation (6)

id_loss = CE(Yi_s’,Yi_s)+CE(Yi_d’,Yi_d) # Equation (8)

loss = id_loss + sty_loss

# optimization step

loss.backward ()

optimizer.step()
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4. Experiments275

We first introduce two datasets used for MuSe-Net and the evaluation proto-

col in Section 4.1. Then we describe the implementation details in Section 4.2.

The comparison of results with different methods is provided in Section 4.3, and

the model analysis is followed in Section 4.4.

4.1. Datasets and Evaluation Protocol280

We mainly train and evaluate the proposed method using the University-

1652 [1] since it supports large-scale cross aerial-view images. We also verify

the effectiveness of our method in SUES-200 [23] and CVUSA [24].

University-1652 [1] is a newly-released dataset that focuses on the drone-

based geo-localization. It consists of data from three different platforms, i.e.,285

drones, satellites, and phone cameras. All of these data are collected from 1,652

buildings of 72 universities around the world. There are 54 drone-view images

for one building in the dataset to guarantee that the drone-view data can cover

rich information of the target, e.g., scale and viewpoint variants. With one

satellite-view image for each building as a reference, the dataset also includes290

5,580 street-view images. Due to the limited viewpoint of the phone camera,

street-view images can not cover all facets of a target building. To make up this

weakness as much as possible, 21,099 common-view images from Google Image

are added to University-1652 as an extra training set. The training set includes

701 buildings of 33 universities, and another 951 buildings belonging to the rest295

39 universities are contained in the test set. Universities in the training and

test set are not overlapping. The dataset support two new tasks, i.e., drone-

view target localization (Drone → Satellite) and drone navigation (Satellite →

Drone). In the drone-view target localization task, the query set contains 37,855

drone-view images, and the gallery set includes 701 true-matched satellite-view300

images and 250 distractors. For the drone navigation task, with 701 satellite-

view images as the query set, there are 37,855 true-matched drone-view images

and 13,500 distractors in the gallery. Under this task, one query image has
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multiple correct matches in the gallery. It is clear that the drone-view target

localization is a more challenging task than drone navigation since there is only305

one true-matched satellite-view image for a drone-view query.

SUES-200 [23] is a multi-height, multi-scene dataset which considers geo-

localization between drone and satellite platforms. The dataset contains 200

scenes, and the drone-view images are recorded at four different heights: 150m,

200m, 250m, and 300m. At each height, one satellite-view scene corresponds to310

50 drone-view images. It is worth noting that all drone-view images in SUES-200

are captured by a drone in real-world scenes.

CVUSA [24] consists of image pairs from two viewpoints, i.e., the street

view and the satellite view. Each viewpoint contains 35,532 images for training

and 8,884 images for testing. It is worth noting that street-view images are315

panoramas, and all the street and satellite images are north aligned.

Evaluation protocol. The performance of our method is evaluated by the

Recall@K (R@K) and the average precision (AP). R@K denotes the propor-

tion of correctly localized images in the top-K list, and R@1 is an important

indicator. AP is equal to the area under the Precision-Recall curve. Higher320

scores of R@K and AP indicate better performance of the network.

4.2. Implementation Details

The style encoder is intercepted from ResNet-50 [21] and initialized using

the pre-trained weights on ImageNet [54]. The kernel size of the convolutional

layer in Residual SPADE is 3 × 3, and the kernel is initialized with normal325

initialization. We employ weights of IBN-Net50-a [18] which is trained on Im-

ageNet [54] to initialize the content encoder. Following [1], the stride of the

second convolutional layer and the last down-sample layer of the first bottle-

neck in stage4 of the content encoder is modified from 2 to 1. We fix the size

of input images to 256 × 256 pixels when training and inference. In training,330

we augment satellite-view images by employing random cropping and flipping.

For drone-view images, we first apply the library of imgaug [15] to change the

environmental style of images. For instance, we aim to generate an image in
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overexposure. We need to first convert a RGB image into the NumPy format

using img = np.array(img). Then we process the image in NumPy format335

using the following codes:

# img: The input image

# img1: The input image in numpy format

# img2: The output image with overexposure style

# mul , add: Two parameters that control the brightness of the340

image

import numpy as np

import imgaug as iaa

img1 = np.array(img)

aug = iaa.MultiplyAndAddToBrightness(mul=1.6, add =(0 ,30),345

seed =1992)

img2 = aug(image = img1).

The random cropping and flipping are subsequently performed to enhance these

generated drone-view images. We adopt stochastic gradient descent (SGD) with

momentum 0.9 and weight decay 0.0005 to optimize our model. The mini-batch350

of training is set to 16 with 8 images for one platform. The initial learning rate

is 0.005 for two classifiers and Residual SPADE, and 0.0005 for the rest layers.

Our model is trained for 210 epochs, and the learning rate is decayed to its

0.1 and 0.01 at 120 and 180 epochs. During testing, the Euclidean distance is

applied to measure the similarity between the query and candidate images in355

the gallery. We implement our code based on Pytorch [55], and all experiments

are conducted on one NVIDIA RTX 2080Ti GPU. Our model takes 2 hours,

4 minutes and 59 seconds to train in University-1652. For one environmental

condition, the testing time of Drone → Satellite and Satellite → Drone are 4

minutes, 52 seconds and 5 minutes, 44 seconds, respectively.360

4.3. Comparisons with Competitive Methods

Results on University-1652. University-1652 [1] supports two tasks:

drone-view target localization (Drone → Satellite) and drone navigation (Satel-

lite → Drone). We re-implement seven methods as competitive comparisons of

our method on these two tasks. Seven comparison methods include only the fea-365

ture extraction branch containing a content encoder and an identity classifier.
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Content encoders in seven comparison methods are VGG16 [56], ResNet-50 [21]

(Zheng et al. [1]), ResNet-101 [21], DenseNet121 [20], Swin-T [57], IBN-Net50-a

(IBN-Net [18]), and LPN [2]. Both Swin-T [57] and LPN [2] were published

in 2021. Keeping the style of satellite-view images unchanged, the results of370

drone-view images in 10 different conditions are shown in Table 1. In seven

re-implemented methods of Drone → Satellite, LPN [2] explicitly considers the

local information and obtains the best results. Excluding LPN, we observe

that IBN-Net [18] has significantly improved geo-localization performance. Our

method surpasses IBN-Net [18] in all environmental conditions. Specifically,375

when calculating the mean accuracy, our method improves the R@1 accuracy

from 62.30% to 65.15% (+2.85%) and the AP accuracy from 66.46% to 69.16%

(+2.70%). Meanwhile, our method also exceeds LPN [2]. The Satellite →

Drone is an easier task than Drone → Satellite. We first observe that even

VGG16 can obtain higher performance of R@1 than the reported results of our380

method in Drone → Satellite. In Satellite → Drone, our method still keeps

sufficient advantages over six comparison methods that do not utilize local in-

formation. In particular, our results in 10 different environmental conditions

outperform all of the IBN-Net [18], and the mean accuracy of R@1 increases

from 82.27% to 84.68% (+2.41%) and the mean value of AP raises from 63.36%385

to 65.75% (+2.39%). Besides, our method is still competitive compared to LPN.

The experimental results of two sub-tasks demonstrate two points. First, as the

multiple-domain related method, IBN-Net [18] compared with other comparison

methods with the same feature treatment can acquire a more robust represen-

tation containing less domain shift caused by different environmental styles.390

Second, our method based on IBN-Net learns the dynamic parameters to adap-

tively adjust the style information and can further improve the performance,

as discussed in Section 3.2. It is worth noting that our performance is still im-

pacted by different environments, and some scenes have heavy invisibility, such

as buildings in fog or dark. Our method minimizes the prediction discrepancy395

between the target weathers and normal cases. We intend to relieve the negative

impact of the noisy environment to improve the robustness.

20



Table 1: The R@1(%) and AP(%) accuracy for drone-view target localization task (Drone

→ Satellite) and drone navigation task (Satellite → Drone) on University-1652. In these two

tasks, drone-view images hold 10 different environmental styles, and the style of satellite-view

images is constant. The best results are in bold.

Method
Normal Fog Rain Snow

Fog

+Rain

Fog

+Snow

Rain

+Snow
Dark

Over

-exposure
Wind Mean ↑

R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP

Drone → Satellite

VGG16 [56] 59.98 64.69 56.21 61.11 53.97 58.90 50.07 55.08 50.43 55.63 42.77 48.01 51.08 56.10 39.10 44.30 45.16 50.47 50.84 56.05 49.96 55.03

Zheng et al. [1] 67.83 71.74 60.97 65.23 60.29 64.61 55.58 60.09 54.75 59.40 44.85 49.78 57.61 62.03 39.70 44.65 51.85 56.75 58.28 62.83 55.17 59.71

ResNet-101 [21] 70.07 73.04 63.87 68.22 63.34 67.59 59.75 64.15 57.45 62.12 48.31 53.28 60.25 64.68 46.12 51.02 56.34 61.23 62.13 66.63 58.76 63.29

DenseNet121 [20] 69.48 73.26 64.25 68.47 63.47 67.64 59.29 63.70 59.68 64.13 50.41 55.20 60.21 64.57 48.57 53.41 54.04 58.88 60.74 65.14 59.01 63.44

Swin-T [57] 69.27 73.18 66.46 70.52 65.44 69.60 61.79 66.23 63.96 68.21 56.44 61.07 62.68 67.02 50.27 55.18 55.46 60.29 63.81 68.17 61.56 65.95

IBN-Net [18] 72.35 75.85 66.68 70.64 67.95 71.73 62.77 66.85 62.64 66.84 51.09 55.79 64.07 68.13 50.72 55.53 57.97 62.52 66.73 70.68 62.30 66.46

LPN [2] 74.33 77.60 69.31 72.95 67.96 71.72 64.90 68.85 64.51 68.52 54.16 58.73 65.38 69.29 53.68 58.10 60.90 65.27 66.46 70.35 64.16 68.14

Ours 74.48 77.83 69.47 73.24 70.55 74.14 65.72 69.70 65.59 69.64 54.69 59.24 66.64 70.55 53.85 58.49 61.05 65.51 69.45 73.22 65.15 69.16

Satellite → Drone

VGG16 [56] 75.89 58.50 75.18 55.42 71.61 53.03 68.19 48.29 71.18 49.34 65.48 40.87 69.47 50.03 64.34 35.74 64.91 44.20 68.90 49.53 69.52 48.50

Zheng et al. [1] 83.45 67.94 79.60 61.12 77.60 59.73 73.18 55.07 75.89 54.45 70.76 43.26 74.75 56.44 69.47 39.25 72.18 51.91 76.46 57.59 75.33 54.68

ResNet-101 [21] 85.73 71.79 82.45 66.46 81.46 65.68 79.74 61.72 79.74 60.59 74.75 50.31 80.17 62.61 75.32 45.37 79.60 58.21 82.31 64.67 80.13 60.74

DenseNet121 [20] 83.74 70.34 82.31 66.32 81.17 65.23 78.60 60.33 79.46 61.66 74.61 51.14 78.46 61.68 74.47 47.88 74.32 55.26 78.32 61.63 78.55 60.15

Swin-T [57] 80.74 68.94 81.03 67.46 81.17 66.39 78.46 61.33 79.17 64.65 74.89 56.57 78.89 63.49 75.61 48.43 76.60 56.57 78.74 64.45 78.53 61.83

IBN-Net [18] 86.31 73.54 84.59 67.61 84.74 69.03 80.88 64.44 83.31 63.71 77.89 52.14 83.02 65.74 78.46 50.77 79.46 58.64 84.02 67.94 82.27 63.36

LPN [2] 87.02 75.19 86.16 71.34 83.88 69.49 82.88 65.39 84.59 66.28 79.60 55.19 84.17 66.26 82.88 52.05 81.03 62.24 84.14 67.35 83.64 65.08

Ours 88.02 75.10 87.87 69.85 87.73 71.12 83.74 66.52 85.02 67.78 80.88 54.26 84.88 67.75 80.74 53.01 81.60 62.09 86.31 70.03 84.68 65.75

Results on SUES-200. The drone-view images on SUES-200 are divided

into four groups according to the collected heights. We choose the hardest

group, the drone-view images at 150m height, to conduct experiments. In ex-400

periments, the normal drone-view images are acquired in real environments,

while other environmental images are synthesized on the basis of the normal

situation. The results of our method are shown in Tabel 2. We observe a simi-

lar phenomenon as for experiments on University-1652. We mainly compare our

method with IBN-Net [18]. Our method improves the mean accuracy of R@1405

from 39.58% to 41.59% (+2.01%) and increases the mean value of AP from

46.23% to 48.53% (+2.30%) in Drone → Satellite. In Satellite → Drone, our

method raises the mean accuracy of R@1 from 52.25% to 53.38% (+1.13%) and

goes up the mean value of AP from 37.78% to 39.20% (+1.42%). The effective

performance improvement lays the foundation for geo-localization in realistic410

multiple environments.

Results on CVUSA. Street-view and satellite-view images on CVUSA [24]

retain drastic appearance changes. In order to achieve cross-view images with

a similar pattern, we follow [8, 6] to pre-process satellite-view images before

training and testing. Specially, we apply the polar transform to warp satellite415
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Table 2: The R@1(%) and AP(%) accuracy for drone-view target localization task (Drone

→ Satellite) and drone navigation task (Satellite → Drone) on SUES-200. In these two tasks,

drone-view images from 150m height hold 10 different environmental styles, and the style of

satellite-view images is constant. The best results are in bold.

Method
Normal Fog Rain Snow

Fog

+Rain

Fog

+Snow

Rain

+Snow
Dark

Over

-exposure
Wind Mean ↑

R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP

Drone → Satellite

Zheng et al. [1] 41.28 48.01 36.92 43.17 39.38 45.41 31.22 38.05 32.58 38.55 20.55 25.84 34.08 40.61 35.15 41.43 27.67 33.55 35.17 41.67 33.40 39.63

IBN-Net [18] 48.55 54.91 43.83 50.21 42.88 49.54 37.78 44.78 39.50 45.77 24.82 31.47 39.62 46.55 39.20 46.41 34.83 41.39 44.78 51.23 39.58 46.23

Ours 50.05 57.26 46.90 53.69 45.12 51.99 43.97 50.92 40.42 47.17 25.40 31.74 43.45 50.52 39.72 47.01 32.75 39.81 48.15 55.14 41.59 48.53

Satellite → Drone

Zheng et al. [1] 52.50 40.75 48.75 34.23 48.75 35.16 45.00 29.69 45.00 28.21 42.50 18.22 45.00 31.19 45.00 33.32 42.50 23.47 42.50 31.52 45.75 30.58

IBN-Net [18] 55.00 45.10 51.25 41.66 55.00 39.86 47.50 37.37 50.00 35.16 41.25 23.85 53.75 38.30 53.75 39.71 55.00 33.33 60.00 43.48 52.25 37.78

Ours 58.75 48.10 56.25 44.71 51.25 42.13 52.50 40.78 48.75 37.66 38.75 24.23 53.75 40.74 52.50 35.38 60.00 31.96 61.25 46.35 53.38 39.20

Table 3: The R@1(%) and AP(%) performance of geo-localization on CVUSA. In this task,

street-view images as queries have 10 different environmental style variations, while the style

of satellite-view images in the gallery is constant. The best results are in bold.

Method
Normal Fog Rain Snow

Fog

+Rain

Fog

+Snow

Rain

+Snow
Dark

Over

-exposure
Wind Mean ↑

R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP

Zheng et al. [1] 63.78 67.77 60.19 64.47 61.53 65.65 61.39 65.52 58.00 62.27 55.32 59.72 60.81 65.03 51.64 55.91 59.89 64.14 60.41 64.69 59.30 63.52

IBN-Net [18] 76.61 79.50 74.68 77.80 75.52 78.52 74.54 77.65 73.31 76.61 71.33 74.71 74.72 77.80 66.45 69.99 73.14 76.29 74.63 77.76 73.49 76.66

Ours 78.04 80.85 75.75 78.75 77.04 79.96 76.47 79.38 74.82 77.85 71.87 75.23 76.50 79.44 67.95 71.42 74.92 78.01 76.59 79.47 75.00 78.04

images, which ensures that the appearance of satellite images is closer to street-

view panoramas. In the multiple-environment setting, the satellite-view image

is unchanged, and we only generate the multi-domain street-view images (see

Figure 3). Results of our method compared with two competitive methods on

CVUSA are detailed in Table 3. We could observe that our method obtains the420

increment in most environmental conditions than IBN-Net [18]. Meanwhile, the

mean accuracy of R@1 goes up from 73.49% to 75.00% (+1.51%), and the mean

accuracy of AP boosts from 76.66% to 78.04% (+1.38%).

Results on unseen weather. In the realistic scenario, the aerial-view

geo-localization system can usually encounter the unseen weather. To explore425

whether MuSe-Net can cope with these weather conditions, especially the severe

weather, we carry out experiments on mixing fog, rain and snow. Table 4 shows

the experimental results. The proposed MuSe-Net on University-1652 [1] has

achieved 44.10% R@1 accuracy and 48.95% AP for Drone → Satellite, and

75.32% R@1 accuracy and 44.49% AP for Satellite → Drone. The obtained R@1430

accuracy and AP on CVUSA are 68.29% and 71.81%, respectively. The superior
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Overexposure Wind

Figure 3: Examples of a street-view panorama and its synthesized environments on

CVUSA [24].

performance compared with two competitive methods, i.e., Zheng et al. [1] and

IBN-Net [18], suggests that our method holds great potential to the unseen

extreme weather. This character can also provide additional assurance of safe

flight.435

4.4. Model Analysis

We further analyze and discuss our model based on the multiple-environment

drone-view target localization task (Drone → Satellite) in this section.

IBN-Net vs SPADE vs Residual SPADE. As discussed in Section 3.2,

applying the adaptive adjustment strategy of style information (i.e., IBN-Net [18]440

+ SPADE [22]) can retain more discriminative features than IBN-Net when re-

trieval in different environments. Meanwhile, the proposed Residual SPADE

with a residual structure is more effective than SPADE [22]. The experiments

are shown in Table 5. We observe first that IBN-Net combined with SPADE

acquires a superior performance than only IBN-Net in all 10 different environ-445

ments. Besides, Residual SPADE achieves higher results than SPADE in 7
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Table 4: Results of retrieving in an unseen extreme weather, i.e., fog, rain and snow mixed.

Method

Fog + Rain + Snow

University-1652 CVUSA

Drone → Satellite Satellite → Drone Street → Satellite

R@1 AP R@1 AP R@1 AP

Zheng et al. [1] 27.73 32.35 61.34 27.43 46.31 51.03

IBN-Net [18] 41.19 46.06 73.75 42.57 67.24 70.98

Ours 44.10 48.95 75.32 44.49 68.29 71.81

Table 5: Ablation study of IBN-Net combined with SPADE and Residual SPADE, respectively.

The best mean results are in bold.

Method
Normal Fog Rain Snow

Fog

+Rain

Fog

+Snow

Rain

+Snow
Dark

Over

-exposure
Wind Mean ↑

R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP

IBN-Net [18] 72.35 75.85 66.68 70.64 67.95 71.73 62.77 66.85 62.64 66.84 51.09 55.79 64.07 68.13 50.72 55.53 57.97 62.52 66.73 70.68 62.30 66.46

+ SPADE [22] 74.51 77.88 67.70 71.65 68.60 72.55 64.61 68.76 63.93 68.20 53.80 58.51 65.76 69.86 53.91 58.62 58.94 63.55 68.41 72.36 64.02 68.19

+ Residual SPADE 74.48 77.83 69.47 73.24 70.55 74.14 65.72 69.70 65.59 69.64 54.69 59.24 66.64 70.55 53.85 58.49 61.05 65.51 69.45 73.22 65.15 69.16

environmental conditions. In the remaining environments (i.e., Normal, Dark

and Wind), Residual SPADE also acquires similar results to SPADE. When con-

sidering the mean result, Residual SPADE goes up the R@1 accuracy from 64.02

to 65.15 (+1.13%) and increases the AP value from 68.19 to 69.16 (+0.97%).450

The significant performance improvement further certifies the effectiveness of

the adaptive adjustment strategy of style information and Residual SPADE.

Which bottleneck(s) embedding Residual SPADE is more effec-

tive? As mentioned in Section 3.3, we embed Residual SPADE in the second

and last bottlenecks of stage1. Other embedding options exist. Work [18] proves455

that the style difference mostly lies in the shallow layers. Following this finding,

we select all three bottlenecks in stage1 for objects of our study. Specifically, we

conduct experiments that embedding single, double or three Residual SPADE in

these selected bottlenecks. Table 6 shows the details of experimental results. We

observe first that deploying Residual SPADE in any bottlenecks yields higher460

mean results than IBN-Net [18] showed in Table 1, which demonstrates the

effectiveness of Residual SPADE. Then we compare results of deploying the sin-

gle Residual SPADE in three different bottlenecks (i.e., the first three rows of
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Table 6: Results of embedding Residual SPADE in different IBN bottlenecks. S denotes the

stage, and B stands for the bottleneck. For instance, S1-B2,B3 means that the second and

third IBN bottlenecks of stage1 are embedded with Residual SPADE. The best mean results

are in bold.

Method
Normal Fog Rain Snow

Fog

+Rain

Fog

+Snow

Rain

+Snow
Dark

Over

-exposure
Wind Mean ↑

R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP

S1-B1 73.76 77.13 69.02 72.79 69.26 72.98 64.44 68.48 64.57 68.67 54.12 58.17 66.27 70.18 52.71 57.34 59.93 64.42 67.33 71.21 64.14 68.14

S1-B2 73.74 77.20 68.69 72.56 69.17 72.93 65.51 69.54 64.53 68.71 54.63 59.26 66.61 70.52 53.96 58.57 59.53 64.08 68.45 72.26 64.48 68.56

S1-B3 74.28 77.69 68.91 72.79 68.74 72.61 64.09 68.29 64.58 68.77 54.05 58.78 66.00 70.01 52.79 57.56 59.33 63.95 68.05 72.05 64.08 68.25

S1-B1,B2 75.04 78.38 68.30 72.20 69.35 73.20 65.09 69.02 63.34 67.65 52.47 57.18 65.80 69.91 51.19 56.08 59.14 63.76 68.89 72.80 63.86 68.02

S1-B1,B3 73.99 77.46 68.28 72.30 69.33 73.17 64.63 68.92 64.05 68.39 52.95 57.83 65.77 69.94 51.40 56.33 58.49 63.22 67.88 71.95 63.68 67.95

S1-B2,B3 74.48 77.83 69.47 73.24 70.55 74.14 65.72 69.70 65.59 69.64 54.69 59.24 66.64 70.55 53.85 58.49 61.05 65.51 69.45 73.22 65.15 69.16

S1-B1,B2,B3 74.85 78.15 68.12 72.02 68.94 72.77 65.91 69.95 62.81 67.06 53.57 58.35 66.46 70.49 52.58 57.41 59.27 63.87 68.57 72.45 64.11 68.25

Table 7: Ablation study of two losses applying different weight ratios. The best mean results

are in bold.

LID : Lstyle

Normal Fog Rain Snow
Fog

+Rain

Fog

+Snow

Rain

+Snow
Dark

Over

-exposure
Wind Mean ↑

R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP

1 : 0.5 73.67 77.10 67.47 71.42 68.75 72.59 65.11 69.15 63.54 67.74 54.47 59.22 65.93 69.95 52.32 56.98 58.45 63.02 67.97 71.85 63.77 67.90

1 : 1 74.48 77.83 69.47 73.24 70.55 74.14 65.72 69.70 65.59 69.64 54.69 59.24 66.64 70.55 53.85 58.49 61.05 65.51 69.45 73.22 65.15 69.16

1 : 2 72.93 76.46 67.33 71.32 68.17 72.04 63.29 67.52 62.77 67.07 51.99 56.81 64.54 68.72 51.23 56.06 57.57 62.31 66.68 70.72 62.65 66.90

1 : 5 73.05 76.59 66.89 70.91 67.71 71.66 63.38 67.61 62.57 66.84 52.54 57.35 64.51 68.68 51.04 55.86 57.89 62.51 67.31 71.37 62.69 66.94

Table 6). Looking at mean results, embedding Residual SPADE in the second

bottleneck (S1 − B2) achieves the best performance. When employing two or465

three Residual SPADE in bottlenecks, we notice that combinations containing

the first bottleneck, i.e., S1−B1, B2, S1−B1, B3 and S1−B1, B2, B3, achieve

slightly lower mean results than S1−B2, B3. Finally, considering both the in-

dividual results in 10 conditions and the mean results, we choose S1 − B2, B3

as the choice of our method.470

Effect of the loss weights. MuSe-Net is a dual-branch network to dis-

entangle the style and the localization information from drone-view images.

The identity loss motivates the self-adaptive feature extraction branch to learn

the style-agnostic localization-aware feature, while the style loss encour-

ages the multiple-environment style extraction branch to learn the style-aware475

localization-agnostic feature. Since these two tasks are complementary and

equally important, we set 1:1 as the default weight ratio of two losses. We fur-

ther simply search other weight ratios of two losses, as shown in Table 7. The

experimental results confirm that balanced identity/style losses give the best

results.480
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Figure 4: Visualization of heatmaps generated by our method and Top-5 retrieval results for

a drone-view image in different conditions. The true matches are in yellow boxes, and the

false matches are displayed in blue boxes.
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Qualitative result. As shown in Figure 4, we visualise heatmaps and

Top-5 retrieval results generated by our method in 10 different environmental

conditions. Heatmaps show that our method can activate two regions of the

geographic target. Another discovery is that there are subtle differences in the

extent and brightness of the activated areas in 10 heatmaps. This phenomenon485

reflects from the side that results of geo-localization in 10 environmental con-

ditions can exist difference. From the retrieval results shown, we observe that

our model obtains the true match in the Top-1 yet the remaining retrieval re-

sults are inconsistent under 10 different conditions, which also indicates that

the adjusted features still contain a few discrepancies.490

Model complexity. We employ FLOPs and the parameter number to eval-

uate the model complexity of the proposed method and two baselines. FLOPs

denotes the floating-point operations. The baseline methods of Zheng [1] and

IBN-Net [18] have similar complexity, i.e., 1.22×1010 FLOPs and 48.43million(M)

parameter numbers. Our method inevitably yields a higher FLOPs (1.70×1010)495

and parameter number (50.47M) since the designed multiple-environment style

extraction branch. However, the growth rates of FLOPs and the parameter

number between baselines and our method are 39.34% and 4.21%, respectively.

The lower costs of growth indicate that the complexity of our model is also

acceptable. In addition, we also compare the parameter number of our method500

with ResNet-101 [21] based method, Swin-T [57] based method and LPN [2].

The parameter number of ResNet-101 based and Swin-T based method are

67.42M and 53.14M , respectively. The parameter number of LPN is 52.66M .

As shown in Table 1, we notice that our performance is still competitive even

compared to networks with a larger parameter number.505

5. Conclusion

In this paper, we identify the challenge when employing aerial-view geo-

localization in the real-world scenario where the weather and illumination changes.

To reduce domain gaps of different environments, we propose an end-to-end
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learning network, called Multiple-environment Self-adaptive Network (MuSe-510

Net), to dynamically adjust the style difference for inputs with one geo-tag.

MuSe-Net consists of two branches. One is a multiple-environment style ex-

traction network for learning environment-related information. The other is a

self-adaptive feature extraction network which integrates Residual SPADE into

the content encoder to dynamically balance the environmental domain shift. To515

verify the effectiveness of MuSe-Net, we have evaluated the method in two drone-

based geo-localization dataset (i.e., University-1652 [1] and SUES-200 [23]) and

achieved competitive performance. Besides, the proposed method also has ac-

quired competitive results on one street-to-satellite dataset, i.e., CVUSA [24].

In the future, we will continue to study the disentangled representation learn-520

ing and further improve the performance of geo-localization in realistic multiple

environments.

Data Availability Statement

Two datasets supporting the findings of this study are available with the

permission of the dataset authors. The links to request these datasets are as525

follows.

(1) University-1652 : https://github.com/layumi/University1652-Baseline;

(2) CVUSA : https://github.com/viibridges/crossnet.
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