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ABSTRACT
In this paper, we introduce a large Multi-Attribute and Language
Search dataset for text-based person retrieval, called MALS, and
explore the feasibility of performing pre-training on both attribute
recognition and image-text matching tasks in one stone. In partic-
ular, MALS contains 1, 510, 330 image-text pairs, which is about
37.5× larger than prevailing CUHK-PEDES, and all images are an-
notated with 27 attributes. Considering the privacy concerns and
annotation costs, we leverage the off-the-shelf diffusion models to
generate the dataset. To verify the feasibility of learning from the
generated data, we develop a new joint Attribute Prompt Learn-
ing and Text Matching Learning (APTM) framework, considering
the shared knowledge between attribute and text. As the name
implies, APTM contains an attribute prompt learning stream and
a text matching learning stream. (1) The attribute prompt learn-
ing leverages the attribute prompts for image-attribute alignment,
which enhances the text matching learning. (2) The text matching
learning facilitates the representation learning on fine-grained de-
tails, and in turn, boosts the attribute prompt learning. Extensive
experiments validate the effectiveness of the pre-training on MALS,
achieving state-of-the-art retrieval performance via APTM on three
challenging real-world benchmarks. In particular, APTM achieves a
consistent improvement of +6.96%, +7.68%, and +16.95% Recall@1
accuracy on CUHK-PEDES, ICFG-PEDES, and RSTPReid datasets
by a clear margin, respectively. The dataset, model, and code are
available at https://github.com/Shuyu-XJTU/APTM.

CCS CONCEPTS
• Information systems → Multimedia databases; Multimedia
and multimodal retrieval; • Computing methodologies →
Multi-task learning.
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Figure 1: Selected image-text pairs from our MALS (top) and
CUHK-PEDES (bottom). We could observe that the visual
gap between synthetic data and real one is relatively small.
In MALS, image-text pairs match almost as well as manual
annotation, although there are some flaws occasionally. It
is worth noting that images in MALS are high-fidelity with
rich and diverse variations in terms of pose, appearance,
background, etc. (Best viewed when zooming in.)

1 INTRODUCTION
Given the pedestrian description, text-based person retrieval aims
to locate the person of interest from a large pool of candidates [28].
Compared to conventional image-based person retrieval [31, 68,
74], text-based person retrieval provides an intuitive way to form
queries. Such techniques can be widely applied to promote public
safety, such as locating lost children in large areas like airports.
However, as a type of cross-modal learning task, text-based per-
son retrieval harvests little benefits from large-scale cross-modal
pretraining. The reasons stem from two aspects: 1) Lack of Data.
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Due to privacy concerns, we usually can not collect enough data
for the current data-hungry deeply-learned models. 2) Lack of
High-quality Annotation. The language annotation process is
also tedious and inevitably introduces annotator biases. As a result,
the sentences are usually quite short, which can not comprehen-
sively describe the characteristic of the target person [12, 29].

In response to these problems, we propose to construct a syn-
thetic image-text dataset, borrowing the power of the off-the-shelf
diffusion models and the image caption model. In this way, we
could generate unlimited images and acquire high-quality anno-
tations automatically. Furthermore, to make the synthetic data
beneficial for real-world language-based person retrieval, there are
still two challenges that need to be addressed: (1) Realism of syn-
thetic image-text pairs. The visual disparity between synthetic
and real-world image-text pairs constitutes a major challenge in the
construction of a meaningful text-pedestrian benchmark. For text
inputs, we utilize descriptions derived from real-world text-based
person data to guide the diffusion models. Therefore, the generated
images closely resemble those found in the real world. We further
apply a post-processing mechanism as a supplementary step (See
Section 3.) to further refine the synthetic images and rectify any re-
maining discrepancies. (2) Diversity of annotations (sentences
& attributes). To generate a large-scale cross-modal dataset, the
human-annotated description will inevitably be usedmultiple times,
resulting in poor text diversity. To handle this limitation, we employ
an off-the-shelf caption generation model to augment the descrip-
tions for each synthetic image. Besides, we propose an automatic
attribute extraction mechanism that mines the key attributes from
the descriptions to further enrich the annotations.

In this way, we collect a new large-scale cross-modal dataset, i.e.,
Multi-Attribute and Language Search dataset for person retrieval
(MALS) with rich annotations. It is worth noting that while diffusion
models have been recently studied for data augmentation [2, 45, 48],
these works mainly focus on coarse-grained category recognition
benchmarks such as ImageNet [11] and EuroSAT [19]. Differently,
person retrieval requires a more detailed representation since the
variations among individuals are comparatively small. Therefore,
the MALS dataset focuses on providing fine-grained details, which
is crucial for text-based person retrieval tasks. Furthermore, exten-
sive experiments verify that the knowledge learned from MALS is
also scalable to real-world applications in terms of both text-based
person retrieval and pedestrian attribute recognition tasks.

To verify the value of the collected dataset, we introduce an
Attribute Prompt Learning and TextMatching Learning (APTM)
framework for text-based person retrieval. As shown in Figure 2,
the proposed APTM comprises three modules, the image encoder,
text encoder, and cross encoder. We utilize text to acquire attribute
annotation by the proposed Explicit Matching (EM) and Implicit
Extension (IE) mechanism, and further map attributes to a set of
Attribute Prompts. Image-text contrastive learning (ITC) and image-
attribute contrastive learning (IAC) act on the embeddings of feature
encoders, while image-text matching (ITM), image-attribute match-
ing (IAM), masked language modeling (MLM), and masked attribute
prompt modeling (MAM) are imposed on the respective predictions
from the cross encoder. The above constraints are jointly optimized
during pre-training to learn an effective model. In summary, we
highlight the contributions of this paper as follows:

• We observe that data scarcity largely compromises text-based
person retrieval. Therefore, we introduce a new large-scale multi-
attribute and language search benchmark, called MALS. Com-
pared with the existing datasets, such as CUHK-PEDES, our
benchmark contains about 37.5× images with rich attribute an-
notations. (See Table 1.)

• Based on MALS, we also introduce a new joint Attribute Prompt
Learning and Text Matching Learning (APTM) framework, to
facilitate the representation learning. As the name implies, we
explicitly leverage both the attribute recognition task and the
text-based person retrieval task to regularize the model training.
The two tasks are complementary and benefit each other.

• The proposed approach achieves a competitive recall rate on three
challenging real-world benchmarks including CUHK-PEDES,
ICFG-PEDES, and RSTPReid. Besides, we observe that the text
matching task facilitates attribute recognition aswell. Fine-tuning
APTM on PA-100K, i.e., a prevalent pedestrian attribute recogni-
tion dataset, we obtain competitive performance 82.58% mA.

2 RELATEDWORK
Language-based Person Search. Text-to-image person retrieval
is more challenging than general cross-modal retrieval tasks be-
cause of its fine-grained nature. Existing efforts can be classified
as cross-modal attention-based [29, 46, 49, 62] approaches or cross-
modal attention-free approaches [9, 12, 61, 76] depending on the
alignment strategy. To align representations from both modalities
in a shared feature space, the cross-modal attention-free approaches
build various model structures or objective functions [76]. In con-
trast, cross-modal attention-based approaches require pair-wise in-
puts and encourage building cross-modal correspondences between
regions and words or regions and phrases with more interactions
between modalities. It is worth noting that both strategies have
their advantages as well as disadvantages. In general, cross-modal
attention-free techniques are more efficient. More specifically, their
complexity is𝑂 (𝑀+𝑁 ) for𝑀 gallery and𝑁 queries. The complexity
of cross-modal attention-based approaches, in comparison, rises to
𝑂 (𝑀𝑁 ) due to the pair-wise inputs. Nonetheless, these techniques
typically result in noticeably superior retrieval performance. It is
because cross-modal attention-based approaches reduce modality
gaps more effectively with more cross-modality communication
in an early stage. In this paper, we leverage cross-modal attention-
free features to quickly find the candidates and then deploy the
attention-based module to refine the final ranking score.
Attribute-based Person Re-identification. Attribute-based per-
son re-identification [16, 30, 32, 33, 39, 56, 70] aims to identify
individuals across different cameras or time periods based on their
attributes, such as clothing color, gender, height, etc., rather than
relying solely on visual appearance. One of the earliest works on
pedestrian attributes is by Lin et al. [32], who propose a framework
for person re-identification using color, texture, and contour clues.
In particular, Lin et al. extract discriminative features from each
pedestrian image and train several attribute classifiers. Following
this work, Han et al. [16] further propose to fuse part features
with attribute attentions, while He et al. [18] study to jointly train
multiple attribute classifiers in a coherent manner. In contrast to
the fixed horizontal splitting, attribute localization is also stud-
ied in [47]. To encourage the interaction between attributes, both
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Datasets MALS (Ours) CUHK-PEDES [29] ICFG-PEDES [12] RSTPReid [79] Lin et al. [32] PA-100K [35]
#Images 1,510,330 40,206 54,522 20,505 32,668 100,000

Data Source Automatic Market [73] & MSMT-17 [65] MSMT-17 [65] Market [73] & Manual
Synthesis Duke [43], etc. Duke [43] Collection

#Avg Texts/Image 1 2 1 2 - -
#Avg Text Length 26.96 23.54 37.2 25.8 - -
Surrounding Indoor & Outdoor Indoor & Outdoor Indoor & Outdoor Indoor & Outdoor Outdoor Outdoor
Resolution 531 × 208 246 × 90 378 × 142 546 × 219 128 × 64 225 × 85
Annotation Sentence & Attribute Sentence Sentence Sentence Attribute Attribute
#Attribute 27 - - - 27 26

Table 1: Comparison between MALS and other real-world datasets for text-based person retrieval and pedestrian attribute
recognition. Current datasets typically collect images from existing person re-ID datasets and manually provide corresponding
natural language descriptions or attribute annotations. In contrast, MALS leverages generative models to generate a large-scale
dataset including 1.5𝑀 image-text pairs. For each benchmark, the table shows the number of images, data source, the average
texts per image, average text length, the main surrounding and the average resolution of images, types of annotations as well
as the number of attributes.

Attribute Category Name Label
gender gender female(0), male(1)
age age young(0), teenager(1), adult(2), old(3)
length hair hair short hair(0), long hair(1)
wearing hat hat yes(0), no(1)
carrying backpack backpack yes(0), no(1)
carrying handbag handbag yes(0), no(1)
carrying bag bag yes(0), no(1)
sleeve length sleeve long sleeve(0), short sleeve(1)
length of lower-body length_lower long lower body clothing(0), short(1)
type of lower-body type_lower dress(0), pants(1)

color of upper-body black, white, red, purple, (0), (1), (2), (3),
yellow,blue, green, gray (4),(5), (6), (7)

color of lower-body black, white, purple, yellow, (0), (1), (2), (3),
blue, green, pink, gray, brown (4),(5), (6), (7), (8)

Table 2: Attribute space consists of 27 attributes. Here we
show the attribute category, the name in the annotation file,
and the available label choices.

Nguyen et al. [40] and Tang et al. [54] propose to build a graph
representation of the attributes for each person, where nodes repre-
sent attribute embeddings and edges represent correlations between
them. In addition to traditional attributes, Wang et al. [58] leverages
both appearance and personality traits to learn representations of
both visual appearance and personality traits and combine them
for re-identification. Finally, there are several works that make
attributes more robust against occlusions or pose variations. For in-
stance, Jing et al. [24] propose a multi-modal framework that fuses
attribute-based features with pose-based features to enhance re-
identification accuracy under challenging conditions. In this paper,
we also leverage robust attribute learning to facilitate text-based
person retrieval. We find that attribute learning is complementary
to image-text matching, and vice versa.

3 BENCHMARK
Existing text-based person retrieval datasets [12, 29, 79] typically
collect pedestrian images from existing person re-identification
datasets and manually annotate corresponding text descriptions.
However, such practice greatly limits the scale and diversity due to
annotation costs and privacy concerns, as shown in Table 1. The
great success of recent diffusion models [3, 20, 44] inspires us to
collect pedestrian images from the synthetic domain. There are two
primary advantages: (1) Comparing to 3D Game Engine [51, 59, 67]

or Generative Adversarial Networks (GANs) [23, 55, 75, 77], diffu-
sion models have shown a strong and stable ability to synthesize
images with high authenticity to text, significantly reducing the
gap between synthetic and real data. (2) Using synthetic pedestrian
images also circumvents privacy concerns. The construction of our
benchmark consists of the following steps:
Image-text Pair Generation. We utilize the off-the-shelf diffu-
sion model, ImaginAIry [13] which could generate new pedestrian
images. To make the generated samples reasonable as well as close
to the real-world pedestrian images, we employ the textual descrip-
tions of the CUHK-PEDES [29] dataset and the ICFG-PEDES [12]
dataset as prompts. We feed the prompts into ImaginAIry and
collect the corresponding synthetic images, resulting in a pair of
aligned samples. To ensure the generation of high-quality full-body
pedestrian images with controlled variability, we set the image size
as 576 × 384 and adjust the random seed to get the high-quality
samples. By randomizing the noise during inference, massive and
diverse pedestrian images are collected.
Post-Processing. Due to the lack of fine-grained and controllable
generation capabilities of the text-to-image generationmodel, many
generated images cannot meet the requirement of training the
pedestrian retrieval networks. Two main issues stand: (1) the low-
quality images, including grayscale and blur images. To overcome
this weakness, we simply sort images by file size and delete images
whose size is smaller than 24𝑘 to filter out blurred images. Then we
compute themean variance of the difference between the 3 channels
of every image and remove images whose mean variance is less than
a presetting threshold. (2) the noisy images, e.g., multiple persons
in one image, only part of a person, and no person. To remedy this
issue, we apply OpenPose [4, 5, 50, 66] to detect human key points
and filter out the undesired person images. We also leverage the
detected key points as a tight bounding box to re-crop the samples.
With the above steps, we acquire the final pedestrian images.
Caption Calibration. The prompts used to generate images are
the straightforward choice to serve as the text descriptions. How-
ever, this fashion would result in poor diversity of the textural
descriptions, since multiple images usually share the same text. To
cope with this problem, we leverage the cross-modal model, BLIP
[27] to produce more fitting captions for every synthetic image and
form the final image-text pairs.
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Attribute Annotation. The associated attributes often highlight
the key characteristics of both image and text samples, and many
works of text-based person retrieval indicate the potential of at-
tribute for performance improvement [9, 12, 49]. Inspired by this,
we further augment our MALS with the attribute annotation, so
that a more informative and comprehensive benchmark can be
constructed. Considering the cost of manual annotation, we obtain
the attribute annotation in an automatic manner. We first define
the attribute space in the same way as Market-1501 Attribute [32],
and then propose two mechanisms to obtain attributes, Explicit
Matching (EM) and Implicit Extension (IE). EM deploys the corre-
spondence of specific attributes based on keywords in the text, such
as the word "man" corresponding to the attribute "gender: male".
IE assigns corresponding attribute candidates based on distinctive
features that are not mentioned in the text, such as allocating sam-
ples that do not mention "hat" in their descriptions to the attribute
"hat: no". Finally, 27 different types of attributes are collected, as
shown in Table 2.
MALS Benchmark. Following the above steps, a high-fidelity, di-
verse and large-scale benchmark for the text-based person retrieval
task is built. As shown in Figure 1, we can observe the quality of
visual images and textual sentences are comparable with CUHK-
PEDES. Comparedwith existing text-based person retrieval datasets
in Table 1, MALS has the following advantages:
• High-fidelity Images: Compared with the images with poor
lighting and blur texture, collected from surveillance cameras,
images of MALS are of higher quality benefiting from the abil-
ity of the diffusion model (see Figure 1.), which means that the
synthetic images are more visually appealing and realistic.

• Diversity: MALS contains a wide range of variations in the
images, including but not limited to variations in background,
viewpoint, occlusion, clothing, and body pose. Thanks to our
caption calibration step, the associated textual descriptions are
also diverse enough. Therefore, MALS can support us to train
robust models that generalize well to new and unseen data in
vision tasks, language tasks, and vision-language tasks.

• Fewer Privacy Concerns: Unlike several traditional bench-
marks of text-based person retrieval capturing images without
consent, the samples of our MALS are all synthetic images gen-
erated by the off-the-self stable diffusion model, which avoids
ethical and legal issues.

• Large-scale Pairs: MALS contains 1.5𝑀 image-text pairs (see
Table 1.), while existing datasets usually provide no more than
100𝑘 of aligned image-text. This magnitude of the dataset enables
a comprehensive pre-training study.

• Rich Annotations: Each image-text pair in MALS is annotated
with appropriate attribute labels, indicating thatMALS is not only
effective for text-image matching and attribute prompt learning,
but also explores the feasibility of pre-training for both attribute
recognition and image-text matching in one stone.

4 METHOD
We leverage MALS as a pre-training dataset and devise a new sim-
ple joint Attribute Prompt Learning and Text Matching Learning
(APTM) framework, as shown in Figure 2. The overall pipeline is
typically divided into two steps, i.e., pre-training and fine-tuning.

During pre-training, we perform Attribute Prompt Learning (APL)
and Text Matching Learning (TML) to learn the common knowledge
of text-based person retrieval and pedestrian attribute recognition.
In the second step, the parameters are further optimized toward
a specific downstream task. In this section, we elaborate on the
details of the pre-training stage, as we mainly study the benefits of
our MALS for pre-training.

4.1 APTM Architecture
As shown in Figure 2, APTM is a multi-task framework, contain-
ing one image-attribute stream and one image-text stream with
weight-shared encoders and MLP-based headers. In particular, the
framework comprises three encoders, i.e., Image Encoder (𝐸𝐼 ), Text
Encoder (𝐸𝑇 ), Cross Encoder (𝐸𝐶 ), and two MLPs-based headers.
Before pre-training, we utilize text to acquire attribute annotation
by Explicit Matching and Implicit Extension mechanism and then
map attributes to a set of Attribute Prompts as one of the inputs
of the image-attribute stream. During pre-training, the image-text
stream and the image-attribute stream are jointly trained. We de-
ploy Random Mask to generate masked text and masked attribute
prompts, and then the Image Encoder maps the image into embed-
ding 𝑉 and the Text Encoder extracts different text representations
by encoding Text, Masked Text, Attribute Prompts, and Masked
Attribute Prompts separately, denoted as 𝐿, 𝐿̂, 𝐿𝐴 and 𝐿𝐴 , respec-
tively. In the task of ITC and ITM, 𝑉 is paired with 𝐿, while in the
context of IAC and IAM, 𝑉 is paired with 𝐿𝐴 . Further, 𝑉 is also fed
into cross encoder with 𝐿̂ or 𝐿𝐴 for MLM or MAM task.
Image Encoder.Without loss of generality, we deploy Swin Trans-
former (Swin-B) [36] as Image Encoder (𝐸𝐼 ). Given an image (𝐼 ) of
resolution of 384× 128, we split it into 𝑁 𝐼 non-overlapping patches
with a patch size of 32 × 32, where 𝑁 𝐼 = 48. Then, these patches
are linearly embedded and passed into the transformer layers of
𝐸𝐼 , yielding a set of high-dimensional embeddings 𝑉 , the [CLS]

embedding 𝑣𝑐𝑙𝑠 is taken as the representation of the entire image.
Text Encoder. Following existingworks [49], we intuitively employ
BERT [25] as Text Encoder (𝐸𝑇 ) for a fair comparison. Specifically,
the text (𝑇 ) is first tokenized as 𝑁𝑇 + 1 tokens and fed into the first
6 layers of BERT. The output text embeddings {𝑙𝑐𝑙𝑠 , 𝑙1, 𝑙2, ..., 𝑙𝑁𝑇 }
is denoted as 𝐿, where 𝑙𝑖 (𝑖 ∈ [1, 𝑁𝑇 ]) represents the embedding of
the 𝑖𝑡ℎ text token. The embedding of the [CLS] token, i.e., 𝑙𝑐𝑙𝑠 is
treated as the whole text representation.
Cross Encoder. The cross encoder is to fuse the image and text
representations to perform the prediction tasks. Specifically, we
adopt the last 6 layers of BERT as Cross Encoder (𝐸𝐶 ). As shown
in Figure 2, the image and text embeddings are fed into 𝐸𝐶 and
fused by the cross attention mechanism to capture their semantic
relationship. Finally, the joint representation can be obtained: 𝐶 =

{𝑐𝑐𝑙𝑠 , 𝑐1, 𝑐2, ..., 𝑐𝑁
𝑇 }.

4.2 Attribute Prompt Learning
Motivations. Attributes often emphasize crucial characteristics
of pedestrian images, such as gender and hair, which are vital for
performing cross-modal alignment and distinguishing between
candidates. Moreover, synthetic and real descriptions exhibit a
considerable overlap in attribute keywords, leading us to believe
that accentuating the similar attribute space can also alleviate the
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Figure 2: Overview of the proposed Attribute Prompt Learning and Text Matching Learning (APTM) framework for pre-training
on MALS. APTM framework contains one image-attribute stream and one image-text stream with weight-shared encoders. In
particular, the framework comprises three encoders, i.e., Image Encoder (𝐸𝐼 ), Text Encoder (𝐸𝑇 ), Cross Encoder (𝐸𝐶 ), and two
MLPs-based headers. The Image Encoder and Text Encoder are to produce the embeddings of the image and text, respectively,
while the cross encoder seeks to fuse the image and text embeddings for the subsequent predictions.

domain gap. To better leverage the attribute information for image-
attribute alignment, we have opted not to rely on conventional
classifier-based multi-attribute learning methods. Instead, we con-
vert attribute labels into attribute prompts with prompt templates,
as illustrated in Figure 2. We then align the attribute prompts with
the corresponding image, which forms the fundamental basis of our
Attribute Prompt Learning. Drawing inspiration from cross-modal
Learning, we utilize Image-Attribute Contrastive Learning (IAC),
Image-Attribute Matching (IAM), and Masked Attribute Language
Modeling (MAM) to effectively align images with their attributes.
Image-Attribute Contrastive Learning (IAC) concentrates on
mastering the ability to differentiate between positive and nega-
tive pairs. Given a set of attribute texts {𝑇𝑘

𝑎 }2 |𝐴 | in a mini-batch,
𝑘 ∈ [1, 2|𝐴|], where 𝐴 is the attribute set of 27 binary attributes.
For an image 𝐼 , if any of its attribute labels correspond with the
attribute set, we consider the corresponding attribute text and 𝐼 as
a matched (image, attribute prompt) pair. If not, they are considered
unmatched. As exemplified in Figure 2, "the person is a man" is
a matched attribute prompt of the image while "the person is a
woman" is not. We denote the set of all matched (image, attribute
prompt) pairs in a mini-batch as 𝐵𝑎 . The matching score between
an image 𝐼 and its paired attribute prompt𝑇𝑎 is estimated as follows:

𝑆i2a (𝐼 ) =
exp(𝑠 (𝐹𝐼 , 𝐹𝑇𝑎 )/𝜏)

exp(𝑠 (𝐹𝐼 , 𝐹𝑇𝑎 )/𝜏) + exp(𝑠 (𝐹𝐼 , 𝐹𝑇𝑎 )/𝜏)
, (1)

where𝑇𝑎 is the opposite attribute prompt of𝑇𝑎 , which is constructed
by replacing the true attribute as the false one, e.g., man⇒woman,
𝜏 is a learnable temperature parameter, 𝐹𝐼 and 𝐹𝑇𝑎 are the mapped
features of their respective [CLS] embedding by two different FCs,
𝑠 (·, ·) is the cosine similarity. Finally, the formulation of the IAC
loss is presented below:

L𝑖𝑎𝑐 = − 1
|𝐵𝑎 |

∑︁
(𝐼 ,𝑇𝑎 ) ∈𝐵𝑎

log 𝑆i2a (𝐼 ) . (2)

Image-AttributeMatching Learning (IAM) aims to predict whether
the input image and attribute prompt are matched. In particular,
IAM is specified as a binary classification problem to facilitate
the image-attribute alignment: the positive sample is the paired
image-attribute prompt, while the unpaired is the negative one.
Mathematically, assume |𝐵 | images are sampled in a mini-batch, 5
attribute prompts are randomly constructed to form 5|𝐵 | (image,
attribute prompt) pairs, denote as 𝐵𝑎 . Subsequently, the image-
attribute prompt tuples are passed through the Cross Encoder to
get the [CLS] embedding 𝑐𝑐𝑙𝑠 , their matching score is given by an
MLP with Sigmoid activation: 𝑝match (𝐼 ,𝑇𝑎) = Sigmoid(MLP(𝑐𝑐𝑙𝑠 )),
the IAM loss is defined as:

Liam = − 1
|𝐵𝑎 |

∑︁
(𝐼 ,𝑇𝑎 ) ∈𝐵̄𝑎

(𝑦match
𝑎 log 𝑝match (𝐼 ,𝑇𝑎)

+ (1 − 𝑦match
𝑎 ) (1 − log 𝑝match (𝐼 ,𝑇𝑎))),

(3)
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where 𝑦match
𝑎 is 1 if (𝐼 ,𝑇𝑎) is matched, 0 otherwise.

Masked Attribute Language Modeling (MAM) seeks to predict
the masked words using the matched (image, attribute prompt)
as a clue. To this end, we first adopt the following strategies to
randomly mask the 2|𝐴| attribute prompts: 1) mask out the text
tokens with a probability of 25%; Among the masked tokens, 2)
10% and 80% is replaced with random tokens and the special token
[MASK], respectively; 3) 10% remain unchanged. Then, given an
image-attribute prompt pair (𝐼 ,𝑇𝑎) in 𝐵𝑎 , we obtain corresponding
masked attribute prompt 𝑇𝑎 following the aforementioned strate-
gies. Then, (𝐼 ,𝑇𝑎) is input into encoders to get the output of 𝐸𝐶 :
𝐶 = {𝑐𝑐𝑙𝑠 , 𝑐1, 𝑐2, ..., 𝑐𝑁

𝑇 }. If 𝑡 𝑗𝑎 is themasked token in𝑇𝑎 , 𝑗 ∈ [1, 𝑁𝑇 ],
its prediction probability is given by an MLP with Softmax activa-
tion: 𝑝mask

𝑗
(𝐼 ,𝑇𝑎) = Softmax(MLP(𝑐 𝑗 )). Finally, the MAM loss is

defined as follows:
Lmam = E

𝑡
𝑗
𝑎∼𝑇𝑎 ;(𝐼 ,𝑇𝑎 )∼𝐵̂𝑎

𝐻 (𝑦mask
𝑗 , 𝑝mask

𝑗 (𝐼 ,𝑇𝑎)), (4)

where 𝑦mask
𝑗

is a one-hot distribution in which the ground-truth to-

ken 𝑡 𝑗𝑎 has the probability of one, and 𝐵̂𝑎 is the 2|𝐴| (image, masked
attribute prompt) pairs of the mini-batch. The overall APL loss
is: LAPL = 1

3 (Liac + Liam + Lmam) . To prevent overfitting, label
smoothing is further employed. Typically, we apply a random noise
perturbation to 𝑦match

𝑎 , which remedies overconfident predictions.
WhyAPLWorks Better. In comparison to the Classification-based
Multi-Attribute Learning (CMAL) approaches, APL has three dis-
tinct advantages: 1) Explicit emphasis on the attributions. Naïve
classification-based practices implicitly highlight the key attributes
through a classification procedure, whereas APL explicitly con-
structs the attribute prompt, which leads to more effective learn-
ing than implicit classification procedures. 2) More informative
inputs. APL introduces information-rich inputs by constructing
supplementary attribute prompts, providing richer information for
cross-modal alignment learning. In contrast, traditional CMAL only
utilizes a classification loss and introduces no auxiliary information.
3) Greater flexibility for framework augmentation. Thanks to the
constructed attribute prompts, APL enables powerful cross-modal
learning objectives such as image-text contrastive learning (ITC),
Image-text matching (ITM), and masked language modeling (MLM)
to be equipped after modification to be attribute-oriented, resulting
in increased potential for performance improvement. During ex-
periments, APL outperforms several naïve CMAL variants, which
well verifies the superiority of APL.

4.3 Text matching Learning
As a type of cross-modal retrieval problem, the core of text-based
person retrieval is to align the text query and the image candidates.
Hence, we also incorporate the tasks of Image-Text Contrastive
Learning (ITC), Image-Text Matching Learning (ITM), and Masked
Language Modeling (MLM) to impose the alignment constraints.
Image-Text Contrastive Learning (ITC) focuses on learning to
differentiate between positive and negative pairs. In our case, it is
intuitive to treat the paired image-text (I, T) as the positive sample,
while the unmatched image-text is the negative pair. Formally, we
randomly sample |𝐵 | pairs of images and text in each mini-batch.
Similar to Eq. 1, given a matched pair (𝐼 ,𝑇 ), we initially extract
their respective representations 𝐹𝐼 and 𝐹𝑇 . The matching score is
then estimated as follows:

𝑆i2t (𝐼 ) =
exp(𝑠 (𝐹𝐼 , 𝐹𝑇 )/𝜏)∑ |𝐵 |

𝑖=1 exp(𝑠 (𝐹𝐼 , 𝐹𝑇 𝑖 )/𝜏)
, (5)

Similarly, given the text, the matching score of the paired image
𝑆t2i (𝑇 ) can be calculated. Finally, the ITC loss is formulated as:

Litc = − 1
2|𝐵 |

∑︁
(𝐼 ,𝑇 ) ∈𝐵

(log 𝑆i2t (𝐼 ) + log 𝑆t2i (𝑇 )), (6)

where 𝐵 is the data set of the mini-batch.
Image-Text Matching Learning (ITM) targets to predict whether
the input image and the text are matched, analogous to IAM. Nev-
ertheless, randomly sampling an unpaired item (text or image) is
overly facile for the classification. Therefore, we employ a hard
example mining strategy. For each text in a mini-batch, we sample
its hard negative image according to the similarity of 𝑆t2i (𝑇 ), i.e.,
pick the unpaired image whose similarity is the highest as the hard
negative. We also sample one hard negative text for each image
in a similar manner. Finally, |𝐵 | positive image-text pairs and 2|𝐵 |
negative pairs, denoted as 𝐵, will pass through the Cross Encoder
and one MLP with Sigmoid activation. Following these steps, the
ITM loss can be calculated similarly as described in Eq. 3.
Masked Language Modeling (MLM) endeavors to predict the
masked words using the image and text clue. Given an image-text
pair (𝐼 ,𝑇 ) in 𝐵, we obtain corresponding masked text 𝑇 follow-
ing the same masking strategies as MAM. Subsequently, (𝐼 ,𝑇 ) are
passed through the encoders to obtain embeddings. The MLM loss
L𝑚𝑙𝑚 is analogously imposed following Eq. 4. Given the above
optimization objectives, the full pre-training loss is formulated as:
L = Litc + Litm + Lmlm + 𝛽LAPL, where 𝛽 denotes the APL loss
weight, and we empirically set 0.8.

5 EXPERIMENT
5.1 Experimental Setup
Datasets. We evaluate our approach on three public text-based
person retrieval datasets and one pedestrian attribute dataset, i.e.,
CUHK-PEDES [29], RSTPReid [79], ICFG-PEDES [12] and PA-
100K [35]. In particular, CUHK-PEDES [29] includes 80, 440 de-
scription phrases and 40, 206 photos of 13, 003 people, while RST-
PReid [79] comprises 20, 505 images of 4, 101 people and is created
by compiling MSMT17 [65] data. ICFG-PEDES [12] is also incu-
bated from MSMT17 and has 54, 522 images of 4, 102 individuals. To
make a fair comparison, the data splits of three text-based person
retrieval datasets keep the same as the previous works [14, 69].
PA-100K [35] is constructed by 100, 000 pedestrian images from 598
real outdoor scenes. Every image is labeled by 26 attributes, and
the standard splits are adopted for performance evaluation [35].
Implementation Details.We pre-train APTM with Pytorch on
4 NVIDIA A100 GPUs for 32 epochs, and the mini-batch size is
150. We adopt the AdamW [38] optimizer with a weight decay of
0.01. The learning rate is decayed from 1𝑒−4 to 1𝑒−5 following a
linear schedule, after a warm-up schedule beginning at 1𝑒−5 in the
first 2, 600 steps. Every image input is resized to 384× 128. Random
horizontal flipping, RandAugment [10] and random erasing [78] are
employed for image augmentation. APTM takes text with no more
than 56 tokens as input. During pre-training, the Image Encoder is
initialized with Swin Transformerbase [37], while the Text Encoder
and Cross Encoder are initialized by the first and the last 6 layers of
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Method R1 R5 R10 mAP
CNN-RNN [42] 8.07 - 32.47 -
GNA-RNN [29] 19.05 - 53.64 -
PWM-ATH [7] 27.14 49.45 61.02 -
GLA [6] 43.58 66.93 76.2 -
Dual Path [76] 44.40 66.26 75.07 -
CMPM+CMPC [71] 49.37 - 79.21 -
MIA [41] 53.10 75.00 82.90 -
A-GANet [34] 53.14 74.03 81.95 -
ViTAA [60] 55.97 75.84 83.52 51.60
IMG-Net [63] 56.48 76.89 85.01 -
CMAAM [1] 56.68 77.18 84.86 -
HGAN [72] 59.00 79.49 86.62 -
NAFS [15] 59.94 79.86 86.70 54.07
DSSL [79] 59.98 80.41 87.56 -
MGEL [57] 60.27 80.01 86.74 -
SSAN [12] 61.37 80.15 86.73 -
NAFS [15] 61.50 81.19 87.51 -
TBPS [17] 61.65 80.98 86.78 -
TIPCB [9] 63.63 82.82 89.01 -
LBUL [62] 64.04 82.66 87.22 -
CAIBC [61] 64.43 82.87 88.37 -
AXM-Net [14] 64.44 80.52 86.77 58.73
SRCF [52] 64.88 83.02 88.56 -
LGUR [46] 65.25 83.12 89.00 -
CFine [69] 69.57 85.93 91.15 -
TextReid (RN50) [17] 61.65 80.98 86.78 58.29
TextReid (30K) [17] 61.81 80.39 86.90 -
IVT (Baseline) [49] 55.75 75.68 84.13 -
IVT (4M) [49] 65.59 83.11 89.21 -
IVT (MALS) [49] 66.10 83.79 89.46 -
Baseline 66.44 84.92 90.76 59.19
APTM (Ours) 76.53 90.04 94.15 66.91

Table 3: Performance Comparison on CUHK-PEDES.

Method R1 R5 R10 mAP
DSSL [79] 32.43 55.08 63.19 -
LBUL [62] 45.55 68.20 77.85 -
IVT [49] 46.70 70.00 78.80 -
CAIBC [61] 47.35 69.55 79.00 -
CFine [69] 50.55 72.50 81.60 -
Baseline 47.20 70.85 80.00 36.36
APTM (Ours) 67.50 85.70 91.45 52.56

Table 4: Performance Comparison on RSTPReid.

Method R1 R5 R10 mAP
Dual Path [76] 38.99 59.44 68.41 -
CMPM+CMPC [71] 43.51 65.44 74.26 -
MIA [41] 46.49 67.14 75.18 -
SCAN [26] 50.05 69.65 77.21 -
ViTAA [60] 50.98 68.79 75.78 -
SSAN [12] 54.23 72.63 79.53 -
IVT [49] 56.04 73.60 80.22 -
LGUR [46] 59.02 75.32 81.56 -
CFine [69] 60.83 76.55 82.42 -
Baseline 57.49 75.84 82.60 32.41
APTM (Ours) 68.51 82.99 87.56 41.22

Table 5: Performance Comparison on ICFG-PEDES.

BERT𝑏𝑎𝑠𝑒 [25], respectively. Therefore, there are 214.5𝑀 trainable
parameters in APTM. After pre-training, the model is fine-tuned
on the downstream datasets for 30 epochs. The learning rate is set
as 1𝑒−4 and is warmed up in the first 3 epochs. Then we apply a
linear scheduler to gradually decay the learning rate.

5.2 Comparison with Existing Methods
We adapt APTM to downstream text-based person retrieval tasks
and pedestrian attribute recognition tasks. Following previous prac-
tices [49, 69], we report Recall@1,5,10, and mAP for text-based
person retrieval to compare the results. For the attribute recogni-
tion task, accuracy (Acc), precision (Prec), recall rate (Rec), and F1
value (F1) are adopted to evaluate the performance.
Text-based Person Retrieval. We evaluate APTM on CUHK-
PEDES, RSTPReid, and ICFG-PEDES datasets and optimize ITC,
ITM, and MLM loss during finetuning. Besides image data aug-
mentation mentioned in pretraining, we adopt EDA[64] for text
data augmentation and set the mini-batch size as 120. In reference,
for each text query, we first compute its cosine similarity with all
images and take the top-128 image candidates. Then we calculate
the matching probability between the text query and every selected
image candidate for ranking. The proposed method has achieved
the SOTA recall rate on all three datasets. Specifically, our model
has surpassed 6.96% recall@1 rate on CUHK-PEDES, compared to
the second-best method 69.57% (See Table 3.). Similarly, as shown
in Table 4 and Table 5, we could observe that our method arrives at

Method mA Acc Prec Rec F1
HP-net [35] 74.21 72.19 82.97 82.09 82.53
strongBaseline [22] 79.38 78.56 89.41 84.78 86.55
ALM [53] 80.68 77.08 84.21 88.84 86.46
RethinkPAR [21] 81.61 79.45 87.66 87.59 87.62
Baseline (Image only) 71.68 54.51 60.47 83.60 70.18
Baseline (wo MAM) 80.43 79.91 89.26 86.49 87.85
Baseline 81.49 79.89 88.59 87.09 87.83
APTM (Ours) 82.58 80.17 88.31 87.84 88.07

Table 6: Performance Comparison on PA-100K. Baseline (Im-
age only) denotes only finetuning the Image Encoder, while
Baseline (wo MAM) removes MAM loss. Baseline refers to
training the model without pretraining on MALS.

67.50% and 68.51% R1 on RSTPReid and ICFG-PEDES, respectively.
Furthermore, we compare two traditional methods, TextReID [17]
and IVT [49], with APTM based on MALS. We use ResNet50 as the
visual backbone of TextReID and use 30k image-text pairs from
MALS for TextReID pretraining since TextReID uses instance loss.
IVT also explores the pretraining on 4M general image-text pairs,
while MALS only consists of 1.5M image-text pairs. As shown in
Table 3, after pretraining on MALS, the performance of all three
methods has improved.
Pedestrian Attribute Recognition. Pedestrian attribute recogni-
tion aims at mining the attributes of target people when given a
pedestrian image. We apply the attribute prompt learning part of
APTM to predict the attributes of images from PA-100K. Similar to
MALS, we construct the attribute prompts for PA-100K and finetune
the model. During inference, we compute the matching probability
between every image and every pair of attribute prompts for rank-
ing. An attribute prompt with a higher matching probability means
the image is more relevant to the corresponding attribute. Our
method achieves competitive results as shown in Table 6. Baseline
refers to training the model without pretraining on MALS. Baseline
(Image only) denotes only finetuning the Image Encoder and its fol-
lowing MLPs, which are used to predict the attribute label. Baseline
(wo MAM) does not optimize MAM loss. The results among the
three baselines and APTM indicates the rationality of our APTM.
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(a) Ablation study on the pre-training data number.

Method 𝐿𝑇𝑀𝐿 𝐿𝑉 1 𝐿𝑉 2 𝐿𝐴𝑃𝐿 R1
M1 ✓ 69.62
M2 ✓ ✓ 69.46
M3 ✓ ✓ 69.64
APTM ✓ ✓ 71.38

(b) Ablation study on attribute-oriented objectives.

Figure 3: Ablation Study on the pre-training data scale and the optimization objectives in our APTM. (a) We apply 0𝑀 , 0.3𝑀 ,
0.6𝑀 , 0.9𝑀 , 1.2𝑀 , and 1.5𝑀 data pairs to pre-train, and then report the fine-tuned recall rate on three datasets respectively. We
can observe that the performance is consistently improved as the data scale increases. (b) 𝐿𝑇𝑀𝐿 refers to the sum of ITC loss,
ITM loss, and MLM loss, and 𝐿𝐴𝑃𝐿 denotes APL loss. 𝐿𝑉 1 and 𝐿𝑉 2 are losses of two naïve CMAL variants.

Figure 4: Qualitative text-to-image retrieval results of APTM
and baseline, placing in descending order from right to left
based on similarity. The green boxes indicate the correct
matches, and the images in the red boxes are the wrong
matches. The green texts highlight the details that our re-
sults successfully match.

APTM obtain 0.97% improvement on mA compared with the results
of RethinkPAR [21]. A recent work SOLIDER [8] reports 86.37%
mA. Since SOLIDER [8] adopts a more powerful backbone, we do
not include the result of SOLIDER for a fair comparison.

5.3 Ablation Study
Effectiveness of Pre-Training. Table 3 compares the performance
on the CUHK-PEDES dataset, where the "Baseline"means the APTM
without pre-training. We can observe that our baseline, reaching
66.44%, 84.92%, and 90.76% on R1, R5, and R10, respectively, is a
competitive method. Pre-training APTM onMALS leads to improve-
ment of 10.09%, 5.12%, and 3.39% on Recall@1, 5 and 10. Similar
results could be observed on RSTPReid and ICFG-PEDES, reported
in Table 4 and Table 5. To intuitively show the benefits of pre-
training, three qualitative results of APTM and baseline are shown
in Figure 4, indicating the superiority of APTM.
The Impact of Pre-training Scale. In generic vision and language
pre-training tasks, the scale of the training dataset usually plays an
important role. A larger amount of pre-training data often means
better performance. To thoroughly study the effectiveness of MALS,
we further explore the impact of the data scale during pre-training.
Specifically, we respectively adopt 0, 0.3𝑀 , 0.6𝑀 , 0.9𝑀 , 1.2𝑀 and,

1.5𝑀 data of MALS to pre-train 32 epochs and then evaluate the
finetuned performance on CUHK-PEDES, ICFG-PEDES and RST-
PReid. The results are compared in Figure 3a, as the data scale
increases, the recall tends to improve as well. From 0 to 0.3𝑀 , fine-
tuning performance on three datasets increases noticeably, while
from 0.3𝑀 to 1.5𝑀 , the rate of improvement gradually diminishes.
Effectiveness of APL Loss. We also conduct an ablation study to
investigate how to leverage the attribute annotation, as shown in Ta-
ble 3b. All compared model variants are pre-trained on 0.03𝑀 data
of MALS and then finetuned on CUHK-PEDES. We adopt Recall@1
as an evaluation measure. First, we evaluate the effectiveness of
APL loss, i.e., M1, APTM. The results show that pretraining without
APL loss hurts performance. Furthermore, we replace APL with
several naïve CMAL variants separately, and report its finetuning
performance on CUHK-PEDES in Table 3b: (1)Method V1: Image
embedding and Text Embedding are used to give the prediction
of attributes by mapping the Embedding to low-dimensional fea-
tures, separately. The BCE Loss is adopted as the objective function.
(2)Method V2: Use the joint representation of the image-text pair to
predict attributes by mapping the Embedding to low-dimensional
features. The attribute classification loss is BCE Loss, too. In Ta-
ble 3b, compared with M2 and M3, APL outperforms both of them,
which verifies the superiority of APTM.

6 CONCLUSION
We introduceMALS, a new large-scale benchmark formulti-attribute
recognition and language-based person search. Our benchmark
comprises 1, 510, 330 image-text pairs with rich attribute annota-
tions, which is about 37.5 times larger than widely-used CUHK-
PEDES. Extensive experiments verify that pretraining on MALS is
scalable to real-world scenarios. To regularize the model training,
we propose to jointly learn from the two complementary tasks, i.e.,
text-based person retrieval and pedestrian attribute recognition. On
three public benchmarks, including CUHK-PEDES, ICFG-PEDES,
and RSTPReid, our approach has achieved a competitive recall rate.
We hope our work could contribute to the community with a new
viewpoint on unified text-based person retrieval.
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