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Abstract

Existing approaches to drone visual geo-localization pre-
dominantly adopt the image-based setting, where a single
drone-view snapshot is matched with images from other
platforms. Such task formulation, however, underutilizes
the inherent video output of the drone and is sensitive
to occlusions and viewpoint disparity. To address these
limitations, we formulate a new video-based drone geo-
localization task and propose the Video2BEV paradigm.
This paradigm transforms the video into a Bird’s Eye View
(BEV), simplifying the subsequent inter-platform match-
ing process. In particular, we employ Gaussian Splat-
ting to reconstruct a 3D scene and obtain the BEV pro-
jection. Different from the existing transform methods,
e.g., polar transform, our BEVs preserve more fine-grained
details without significant distortion. To facilitate the
discriminative intra-platform representation learning, our
Video2BEV paradigm also incorporates a diffusion-based
module for generating hard negative samples. To val-
idate our approach, we introduce UniV, a new video-
based geo-localization dataset that extends the image-based
University-1652 dataset. UniV features flight paths at 30°
and 45° elevation angles with increased frame rates of
up to 10 frames per second (FPS). Extensive experiments
on the UniV dataset show that our Video2BEV paradigm
achieves competitive recall rates and outperforms conven-
tional video-based methods. Compared to other competi-
tive methods, our proposed approach exhibits robustness at
lower elevations with more occlusions. The code is avail-
able at: https://github.com/HaoDot/Video2 BEV-Open.

1. Introduction

Drone visual geo-localization aims to retrieve images of the
same location from another platform, such as satellite, us-
ing visual information captured by the drone. This process
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Figure 1. Typical failure cases for image-based drone geo-
localization. For image queries (left), the core areas in ground-
truth are occluded by another building, largely compromising the
spatial matching. In contrast, video queries (right) usually con-
tain unoccluded frames in a circling flight, and thus could reflect a
more comprehensive view of the target location.

is typically supported by off-line GNSS metadata [74], en-
abling drones to self-localize even in GNSS-denied environ-
ments, such as urban canyons or rural areas. The prevailing
approach follows an image-based matching paradigm [0,
8, 31, 58, 59, 74], where a single drone-captured snapshot
serves as the query to retrieve the corresponding location
from the satellite-viewed candidate pool. However, despite
the advancements in image-based paradigms, two critical
limitations persist. Both are due to drone flight height reg-
ulations [2, 19, 52]. (1) Drones typically operate at lower
altitudes in cluttered environments, resulting in significant
occlusions in the captured images from buildings, trees,
and other foreground objects. Such occlusion can lead to
a substantial loss or degradation of visual information in
the drone image captured from a single viewpoint, making
it difficult to establish accurate correspondences with satel-
lite imagery. As shown in Fig. | (left), the core areas in
the query are entirely obstructed by surrounding buildings.
(2) Similarly, due to height limitation, drones typically cap-
ture images at oblique angles, while satellite images are pre-
dominantly acquired from a top-down perspective. The sig-
nificant viewpoint disparity between the drone and satellite
perspectives further increases the difficulty of matching.
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Figure 2. Prevailing image-based geometric transformation (a)
Satellite to Ground transformation by the polar transforma-
tion [41], (b) Ground to Satellite transformation by the spherical
transformation [61]. Our Drone video to Satellite transformation is
shown in (c). Compared to image-based approaches, our method,
fully leveraging the comprehensive view from the free-of-lunch
drone videos, mitigates severe distortion and blurring.

To address the limitations of the image-based geo-
localization paradigm, we formulate a new video-based
drone geo-localization task and propose a correspond-
ing paradigm named Video2BEV, which leverages drone
videos and transforms them into Bird’s-Eye View (BEV)
representations for drone-satellite matching. (1) Differ-
ent from traditional single-view image approaches, our
Video2BEV paradigm resorts to the multi-view nature of
video to recover occluded regions and improve matching
robustness. As shown in Fig. 1 (right), even though core
areas of the target location are occluded in a certain drone-
captured frame, we still can recover such core areas from
other frames with different viewpoints. (2) In this work,
we reconstruct the view in the BEV format, since BEV rep-
resentation aligns with the satellite’s top-down viewpoint,
thus reducing the inter-platform discrepancy. To convert
input image into a calibrated format, existing methods usu-
ally apply 2D geometric transformations [4 1, 61], but suffer
from spatial distortion and blurring (see Fig. 2 (a, b)). In-
spired by the success of 3D Gaussian Splatting (3DGS) in
reconstruction [4], we introduce a new 3D-aware transfor-
mation. In particular, we leverage 3DGS to reconstruct the
3D scene based on the multi-view snapshots from the drone
video, and then obtain the BEV representation via projec-
tion. As shown in Fig. 2 (c), the BEV generated by our
Video2BEV transformation exhibits fine-grained textures
with minimal distortion or blurring, thus facilitating the
subsequent inter-platform matching. Furthermore, consid-
ering the nearby location with a similar visual appearance,
the proposed Video2BEV paradigm further incorporates a
diffusion-based hard negative synthesis module. This mod-
ule generates BEV representations that retain original se-
mantic content but with different fine-grained discrepan-
cies, serving as hard negatives during training. By incor-
porating these challenging samples, the model learns to dis-
criminate intra-platform samples from highly similar yet
geographically distinct locations.

Finally, to support the video-based geo-localization task,
we introduce a new dataset UniV with 2 drone videos per
location accompanying with 16 ground-view snapshots and

Drone — Satellite Satellite - Drone

100 96.75 100
95

9296 9576 95
90

85 8435 85 8355
0 79.84

90.25

AP
AP
%
=3

75 s
70 70
651 63.88] 65 63.96

60 60

LPN FSRA DWDR  Sample4Geo LPN FSRA DWDR  Sample4Geo

Figure 3. Performance comparisons of leveraging image data (Im-
age2Image) or video data (Video2Image or Image2Video) with
different methods including LPN [58], FSRA [6], DWDR [59],
and Sample4Geo [8]. We report the Average Precision (AP) met-
ric. For a fair comparison, we keep the same number of data in
the gallery. We could observe that all re-implemented methods
achieve better performance when adopting video query or gallery.

1 satellite-view image, which is closer to the real-world de-
ployment. With the help of unobstructed frames, the video
input significantly reduces the impact of occasional occlu-
sions present in the single image, thereby improving over-
all performance on all our re-implemented methods. For
instance, LPN [58] receives +24.46% AP increment (see
Fig. 3). In brief, our contributions are:

* We formulate a new video-based geo-localization task
and propose the Video2BEV paradigm that transforms
drone-view videos into BEV representations with the
assistance of 3DGS, simplifying the subsequent inter-
platform matching process. To further enhance the
intra-platform representation learning, we introduce a
diffusion-based hard negative sample synthesis module,
which generates challenging training samples to expand
data diversity and improve discriminative capability.

* To validate the video-based drone geo-localization task,
we introduce a new dataset, called UniV, with 3,304 drone
flight videos with corresponding satellite and ground-
view images. Our experiments reveals two insights:
(1) Video-based data shows consistent performance ad-
vantages over single-frame image retrieval across multi-
ple metrics (see Fig. 3). (2) The proposed Video2BEV
achieves 96.80 AP on Drone Video — Satellite, outper-
forming other competitive methods. Furthermore, the
trained model shows strong generalization capabilities,
maintaining 91.50 AP when tested on the unseen real-
world dataset, i.e., SUES-200, without fine-tuning.

2. Related Work

Image-based Geo-localization. Image-based geo-
localization, which is usually regarded as a sub-task of
image retrieval, applies image query to determine loca-
tions [63, 71]. The primary challenge of this task is the
large appearance discrepancy due to different viewpoints
across platforms, including ground [17], satellite [11], and
drone [9, 76]. Previous methods can be coarsely divided
into two families: image-level alignment and feature-level



Table 1. (a) Dataset comparisons between UniV and other visual geo-localization datasets. G, S, and D denote ground-view, satellite-view,
and drone-view, respectively. We enable video modality and add another common elevation angle of drone flight. (b) Elevation angles 6
illustration. Top panel shows 6 = 45° and bottom panel displays # = 30°. With a lower elevation angle, the new flight captures the target
location with wider Field of View (FoV) but more occlusions, thereby posing more challenges for drone visual geo-localization.

(a)

Datasets Platforms #data per location Modality Elevation “
CVUSA [64] G, S 1 image + 1 image Image N/A y
Lin eral. [27] G, S 1 image + 1 image Image 45° >/
Vo et al. [56] G,S 1 image + 1 image Image N/A Elevation angle
Tian et al. [50] G, S 1 image + 1 image Image 45° of a drone flight, 6 = 45°
CVACT [28] G,S 1 image + 1 image Image N/A z
Vigor [78] G,S 2 images + 1 image Image N/A
SUES-200 [77] S,D (1 +50 x 4) images Image 45° ~ 70° gC y
University-1652 [74] | G, S,D (16 + 1 + 54) images Image 45° / <]
GeoText-1652 [5] G,S,D (16 + 1 + 54) images + 180 texts | Image + Text 45° % #
UniV G,S,D (16 +1) images + 2 videos Image +Video | 30°, 45° Elevation angle 6 er Field of View (FoV) ”Eﬂm‘n‘.‘;gc

alignment. (1) For image-level alignment, Shi ef al. [41]
leverage polar transformation to warp satellite images to
the ground view. Similarly, Wang et al. [61, 67] transform
ground images to the satellite view. Regmi et al. [36]
synthesize aerial images from ground images to facilitate
matching with satellite view via Generative Adversarial
Networks (GANs). Tian et al. [49] employ GANSs to
transform drone-view images into satellite-view images.
Andrea et al. [54] convert drone-view images to ground
views through 3D reconstruction but the output is with
distortions. (2) For feature-level alignment, Dai et al. [6]
and Wang et al. [58] establish feature alignment in a
region-correspondence manner. Some methods [26, 46]
focus on key-point alignment. Other methods aim to
improve the discriminative ability of neural networks with
tailored modules, such as lite-transformer encoder [62],
layer-to-layer attention block [65, 79], adaptive integration
module [47], strong backbones [66], adaptation information
consistency module [23], spatially-adaptive denormaliza-
tion [60] and well-designed loss functions, e.g., semantic
augmentation loss [70], contrastive loss [8, 22, 31, 71],
dynamic weighted decorrelation regularization [59], peer
learning [69], instance loss [74] and the optimal trans-
port [43]. Additionally, other methods [28, 37, 42] fuse
the extra orientation meta-information from GNSS with
extracted features. However, previous methods overlook
the viewpoint variation within drone-view videos, thinking
in an image-based setting. Our method is among the early
attempts to leverage the viewpoint variation of drone-view
videos to transform drone-view video to Bird’s-Eye View
(BEV), thereby reducing the viewpoint disparity between
drone and satellite views.

Video-based Geo-localization While video understand-
ing has been a focus of the computer vision community
for decades, the problem remains challenging due to the
complexity added by the time dimension and the volume
of data. Early works [3, 12, 40] leverage two-stream
convolution networks to fuse spatial semantic information
with motion information. Subsequently, attention mecha-

of a drone flight, 8 = 30" Drone-view video (6 = 30°)

nisms [7, 13, 34] have been introduced for long-term video
understanding, such as vanilla self-attention [1, 55], shift
window [29, 30], masked auto-encoder [14, 51], and lo-
cal spatiotemporal attention [45]. Recently, large language
models [48] have also shown their superiority in video un-
derstanding. In visual geo-localization, videos contain more
visual information captured through the camera’s trajectory,
which can provide more comprehensive information com-
pared to images. Vyas et al. [57] are the first to collect
ground-view data in video format and propose a hierarchi-
cal approach for processing clips of ground-view videos.
Regmi et al. [37] leverage the geo-temporal proximity be-
tween the ground-view videos and GNSS locations to ex-
tract coherent features from videos. Expanding to a global
scale, Kulkarni et al. [21] introduce a large-scale ground-
view video dataset for worldwide geo-localization. Differ-
ent from the ground-view videos, drone-view videos typ-
ically contain multi-view and multi-scale information for
the target location [32]. In this paper, we collect drone-
view data in video format and propose a video-based geo-
localization dataset. Rather than adopting the off-the-shelf
video backbone, we propose a Video2BEV transformation
to leverage the 3D geometric correspondences and enable a
straightforward spatial alignment for matching.

3. The UniV Dataset

Given the lack of a video-based drone geo-localization
benchmark, we collect a new dataset dubbed UniV in-
volving the video modality. We follow the location in-
formation and the protocol of the existing University-1652
dataset [74]. The UniV dataset encompasses 1,652 loca-
tions in 72 universities from three platforms, i.e., ground,
satellite, and drone cameras. In particular, the UniV dataset
contains 16 ground-view images and 1 satellite-view image
for each location and the training set of UniV dataset con-
tains 701 locations, while the test set in the UniV dataset
includes other 951 locations. There are no overlapping loca-
tions between the training and test sets. The proposed UniV
dataset is different from the image-based University-1652



and other datasets in two primary aspects, i.e., modality and
elevation-angle expansions (see Tab. 1a).

Modality Expansion. Existing datasets [28, 56, 64, 78]
collect data from two platforms, e.g., satellite and ground.
Although some datasets [50, 74, 77] include drone views,
collected data is still in an image format. We adopt simi-
lar operations as the University-1652 but collect drone-view
data in a video format. Specifically, we leverage the 3D en-
gine of google earth [33] to simulate the real-world move-
ment of a drone equipped with a camera. To collect video
data containing various scales and viewpoints, we leverage
the dynamic viewpoints within the 3D engine and set the
moving viewpoints along a spiral curve for moving around
the target location in three circles, closely approximating
real-world drone flights. All videos are collected in 30
frame rate. Considering the video redundancy, in practice,
we subsample videos along the temporal dimension, result-
ing in frame rates of 2, 5, and 10 for further processing.

Elevation-angle Expansion. Conventional datasets [27,
50, 74] collect drone data in a fixed elevation angle, i.e.,
45°, which does not fully simulate the real-world cases.
Therefore, we add one new synthetic flying path at another
common setting, i.e., a lower elevation angle 30°. The new
flying path poses two new challenges (see Tab. 1b). First,
drones flying at a 30° elevation angle capture scenes that in-
clude the target location and more surrounding areas, pro-
viding a wider Field of View (FoV), thus introducing dis-
ruptions for the center target location during matching. Sec-
ond, flight paths at a lower elevation angle lead to more oc-
cluded cases, which lay over the core areas of the target
location. It poses challenges for mining the discriminative
frames in the video, whereas it becomes easier when cap-
tured at a 45° elevation. Therefore, the proposed dataset
could further evaluate the robustness of methods against
more disruptions and occlusions, which is closer to real-
world drone geo-localization usage.

Discussion. The contribution to the community. Differ-
ent from existing datasets [27, 50, 74], the proposed UniV
expands the modality from image to video (see Tab. 1a),
facilitating the development of robust drone visual geo-
localization. A single image provides limited information
about the corresponding location. When core areas of the
location are occluded, single-image queries can not pro-
duce reliable matching results (see Fig. 1). In such cases,
the video contains both occluded and unoccluded frames.
One frame may contain core-area information to comple-
ment another frame and together they can provide robust
and complete information required for drone visual geo-
location. In this way, all re-implemented methods perform
better when adopting video data (see Fig. 3). Moreover,
the UniV dataset also introduces a new real-world challenge
for drone visual geo-localization. The new elevation angle

of 30° is typical in real-world flights*. The 30° elevation
angle faces more occlusion cases (see Tab. 1b), simulating
outputs of real-world drone flights.

4. Method
4.1. Video2BEYV Transformation

During the flight around the target location, the viewpoints
of the camera change dynamically, resulting in captured
drone-view videos that contain rich multi-view information
about both the target location and surrounding areas. We ex-
plicitly leverage the multi-view information and transform
the drone-view video into Bird’s Eye Views (BEVs). In
doing so, we ease the learning process for the subsequent
model. Instead of learning geometry correspondence and
feature correspondences simultaneously [4], the subsequent
model only needs to learn the feature mapping relationship
between two views, thus significantly facilitating network
convergence. As shown in the left part of Fig. 4, given
the drone-view video containing multi-view images, we es-
timate corresponding camera poses by structure from mo-
tion [53] and reconstruct the scene containing the target lo-
cations utilizing 3D Gaussian Splatting (3DGS) [18]. After
reconstructing the scene, we adopt the normalized camera
pose and the unit vector in the world coordinate to calcu-
late the BEV camera pose and render BEVs. In particu-
lar, the vanilla 3DGS takes less than 8 seconds to render
50 BEVs with the shape of 512 x 512 on a NVIDIA 4090
GPU. Since we usually foreknow the search area in practice,
the BEV generation process can be regarded as an off-line
pre-processing. BEVs rendered with our Video2BEV trans-
formation module do not suffer from severe distortion (see
Fig. 4), thereby aiding in the subsequent inter-platform
matching process with the satellite images.

4.2. Hard Negative Sample Synthesis

Negative samples play a significant role in discriminative
metric learning. Current negative sample mining strate-
gies [8, 31, 71] cannot ensure the quantity and quality of
negative samples, as challenging samples are inherently
scarce, and the selected negative samples do not necessar-
ily exhibit similar architectural styles or consistent seman-
tic details as the original samples. In order to bypass these
drawbacks, we propose to generate diverse BEV represen-
tations as hard negative samples through a fine-tuned dif-
fusion model, which is shown in the right of Fig. 4. After
transforming the drone-view video to BEVs zp., via our
Video2BEYV transformation, we utilize a visual-LLM [16]
to generate captions for both BEV and satellite-view im-
ages. After obtaining captions for the BEVs and satellite
images, we fine-tune a stable diffusion network [39] with

*The United States and the United Kingdom allow drone flights up to
400 feet; China restricts drones up to 120 meters.
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Figure 4. The overview of the Video2BEV paradigm. Video2BEV Transformation (leff). Given drone-view video V., containing multi-
view frames, we adopt 3D Gaussian Splatting (3DGS) to reconstruct the scene at first. Then we render the scene from a Bird-Eye-View to
get the projection (BEVs). Considering the region of the core area, we further crop BEVs for training. We can observe that BEVs exhibit
resemblances to the corresponding satellite-view images. Hard Negative Sample Synthesis (right). Given captions generated by an off-
the-shelf visual-LLM [16], we fine-tune a stable-diffusion model [39] with LoRA [15], and conduct inference to synthesize samples which
serve as negative samples for subsequent usage. Model Architecture (middle). Given outputs of the proposed Video2BEV transformation,
we extract embeddings by a shared encoder for satellite images xsq: and BEVs x3.,, supervised by the contrastive loss L£¢ and the instance
loss L. Then we extract embeddings from synthetic BEVs x5.4e,, and adopt MLP to fuse both positive and negative samples, supervised
by the matching loss £s. Similar operations for satellite-view images are omitted.
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Figure 5. Visualizations of original images and synthetic hard neg-
atives. Synthetic negatives exhibit similar colors and structures to
original images, which assures the quality of negatives.

LoRA [15] to generate diverse synthetic images, during
which we freeze the CLIP text encoder [35]. The outputs
of this model are negative samples for the subsequent step.
Since the transformed BEV and satellite images share the
same top-down viewpoint and semantic content, we conduct
inference on the same diffusion model to generate negative
samples for both BEV and satellite-view images using cor-
responding captions. We provide visualizations of original
and synthetic images in Fig. 5. Synthetic negative samples

exhibit similar semantic contents as the original ones but
with different fine-grained information, thus enhancing the
discriminative intra-platform representation learning.

4.3. Model Optimization

We adopt a general architecture from vision-language mod-
els [24, 25], enhanced by BEVs and synthetic negative
samples. The model architecture is shown in the middle
of Fig. 4 and is optimized in a two-stage manner follow-
ing [25, 68]. In the first stage, we transform the drone-view
video to BEVs by the proposed Video2BEV transformation
(see the left part of Fig. 4). Then, we adopt a shared encoder
to extract embeddings from paired BEV and satellite-view
images. The encoder is ViT-S [10] excluding the classifier.
The supervisions of this stage are the instance loss £ [75]
with the square-ring partition [58] and the contrastive loss
L [24]. We apply multiple classifier modules to each part
of the embeddings (similar to LPN [58]), yielding the loca-
tion probability of two views which are denoted as ps,¢ and
Drev respectively. The instance loss L is formulated as the
location classification as :

£I = _lOg(psat) - lOg(ﬁbev)- (1)



Then we accumulate instance losses from multiple parts to
form the final instance loss. For the contrastive loss, given a
pair of satellite-view and BEV images, the satellite-to-BEV
similarity is defined as:

_ exp(s(fsat’ fbev)/T>
Zé\[:lexp(s(fsau fgev)/T) 7

where f,q¢ and fy, are embeddings of the same location
from two platforms, and f;,, denotes the sample within the
mini-batch. 7 is a learnable temperature parameter. s(-,-)
denotes the cosine similarity. Similarly, the BEV-to-satellite
similarity iS Speyp2sq: and the contrastive loss L is:

2)

Ssat2be’u

»CC = (log(ssathev) + log(sberSat))~ (3)

1

2
In the second stage, we employ a two-layer MLP along-
side the square-ring partition [58] to fuse two embeddings
obtained from anchor-positive or anchor-negative samples
Specifically, when BEV serves as the anchor, satellite and
synthetic BEV serve as the positive sample and the negative
sample, respectively. Similarly, when satellite acts as posi-
tive samples, BEV and synthetic satellite act as positive and
negative samples respectively. Then we project the fused
embeddings into the two-dimensional space using another
MLP. Given inputs from paired samples, the matching loss
L between them is calculated as:

Ly = =(pmlog(pm) + (1 = pm)log(1 = pm)), (4

where p,, is the estimated matching probability and p,, is
a ground-truth binary label. If the two input data do not
contain the synthetic data and are both from the same loca-
tion, then p,, = 1; otherwise, p,, = 0. Specifically, for the
BEVs, we calculate the matching loss two times. For the
first calculation, we rank the similarity .S and select three
negative samples from the satellite-view images, ensuring
that these samples do not belong to the same location simul-
taneously. For the second calculation, we similarly select
another three negative samples from the synthetic BEVs,
which are actually hard negatives from the same location.
We apply similar operations to the satellite-view input. Fi-
nally, we accumulate and average matching losses across
different combinations of inputs. In summary, the loss func-
tions in our method include the instance loss £;, the con-
trastive loss L, and the matching loss £,;. Specifically,
in the first stage of training, we optimize the encoder, clas-
sifier modules of our model, the temperature parameter 7
with the instance loss £ and the contrastive loss Lo. Sub-
sequently, we freeze the parameters fine-tuned in the first
stage and train the MLPs from scratch in the second stage
under the supervision of matching loss L.

Discussion. What are the advantages of the synthetic
negative samples? Inspired by successes in other fine-
grained tasks [44, 72, 73], we encourage the model “see”

more samples to prevent over-fitting as well as facilitate dis-
criminative intra-platform feature learning. We are similar
to GeNle [20] in that both methods alter the image repre-
sentation of the target object to generate hard negative sam-
ples. However, it is worth noting that there are two primary
differences. (1) We have a larger modification space, and
the negative sample pool is no longer constrained to a fixed
size. Different from the GeNle in changing limited cate-
gories for classification, we perturb the initial noise of the
diffusion model, and it leads to diverse generations. Uti-
lizing the diffusion model, we can theoretically generate an
infinite number of images as negative samples, expanding
the negative sample pool significantly. (2) We retain the se-
mantic content of the anchor samples in our synthetic nega-
tive samples. This is because we employ identical captions
from the original samples to synthesize the negative sam-
ples while only changing the initial noise. This slight modi-
fication ensures that our negative samples are appropriately
challenging, and encourages the model to check the fine-
grained discrepancies among semantical-similar samples.

5. Experiment

Implementation Details. Since the captions for the two
views (drone and satellite) employ different wording to de-
scribe the same location, we synthesize samples based on
the text and generate separate negative samples for each
view. All input images are resized to 256x256. We train
the first stage of the proposed model with the AdamW opti-
mizer, with a batch size of 140, for 140 epochs, and a learn-
ing rate of 2¢~° and 2¢~* for the encoder and other modules
in the first stage respectively. Then we freeze parameters in
the first stage and train the second stage from scratch with
a similar training configuration. During the test stage, we
utilize the similarity scores from the first stage to select the
top 32 samples from the gallery, and then re-rank these top
32 samples in the second stage. More details are provided
in the supplementary materials.

Evaluation Metrics. Satellite-view data is in image for-
mat, while drone-view data is collected in video format.
We can treat drone view data as images or video. In this
paper, we adopt the video setting for the evaluation of com-
petitive methods and our method. Specifically, we treat a
drone video as an individual query or gallery by averaging
the similarity scores of the images within the video in a late
fusion manner. There is a similar averaging operation on
similarity scores of the BEVs which is also in video format.

5.1. Comparisons with Competitive Methods

Quantitative Results. As shown in Tab. 2a, we compare
the proposed method with other competitive methods on
the UniV dataset. The performance of our method has sur-
passed that of other competitive methods [6, 8, 58, 59]. On
the 45° subset, our method achieves gains of 0.30% Re-



Table 2. (a) Comparisons on the UniV for geo-localization be-
tween Drone (D) and Satellite (S) platforms. R@1 is recall at
topl. AP (%) is average precision (high is good). (b) Compar-
isons in terms of an out-of-distribution testing on the SUES-200
(45° test set). Our method still yields the best results.

(a)

0 = 45° 0 = 30°
Method D—S S—D D—S S—D
R@1 AP | R@] AP | R@1 AP | R@1 AP
LPN [58] 86.31 88.34 | 83.31 85.60 | 68.62 72.50 | 67.76 71.30
FSRA [6] 88.59 90.25 | 87.30 89.17 | 81.60 84.17 | 77.89 81.00

DWDR [59] 91.73 9296 | 89.87 91.45 | 88.02 89.81 | 85.59 87.85
Sample4Geo [8] | 96.29 96.75 | 9529 95.99 | 83.02 86.00 | 80.45 82.68

Ours 96.29 96.80 | 96.01 96.57 | 91.73 93.01 | 92.58 93.65
(b)
D—S S—D
Method  "R@1 AP | R@I AP
LPN 4125 49.05 | 1875 2635

FSRA 48.75 54.64 | 32.50 40.09
DWDR 7125 75.02 | 70.00 74.60
Sample4Geo | 81.25 84.14 | 86.25 88.80
Ours 89.74 91.50 | 91.25 92.53

call and 0.58% AP for satellite — drone compared to the
second-best method. On the 30° subset, all methods experi-
ence a performance drop. As shown in Fig. 6, we highlight
some imperfect reconstructed regions by the Video2BEV
transformation. The lower elevation of the drone flights
raises more occlusions (see Tab. 1b), which also compro-
mises our Video2BEV transformation. Compared to the
second best method, our method is still robust, receiving
improvements of 3.2% AP for drone — satellite and 5.8%
AP for satellite — drone, respectively (see Tab. 2a). All
methods are compared in the video setting, which means we
temporally average the outputs of frames in a video from the
drone view. For methods with officially released weights
(Sample4Geo [8], DWDR [59]), we test these methods on
the 45° test set directly and subsequently retrain and evalu-
ate these methods on the 30° subsets. For methods without
official weights (LPN [58], FSRA [6]), we retrain them on
both the 45° and 30° subsets to ensure a fair comparison.

Out-of-Distribution (OOD) Scalability. We also evalu-
ate the model trained on the UniV dataset (45°) on the un-
seen SUES-200 45° test set in an OOD manner. SUES-200
dataset contains dense frames collected in real-world envi-
ronments, including real-world light, shadow transforma-
tions, and disturbances. We observe that our method shows
strong OOD potential, surpassing the runner-up method by
more than 7% AP for drone — satellite (see Tab. 2b). More
results on robustness against weather and other real-world
variants can be found in the Suppl.

Qualitative Results. We show qualitative results of the
drone geo-localization on the UniV and SUES-200 datasets
(see Fig. 7). In our method, drone-view videos are trans-
formed to BEVs by the proposed Video2BEV transforma-
tion and we choose the representative sample from the BEV
sequence for visualizations. For drone — satellite, we ob-
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Figure 7. Qualitative results on the UniV (a, ¢) and SUES-200
(b,d) dataset for Drone — Satellite and Satellite — Drone. We de-
pict the transformed output (BEVs) as the query or gallery. Given
queries (left) from different platforms, matched galleries are in
green box, and mismatched galleries are in blue box. The scores
on the top are similarity scores estimated by the proposed method.

serve that the proposed method effectively retrieves rea-
sonable locations with similar structural features, such as
cross-shaped roofs and roofs equipped with solar panels.
For satellite — drone, we find a similar result. Our method
successfully retrieves true-matched results at the top of the
candidate list among images with similar contents. We add
more visualizations in the supplementary material.

5.2. Ablation Study and Further Discussion

Effect of Primary Components. We conduct ablation
studies on the UniV dataset (45° subset). We employ the
first stage of our method as the baseline (Baseline), which
consists of a shared backbone supervised with the instance
loss and contrastive loss. The input data for the baseline
are drone-view videos and satellite-view images. Then,
we transform drone-view videos to BEVs via the proposed
Video2BEV transformation and adopt BEVs as input for the
baseline, denoted as BEV. Next, we introduce the second
stage of our method to the baseline, which is supervised by
the matching loss, denoting Two Stage. The negative sam-
ples for this architecture are from in-batch samples [24].
Finally, we incorporate the synthetic negative samples in



Table 3. Ablation studies on: (a) Video2BEV transformation, the second stage of our method, and synthetic negative samples. (b) Different
training strategies. Train Together: we fine-tune the first stage based on the weights pre-trained on ImageNet [38], and train the second
stage from scratch. Fine-tune: we load fine-tuned first-stage weights on UniV, and then train both the first stage and the second stage.
Freeze: we load fine-tuned first-stage weights on UniV, then fix the first-stage weights and only train the second stage from scratch.
Notably, the Freeze strategy yields the best results. (c) Re-ranking different top-k samples in the second stage of our method. Considering
the balance between performance and testing time, we choose to re-rank top-32 samples. D and S denote Drone and Satellite, respectively.

(@)

(©)

Method Video2BEV ~ Second  Synthetic D—S S—D D—S S—D
etho transformation ~ stage  negatives | R@1 AP R@l1 AP Top-K R@1 AP R@l1 AP

Baseline X X X 89.87 91.28 | 90.01 91.36 8 96.01 96.52 | 9558 96.10

BEVs X X 95.01 95.64 | 93.44 94.44 16 96.01 96.51 | 95.72  96.25

Two Stage X 9586 96.48 | 95.01 95.78 32 96.29 96.80 | 96.01 96.57

Ours 96.29 96.80 | 96.01 96.57 64 96.29 96.81 | 96.01 96.60

(b) 128 | 9643 96.98 | 96.01 96.60

T — - 55 ) 256 | 9643 96.99 | 96.01 96.60

Strategy first-stage weights Train first stage  Train second stage R@1 AP | R@1 AP 512 9643 9699 | 96.01 96.60
Train Together X 7475 79.29 | 82.17 8539
Fine-tune 96.29 96.83 | 9529 95.99
Freeze X 96.29 96.80 | 96.01 96.57

Sec. 4.2 to train the second stage of our method and form
the final version of our method, referred to as Ours. As
shown in Tab. 3a, BEVs receive the largest performance im-
provement. We attribute this improvement to the reduction
of the appearance gap between the drone-view images and
the satellite-view images through the proposed Video2BEV
transformation. Additionally, synthetic negative samples
contribute to a substantial performance boost due to the en-
hanced quality of the negative samples for the second stage
of Ours. The two-stage method (Two Stage) also receives
improved performance, indicating that many false negative
predictions are ranked within the range of the top 32. A
fine-grained re-ranking can effectively rectify the matching
results from the first stage of our method.

Effect of Training Strategies. We explore three differ-
ent strategies for training. For the Train Together strat-
egy, we load the matched weights pre-trained on the Ima-
geNet dataset [38]. Then we fine-tune the first stage of the
proposed model and train the second stage of the proposed
model from scratch. The Fine-tune strategy entails loading
fine-tuned weights of the first stage on the UniV dataset.
After this, we fine-tune the first stage with a smaller learn-
ing rate while training the second stage from scratch. The
Freeze strategy consists of loading fine-tuned weights of
the first stage on UniV, then fixing all weights of the first
stage, while training the second stage from scratch. The re-
sults of three training strategies are in Tab. 3b. The Train
Together strategy yields the worst results. We attribute this
to the difficulty of training both stages simultaneously, as
the first stage of the proposed model is designed for coarse-
grained retrieval, while the second stage of the proposed
model focuses on fine-grained retrieval, relying on the out-
put of the first stage. When both stages are trained together,
the first stage fails to retrieve reliable candidates for the sec-
ond stage, affecting the overall training process. The Fine-
tune strategy achieves a significant performance boost, as
the first stage is able to produce reliable embeddings for the

second stage. Finally, we freeze the first stage after loading
its corresponding weight. The Freeze strategy yields the
best result, and we adopt this strategy.

Effect of Re-ranking Top-K Samples. During the test
stage, we select top-k samples from the gallery, leverag-
ing the similarity score from the first stage of our method
and subsequently re-rank these samples by the second stage.
We conduct hyper-parameter experiments with varying val-
ues of top-k, and select k € {8, 16, 32,64, 128,256,512}
(see Tab. 3c). Re-ranking the top-512 and top-256 samples
yields the best performance and re-ranking the top-256, top-
128, top-64, and top-32 samples results in a slight perfor-
mance drop, respectively. Re-ranking the top-16 and top-8
samples leads to a further decline in performance. Consid-
ering the balance between the performance and the testing
time, we re-rank the top 32 samples as default.

6. Conclusion

In this work, we propose to leverage videos to mitigate
the impact of environmental constraints in drone visual
geo-localization. We propose a new Video2BEV paradigm
that transforms drone-view videos into Bird’s Eye View
(BEV) images by 3D gaussian splatting. This transfor-
mation effectively reduces the inter-platform viewpoint
disparity between the drone view and the satellite view.
Our Video2BEV paradigm also includes a diffusion-based
module to generate negative samples, enhancing the intra-
platform discriminative ability of the model. To support
the video setting and validate the proposed framework, we
introduce the UniV dataset, a new video-based drone geo-
localization dataset. The dataset includes flight paths of the
drone at 30° and 45° elevation angles and corresponding
videos recorded at up to 10 frames per second. Extensive
experiment validates that our Video2BEV paradigm outper-
forms other competitive approaches in both supervised set-
ting on UniV and OOD testing on unseen SUES-200.
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