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U-turn: Crafting Adversarial Queries with Opposite-direction Features

Zhedong Zheng, Liang Zheng, Yi Yang and Fei Wu

Abstract This paper aims to craft adversarial queries for
image retrieval, which uses image features for similarity mea-
surement. Many commonly used methods are developed in
the context of image classification. However, these methods,
which attack prediction probabilities, only exert an indirect
influence on the image features and are thus found less effec-
tive when being applied to the retrieval problem. In designing
an attack method specifically for image retrieval, we intro-
duce opposite-direction feature attack (ODFA), a white-box
attack approach that directly attacks query image features to
generate adversarial queries. As the name implies, the main
idea underpinning ODFA is to impel the original image fea-
ture to the opposite direction, similar to a U-turn. This simple
idea is experimentally evaluated on five retrieval datasets. We
show that the adversarial queries generated by ODFA cause
true matches no longer to be seen at the top ranks, and the
attack success rate is consistently higher than classifier at-
tack methods. In addition, our method of creating adversarial
queries can be extended for multi-scale query inputs and is
generalizable to other retrieval models without foreknowing
their weights, i.e., the black-box setting.
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Table 1 Comparison of image classification and image retrieval and its
implications on attack method design. In the test procedure, image clas-
sification obtains prediction probabilities for a test image, while image
retrieval extracts image features to compute the similarity between the
query and gallery images. As such, classification attack methods find
disrupting class predictions to be effective; and we propose to attack
image features directly under the context of image retrieval. We show
that this strategy is very effective on various retrieval benchmarks.

Evaluation Adversary
Image Class Prediction Attack Class

Classification Prediction
Image Feature Similarity Attack FeatureRetrieval

1 Introduction

Given a query image, image retrieval is to give high ranks
to gallery images of similar content (Li et al., 2019b; Liu
et al., 2017a; Radenović et al., 2018; Shen et al., 2019; Zhang
et al., 2017). In this paper, we are interested in understanding
how an image retrieval system reacts to adversarial attacks.
More specifically, we investigate how to effectively generate
an adversarial query leading to compromised ranking results
where true match images should receive low ranks.

Existing attack methods are usually developed in the
field of image classification, which aims to significantly alter
class predictions (Goodfellow et al., 2015; Kurakin et al.,
2017; Madry et al., 2018; Moosavi Dezfooli et al., 2016;
Szegedy et al., 2014). For instance, for an image of the class
car, an attacked system would provide a completely irrele-
vant predicted class tree. This is usually achieved by back-
propagating the gradient from changed class prediction to
add a few imperceptible changes to image pixels.

Essentially, image classification attack methods are not
suitable to attack image retrieval systems. The main reason is
that image retrieval harnesses image features to compute the
similarities between the query and gallery images instead of
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using the class predictions. Attacking the class predictions,
as performed by many existing methods, only has indirect
influence on the features and thus has limited effectiveness
(see Fig. 1). As such, to successfully attack a retrieval system,
it is crucial to directly bring changes to image features.

Another consideration is which images to attack. A re-
trieval system meets two types of image inputs, query and
gallery images. If we attack the latter, as we do not know in
advance which gallery images are true matches, we need to
attack all the gallery images. This procedure is prohibitively
time-consuming as a gallery contains thousands or millions
of images (Chen and Ngo, 2016; Lin et al., 2015; Liu et al.,
2012; Sigurbjörnsson and Van Zwol, 2008). In contrast, the
query typically contains one image1, allowing us to perform
the attack efficiently and effectively (Obviously, disrupting
the query will completely compromise retrieval results).

Motivated by the aforementioned factors, we propose
opposite-direction feature attack (ODFA), a white-box at-
tack method for adversarial query generation under the con-
text of image retrieval context. In a nutshell, ODFA directly
performs attack on the feature level instead of on the class
predictions, so it is consistent with the image retrieval test
procedure, i.e., measuring similarity between the query and
gallery images using their respective features. More specif-
ically, ODFA forces the query feature to move towards the
opposite direction of itself in the feature space. The resulting
gradient is back-propagated to the query image to generate a
few imperceptible pixel changes. With direction-reversed fea-
tures, the similarity between the query and the true matches
will significantly decrease, causing the true matches to be
determined as outliers (with low ranks). We evaluate our
method on five image retrieval datasets and show that un-
der various levels of image perturbation, ODFA outperforms
popular classification attack methods such as fast-gradient
sign method (Goodfellow et al., 2015) and basic iterative
method (Kurakin et al., 2017). Moreover, compared with
a few concurrent retrieval attack methods such as (Bouniot
et al., 2020; Liu et al., 2019b), ODFA is also very competitive.
In addition, we show that ODFA is effective in black-box
settings, where adversarial queries crafted for a white-box
model remain adversarial for models with unknown weights.
We summarize the main points below.

– We propose opposite-direction feature attack (ODFA)
that effectively attacks the query features to fool state-of-
the-art image retrieval systems. Unlike the classification
attack methods, ODFA works on the feature level which
well aligns with image retrieval procedure.

– On a series of retrieval datasets, we show ODFA is su-
perior to classification attack methods and competitive
with existing retrieval attack approaches: large accuracy

1 There exist multi-query retrieval systems (Wang et al., 2017; Zheng
et al., 2015), but for simplicity, we only consider single-query systems.

drop is observed. We additionally show ODFA can be
extended for multi-scale queries and remains useful for
the black-box setting.

The rest of the paper is arranged as follows. Section 2
discusses relevant works, followed by the preliminaries in
Section 3. In Section 4, we discuss the limitation of applying
classification attack methods to retrieval scenarios, introduce
our method and extend it for multiple-scale inputs. Experi-
mental results are summarized and discussed in Section 5,
followed by the conclusion in Section 6.

2 Related Work

Image retrieval. Image retrieval relies on visual features for
similarity measurement to generate the ranking list (Deng
et al., 2019; Jin et al., 2018; Lin et al., 2018; Yan et al., 2020a;
Yang et al., 2018a, 2017; Yue-Hei Ng et al., 2015). Current
works mostly deploy deep learning models, e.g., the convolu-
tional neural network (CNN), to extract intermediate output
as the visual representation, which is shown to have a strong
discriminative ability (Radenović et al., 2016; Tolias et al.,
2015; Yang et al., 2018c; Zheng et al., 2020). The feature
learning process is directly motivated by various objectives,
such as the classification loss (Zheng et al., 2016, 2018b)
and the triplet loss with a hard sampling policy (Ristani and
Tomasi, 2018; Song et al., 2016; Yu et al., 2018; Zheng et al.,
2018b). Some further leverage local patterns for fine-grained
feature mining (Bai et al., 2017; Liu et al., 2017a; Radenović
et al., 2018; Wang et al., 2020; Yang et al., 2021; Yu et al.,
2017) or involve semantic parts (Bai et al., 2020b; Suh et al.,
2018; Sun et al., 2019; Zhang et al., 2017). In this work, we
evaluate the widely used ResNet backbones (ResNet-50 and
ResNet-101) (He et al., 2016) and the part-based method
PCB (Sun et al., 2018) as the victim model.

Retrieval robustness. A commonly seen practice is to
add distractors to the gallery, where system scalability can
be evaluated (Guo et al., 2018; Philbin et al., 2007, 2008;
Zheng et al., 2015). Another interesting aspect is system vul-
nerability to adversarial examples which might affect rank-
ing. Tolias et al. (2019) pull close representations between
the target query and a pre-defined object, while Liu et al.
(2019b) aim to increase the L2 feature distance between the
original query and the adversarial query. Similarly, Zhou
et al. (2021) propose a ranking-based method that changes
the rank order of retrieved objects. Bai et al. (2020a) show
that the adversarial distance gradients can successfully cheat
person re-identification frameworks. Similar results are also
observed in vehicle re-identification (Yu et al., 2021). Note
that we view these works as concurrent: many of them cited
a preliminary version of our work which appeared in 2018
(Zheng et al., 2018a). We also note that our work is suf-
ficiently different from them: the proposed method ODFA
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explicitly specifies the feature direction, i.e., opposite direc-
tion, producing failure cases effectively and efficiently.

Adversarial attack. Adversarial attack is usually de-
veloped in image classification, makes slights changes to a
realistic image to fool trained models and helps evaluate its
robustness (Chakraborty et al., 2018; Eykholt et al., 2018; Li
et al., 2019a; Sharif et al., 2016; Shi et al., 2021; Zhang et al.,
2018). Literature can be broadly divided into two classes:
gradient-based attack and score-based attack. In the former
category, the fast-gradient sign method applies the adversarial
gradient as the input perturbation (Goodfellow et al., 2015).
This method is further extended by various iterative strate-
gies, e.g., basic iterative method (Kurakin et al., 2017), deep
fool (Moosavi Dezfooli et al., 2016), momentum (Dong et al.,
2018) and Hamming space (Yang et al., 2018b). Score-based
attack, on the other hand, relies on searching the input space,
considering that the distorted images can largely affect the
prediction score (Cherepanova et al., 2021; Xiao et al., 2018;
Yan et al., 2020b, 2021). Jacobian-based saliency map attack
greedily modifies the input instance (Papernot et al., 2016b).
Narodytska and Kasiviswanathan (2017) further show that
single pixel perturbation, which is out of the valid image
range, is effective to attack small-sized images. Gong et al.
(2022) change the color of image regions to grayscale.

The closest inspiring work is the iterative least-likely
class method (Kurakin et al., 2017), which makes the classi-
fier output difficult mistakes: classifying an image of vehicle
into the class with the lowest confidence score, e.g., cat. They
achieve this by increasing the prediction probability of the
least likely class. Our work has a similar spirit, where we
impel image features to the “least-likely” opposite direction.
Here we emphasize that our work is sufficiently different
from (Kurakin et al., 2017). Kurakin et al. attack class pre-
dictions to obtain the least-likely class. This method does not
apply well in retrieval because the latter usually deals with
test images from unseen classes, to which assigning seen
classes compromises the adversarial gradients. In compari-
son, the proposed method works on the intermediate feature
and explicitly decreases feature similarity between the ad-
versarial image and its original image. Our procedure aligns
very well with the image retrieval test procedure.

Adversarial robustness. It is reported that printed or
photographed versions of an attacked image would discard
the imperceptible perturbations and exhibit stronger robust-
ness against attack (Kurakin et al., 2017). A number of works
further investigate the adversarial robustness problem. For
example, Athalye et al. (2018) propose a general-purpose
algorithm, expectation Over transformation (EoT), which
aggregates the adversarial gradients after various data aug-
mentations are applied. Inspired by EoT, we extend the pro-
posed ODFA to ODFA+EoT (MS) for multi-scale inputs, as
image resizing is often applied to augment the query (Rade-

nović et al., 2018; Zheng et al., 2020). ODFA+EoT (MS)
outperforms ODFA and some other competitive methods.

Black-box attack. Black-box attack is also an attrac-
tive problem. Its main difference from the white-box setting
is whether attack foreknows the victim model’s weights or
structure (Kurakin et al., 2017; Li et al., 2021; Tramèr et al.,
2018; Wang et al., 2022). A common practice is to train a
new model to mimic outputs of the black-box model, and
then harness this white-box student model as target victim to
generate adversarial samples (Kurakin et al., 2017; Li et al.,
2021; Wang et al., 2022). Distilling black-box model param-
eters (the key to black-box setting) is out of the scope of
our paper. Therefore, in the experiment, we mainly study the
direct transferability of the adversarial query to the black-box
setting and compare the performance between our method
with some other white-box methods.

Attack defense. It remains challenging to defend adver-
sarial attack. There are two types of defense, i.e., defense dur-
ing training or test. A common practice of training defense
is to involve adversarial samples in training data (Madry
et al., 2018; Tramèr et al., 2018). Another line of works
study defense by rejecting prediction during inference. For
instance, Wang et al. (2021) argue to detect query outliers
by checking the distance inconsistency. In the experiment,
we provide a preliminary experiment using training defense
against ODFA.

3 Preliminaries

3.1 Problem Definition

Given a query image X and the gallery G, the image retrieval
model ranks gallery images according to the similarity score
S(X, g) (g ∈ G) in the feature space. For two images Xm

and Xn, the similarity score in the feature space can be for-
mulated as the cosine similarity:S(Xm, Xn) = fXm

· fXn

where fX is the L2-normalized visual feature. In this work,
we mainly study fX extracted by a non-linear deeply-learned
mapping function F , such as Convolutional Neural Network
(CNN) (LeCun et al., 1995). A perfect retrieval system allows
true matches Xgt (images containing similar content with
the query) to be top ranked S(X,Xgt) ≥ S(X, g) (∀g ∈ G).
To attack this system, we aim to generate an adversarial
example X ′ to replace the original query image such that
S(X ′, Xgt) ≤ S(X ′, g) (∀g ∈ G). In the meantime, we de-
mand that X ′ is visually similar to query X . The pixel-level
difference between the adversarial query and the original
query should be small, ensuring the adversarial perturbation
to be imperceptible to the naked eye. In particular, we follow
the practice in (Kurakin et al., 2017) to keep the pixel differ-
ences within a valid value range. We clip the pixels whose
values fall out of the valid range and remove distortions
which are greater than the hyper-parameter perturbation rate
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ϵ: ClipX,ϵ{X ′} = min{255, X + ϵ,max{0, X − ϵ,X ′}}. It
ensures ∥X ′ −X∥∞ ≤ ϵ. Since a too large ϵ will make the
perturbation perceptible to humans, we generally set ϵ ≤ 16

in this work.

3.2 Victim Model

We call the retrieval model to be attacked as the victim model
and apply the white-box assumption following the conven-
tional gradient-based methods (Dong et al., 2018; Goodfel-
low et al., 2015; Kurakin et al., 2017; Szegedy et al., 2014).
That is, the parameters of the victim model are accessible.
Under this assumption, we can leverage the model to con-
duct inference and obtain the gradient backpropagated to the
inputs. To verify the effectiveness of the proposed method,
we mainly adopt two kinds of widely-used retrieval models
as victim model: those trained with a classification loss func-
tion (e.g., cross-entropy loss) (Babenko et al., 2014; Li et al.,
2018; Qian et al., 2017; Wei et al., 2016) and those trained
with a ranking loss (e.g., triplet loss) (Hermans et al., 2017;
Song et al., 2016; Zhang et al., 2020). It is worth noting that
the classification attack methods only can be applied to the
former kind of victim models with class predictions, while
our method based on the feature can successfully fool both
kinds of victims.

3.3 Classification Attack Methods Revisited

Previous works in the adversarial example generation are
designed for image recognition and aim to attack the class
prediction (Goodfellow et al., 2015; Kurakin et al., 2017).
We assume that the label prediction of the victim model
is acquirable, and apply these existing classification attack
methods to generate the adversarial queries. Specifically,
for the fast-gradient sign method (Goodfellow et al., 2015)
and basic iterative method (Kurakin et al., 2017), we deploy
the label predicted by the victim model as the pseudo label
ymax = argmaxy

{
p(y|X)

}
. To fool the model, the objec-

tive is to decrease the probability p(ymax). The objective
is written as, argminX′ J(X ′) = log(p(ymax|X ′)). For it-
erative least-likely class method (Kurakin et al., 2017), we
calculate the least-likely class ymin = argminy

{
p(y|X)

}
.

The attack objective is to increase the probability p(ymin) so
that the input is classified as the least-likely class. The objec-
tive is, argmaxX′ J(X ′) = log(p(ymin|X ′)). When gener-
ating adversarial samples, the weight of the victim model is
fixed and we only update the input. For the fast-gradient sign
method, X ′ = X + ϵ sign(∇J(X)). For the iterative meth-
ods, we initialize X ′ with X: X ′

0 = X , and then update the
adversarial samples T times: X ′

t+1 = X ′
t+α sign(∇J(X ′

t)),
where α is a relatively small hyper-parameter. Following the
practice (Kurakin et al., 2017), we set α = 1 and the number

of iterations T = min(ϵ + 4, 1.25 × ϵ). The clip function
ClipX,ϵ{X ′} is also added in every iteration to keep pixels
of the adversarial query in the valid range.

It is worth noting that the classification attack methods
do not target changing the representation, but make changes
to the category prediction p of the query. For instance, a
linear classifier function p = Wf + b (note that W and b are
fixed). The intermediate feature f is implicitly affected when
back-propagating the adversarial objective on p. Therefore,
the feature changes of these methods are relatively limited.

4 Proposed Method

In this section, we introduce the proposed opposite-direction
feature attack (ODFA) method and focus on changing the
extracted feature of the adversarial query, which is aligned
with the retrieval scenario. In addition, we extend ODFA
to ODFA+EoT (MS), attacking a common evaluation trick,
i.e., feature fusion of multi-scale inputs.

4.1 Opposite-Direction Feature Attack (ODFA)

We propose opposite-direction feature attack (ODFA), which
compromises retrieval models by directly attacking on the
intermediate feature. Specifically, given an original query
image X , the retrieval model extracts its feature fX = F (X).
We intend to generate the adversarial query X ′, whose feature
fX′ is on the opposite side of the original query feature fX .
We name −fX as the opposite-direction feature, since it has
the lowest cosine similarity score −1 with the original feature
fX . During optimization, we explicitly impel the feature fX′

of the adversarial image to −fX . Therefore, the opposite-
direction feature loss objective is formulated as:

argmin
X′

J(X ′) = (fX′ + fX)2. (1)

When the objective converges, i.e., J(X ′) → 0 , fX′ will be
close to −fX . Consequently, it changes the ranking similarity
S(X ′, Xgt) between the adversarial query and the true match
images. If we approximate fX′ with −fX , we will derive:

S(X ′, Xgt) = fX′ · fXgt → −fX · fXgt = −S(X,Xgt).

(2)

Since S(X,Xgt) is usually high and non-negative in the orig-
inal retrieval model, we can deduce that the similarity score
S(X ′, Xgt) is low, leading to a low rank for Xgt. Finally, to
craft such adversarial query X ′, we adopt an iterative method
to update X ′: X ′

0 = X,X ′
t+1 = Xt+α sign(∇J(X ′

t)). The
clip function is also added to keep pixels in the adversarial
sample within the valid range. The overall process of crafting
the adversarial query is present in Algorithm 1.
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Fig. 1 Geometric interpretation of (a) the fast-gradient sign method (Goodfellow et al., 2015) and the basic iterative method (Kurakin et al., 2017),
(b) the iterative least-likely class method (Kurakin et al., 2017), and (c) the proposed ODFA. Red arrows represent the direction of the gradient on
the original feature f . Wmax denotes the weight of the most-likely class ymax and Wmin denotes the weight of the least-likely class ymin.
Wk indicates the weight of the other class. Here we apply Wk to help visualize the feature space. While attack methods in (a) and (b) rely on
Wmax (Eq. 3) and Wmin (Eq. 4), our method avoids such reliance and deploys a straightforward opposite gradient direction −f when attacking
the features, like a U-turn.

Discussions. We provide a 2D geometric interpretation
to illustrate the difference of the gradient direction between
the proposed method and traditional attack methods (see
Fig. 1). Without loss of generality, we take a linear classifier
p = Wf + b as an example, where W is the learned weight
and b is the bias term. The weight W = {W1,W2, . . . ,WK}
contains K weights for the K classes in the training set. We
apply Wmax to denote the weight of the most-likely class
ymax and Wmin to denote the weight of the least-likely class
ymin. For the fast-gradient sign method and the basic iterative
method, the gradient on the feature f is,

∂J(X ′)

∂fX′
= −Wmax × ∂J(X ′)

∂p(ymax)
. (3)

Note that ∂J(X′)
∂p(ymax)

is a positive constant. Therefore, the direc-
tion of the gradient is the direction of −Wmax (see Fig. 1 (a)).
For the iterative least-likely class method, the gradient equals,

∂J(X ′)

∂fX′
= Wmin × ∂J(X ′)

∂p(ymin)
. (4)

The gradient has the same direction as Wmin (see Fig. 1 (b)).
For the unseen images of new classes, i.e., query images,
−Wmax and Wmin are not accurate to describe the adversary
of the original query, so the adversarial attack effect is limited.
In this paper, instead of using class predictions, we directly
attack the representation in the feature space. According to
Eq. 1, the adversarial gradient of the proposed method is
written as,

∂J(X ′)

∂fX′
= −2× (fX′ + fX), (5)

where fX is the feature of the original query image. In Fig. 1
(c), we draw the gradient direction of the first iteration. In

Algorithm 1 Opposite-direction feature attack (ODFA)
Input: Victim model F ; a query image X; perturbation rate ϵ.
Output: An adversarial example X′ with ∥X′ −X∥∞ ≤ ϵ.
1: X′

0 = X;
2: T = min(ϵ+ 4, 1.25× ϵ);
3: for t = 0 to T − 1 do
4: Input X′

t to F , extract feature f , calculate the objective J(X′
t):

J(X′
t) = (fX′

t
+ fX)2. (6)

5: Update X′
t+1 by applying the sign gradient as:

X′
t+1 = X′

t + α sign(∇J(X′
t)). (7)

6: Keep pixels of the adversarial query in the valid range:

X′
t+1 = ClipX,ϵ{X

′
t+1}. (8)

7: end for
8: return X′ = X′

T .

the first iteration, fX′
0
= fX , ∂J(X′

0)
∂fX′

0

= −4fX . Our method

leads the feature to the opposite direction of the original
feature, so the similarity of true matches drops more quickly.
The observation in the experiment, as shown in Fig. 3, Fig. 4
and Fig. 5, also verifies that the proposed method is more
efficient and effective than the conventional methods, and
explicitly changes the feature (see Table 6).

4.2 A Multi-scale Extension

Fusing the features of multiple-scale queries is a common
practice in many image retrieval systems, such as landmark
retrieval (Radenović et al., 2016, 2018). In particular, when
testing, the input image is resized with multiple scale factors
Φ = {ϕ1, ϕ2, ..., ϕnϕ

}, and then the model extracts the fea-
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Victim model

Input query image

Raw adversarial sample

Calculate objectives & resize gradients & take average 

Clip

Adversarial query

After T iterations

Loop for T times

Resize to different scales

……

Apply averaged gradient
……

Victim model

Input query image

Extracted features

Raw adversarial sample

Calculate the objective & the sign gradient

Clip

Adversarial query

After T iterations

Apply sign gradient

Loop for T times

(a) ODFA (b) ODFA+EoT (MS)

Fig. 2 Pipeline of the proposed method: (a) ODFA and (b) ODFA+EoT (MS). Given an input query image, we first extract features, and then
calculate Eq. 6 to obtain gradients. Under the multiple-scale input setting, we calculate Eq. 9 on every scale and take the average gradients. The
gradients are then added to the input sample. To endow the input with imperceptible noise to humans, we follow (Kurakin et al., 2017) and clip the
image value before each iteration. We update the input image for T iterations to obtain the adversarial query.

Algorithm 2 Opposite-direction feature attack with multiple-
scale inputs, i.e., ODFA+EoT (MS)
Input: Victim model F ; a real query image X; Multiple-scale factor

Φ; perturbation rate ϵ.
Output: An adversarial query X′ with ∥X′ −X∥∞ ≤ ϵ.
1: X′

0 = X;
2: T = min(ϵ+ 4, 1.25× ϵ).
3: for t = 0 to T − 1 do
4: Resize the X′

t to Xϕ
t

′
for ϕ in Φ.

5: Input Xϕ
t

′
to F , extract features of different scales f

Xϕ
t

′ =

F (Xϕ
t

′
).

6: Calculate the objectives J(Xϕ
t

′
) as Eq. 6 and gradients of

different-scale inputs.
7: Resize gradients to the original scale and average the gradients:

∇J(X′
t) =

1

nϕ

∑
ϕ∈Φ

∇J̃(Xϕ
t

′
). (9)

8: Update X′
t+1 by applying the sign gradient (Eq. 7).

9: Keep pixels of the adversarial query in the valid range (Eq. 8).
10: end for
11: return X′ = X′

T .

ture from inputs of different scales. The mean of the normal-
ized features is adopted as the final retrieval representation.
Since the final representation fuses the feature of the multi-
scale inputs, the retrieval system is more robust in terms of
the scale variants. In the experiment, we observe that only
calculating the adversarial gradient upon the input of the orig-
inal scale is less effective to fool the image retrieval system.
It is due to the designed imperceptible perturbation being
deprecated when resizing images.

To successfully attack the multiple-scale inputs, we fur-
ther extend the proposed ODFA to ODFA+EoT (MS). In-
spired by Expectation over Transformation (Athalye et al.,
2018), we aggregate adversarial gradients of various sizes.
For the retrieval scenario, our implementation modifies two
primary points, in comparison to the conventional EoT for
attacking image recognition models: (1) The EoT (MS) trans-
formation selection is different from the original EoT. The
original EoT deploys random crop and random rotation to
approximate the natural 2D transformation and the image
size is fixed, e.g., 224 × 224 for image recognition. Differ-
ently, for the image retrieval task, scaling the image is a more
typical transformation. ODFA+EoT (MS) changes the image
scale to [1, 0.50.5, 0.5] to simulate the test augmentation. (2)
Consequently, the adversarial gradient aggregation is also
modified. By back-propagating the mean loss expectation, the
conventional EoT can directly derive the average adversarial
gradient on the fixed-size input. ODFA+EoT (MS) requires
an additional step because of the size changes. Specifically,
we calculate individual gradients for every different-size in-
put, and then resize the gradient as the original size to yield
the average adversarial gradient. The whole pipeline is sum-
marized in Algorithm 2. We first view the inputs of different
scales as independent inputs Xϕ

t

′
(ϕ ∈ Φ). Similar to the sin-

gle scale setting, we calculate the adversarial gradient based
on each scale ∇J(Xϕ

t

′
). To generate the adversarial gradient

towards the original input, we resize all gradients to the orig-
inal scale ∇J̃(Xϕ

t

′
) and average the multi-scale adversarial
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gradients as follows,

∇J(X ′
t) =

1

nϕ

∑
ϕ∈Φ

∇J̃(Xϕ
t

′
), (10)

in which nϕ is the number of scale factors. Similar to ODFA,
we add the sign gradient to the original input and iteratively
update the input to obtain the adversarial samples. For a
quick comparison, we provide the brief pipeline of ODFA
and ODFA+EoT (MS) in Fig. 2. Since we explicitly consider
multi-scale adversarial gradients, the ODFA+EoT (MS) sig-
nificantly outperforms the regular ODFA in terms of multiple-
scale evaluation. More details can be found in Section 5.3.

5 Experiment

5.1 Datasets and Settings

We evaluate the attack performance on five image retrieval
datasets: Food-256, CUB-200-2011, Market-1501, Oxford5k,
Paris6k, and an image recognition dataset, i.e., Cifar-10.

Food-256 is a food dataset (Kawano and Yanai, 2014)
containing 31,395 images of 256 types of cuisines. Following
the train / test split in (Liu et al., 2019a), we deploy 27,849
images of 224 cuisines as the training set and the rest 3,546
images of 32 cuisines as the test set. In the test set, we select
512 images as queries and the rest 3,034 are utilized as the
gallery images. There is no overlapping class (food category)
between the training and test sets.

CUB-200-2011 consists of 11,788 images of 200 bird
species (Wah et al., 2011). Following (Song et al., 2016),
we deploy the CUB-200-2011 dataset for fine-grained image
retrieval. The first 100 classes (5,864 images) are split as
the training set, and we evaluate the model on the other 100
classes (5,924 images), where each image is adopted as the
query, and the rest forms the gallery.

Market-1501 is a large-scale pedestrian retrieval dataset
(Zheng et al., 2015). This type of retrieval task is also known
as person re-identification (re-ID). Images are collected under
six different cameras at a university campus. There are 32,668
detected bounding boxes of 1,501 identities. Following the
standard train / test split, we adopt 12,936 images of 751
identities as the training set and 19,732 images of the other
750 identities as the test set, where 3,368 images are set as
queries. There are no overlapping classes (identities) between
the training and test sets.

Oxford5k & Paris6k are two widely used landmark
retrieval datasets. Oxford5k contains 5,062 images of 11
particular Oxford buildings (Philbin et al., 2007), and Paris6k
contains 6,412 images of 12 Paris landmarks (Philbin et al.,
2008). Both datasets are only used as the test sets. Following
(Radenović et al., 2018), we deploy the non-overlapping
building images collected from Flickr as the training set,
which contains about 133k images.

Cifar-10 is a widely-used image recognition dataset, con-
taining 60,000 images of 10 classes (Krizhevsky and Hinton,
2009). There are 50,000 training images and 10,000 test
images. On this dataset, we compare our method to other
classification attack approaches to further show the mecha-
nism difference.

Evaluation metric. With the limited image perturbation,
we compare the methods by the drop of accuracy. The lower
accuracy indicates that the adversarial examples make more
true matches receive low ranks. For image retrieval, we uti-
lize two evaluation metrics, i.e., Recall@K and mean average
precision (mAP), which are from the original paper of the
retrieval set (Philbin et al., 2007, 2008; Zheng et al., 2015).
In this way, we can fairly compare the retrieval performance
before attacking. Recall@K is the probability that the right
match appears in the top-K of the ranking list. Given a rank-
ing list, the average precision (AP) calculates the space under
the recall-precision curve. mAP is the mean of the average
precision of all queries. Besides, we adopt Attacking Suc-
cess rate (ASR), which is proposed in (Li et al., 2021). If the
top-10 ranking list does not contain any relevant images, the
attack is successful with a score of 1, otherwise, we obtain a
score of 0. The final attacking success rate is averaged over
all queries. For image recognition, we report Top-1 and Top-5
accuracy. Top-K is the mean probability that the right class
appears in the top-K predicted classes.

Implementation details. For the retrieval victim model
trained with a classification loss, we follow the common
practice in (Chen et al., 2017; Hermans et al., 2017) to fine-
tune the ResNet-50 (He et al., 2016) by class prediction on
Food-256, CUB-200-2011 and Market-1501. During training,
the cuisine images in Food-256 are resized to 256 × 256,
while the pedestrian images of Market-1501 are resized to
256× 128 following the previous practices (Sun et al., 2018;
Zhong et al., 2020). The images in CUB-200-2011 are first
resized with their shorter side to 256, and we then apply a
256 × 256 random crop to the images. The learning rate is
0.01 for the first 40 epochs and decays to 0.001 for the last 20
epochs. For the retrieval victim model trained with a ranking
loss, we follow the setting in (Radenović et al., 2018) to
train ResNet-101 (He et al., 2016) on the collected building
dataset (Radenović et al., 2018) with contrastive loss. For
image recognition, our implementation employs ResNet with
20 layers for the Cifar-10 dataset (He et al., 2016). The size
of the input image is 32 × 32. The training policy follows
the practice in (He et al., 2016). The learning rate starts from
0.1 and is divided by 10 after the 150th and 225th epoch. We
stop training after 300 epochs.

Besides, we re-implement several adversarial attack ap-
proaches. (1) We apply a large learning rate of 0.1 for both
PIRE (Liu et al., 2019b) and TMA (Tolias et al., 2019), be-
cause we find a small learning rate (e.g., 1e-4) causes them
to converge very slowly as shown in Table 2. If not specified,
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Fig. 3 Comparing attack methods un-
der various perturbation rates ϵ on
Food-256. We report Recall@1 (%),
Recall@10 (%) and mAP (%) of
the victim model. “Clean” means us-
ing the original query without at-
tack, where the victim model yields
Recall@1 = 66.02%, Recall@10 =
95.12% and mAP = 32.95%. We re-
port the highest attack success rates
(lowest retrieval accuracy).

Fig. 4 Comparing attack methods un-
der various perturbation rates ϵ on
CUB-200-2011. All settings are the
same with Fig. 3. The victim model
using clean queries yields Recall@1
= 55.47%, Recall@10 = 87.49% and
mAP = 28.18%. Our method is very
competitive.

Fig. 5 Comparing attack methods un-
der various perturbation rates ϵ on
Market-1501. All settings are the
same with Fig. 3. The victim model
using clean queries yields Recall@1
= 88.54%, Recall@10 = 96.85%
and mAP = 71.08%. Our method is
shown to be very effective.

the learning rate of PIRE and TMA is set to 0.1. For a fair
comparison, we re-implement and report their performance
under both 20 iterations and 100 iterations. (2) TMA focuses
on the target adversarial attacking, while we focus on the
non-target adversarial attacking. Therefore, to compare the
proposed method with TMA, we have further modified the
“global descriptor” Eq. 8 in TMA as 1-fX · fX′ to obtain the
adversarial query. (fX is the original feature, and fX′ is the
adversarial feature.) (3) SMA (Bouniot et al., 2020) is similar
to PIRE and TMA in increasing the feature distance. Differ-
ently, SMA does not require the Adam optimizer, but adopts
a similar updating strategy (sign gradient) as our method. For
a fair comparison, we re-implement SMA (Bouniot et al.,
2020) with ϵ = {2, 4, 8, 12, 16} which is the same hyper-
parameter setting as our method, and gives SMA very good
performance. (4) Given the victim model (ResNet-50) in
AP-GAN (Zhao et al., 2020) is trained from the same open-
source code as ours, we directly quote the number from the
paper. (5) UPA (Li et al., 2019a) trains a unified retrieval
perturbation on a large-scale dataset SfM (Schonberger et al.,
2015). We apply the trained unified perturbation provided
by the UPA authors to the three datasets. In practice, we

further re-scale the perturbation from ϵ = 10 to ϵ = 16 for a
fair comparison.

Reproducibility. Our source code and results are made
publicly available2. The implementation is based on the Py-
torch package (Paszke et al., 2017).

5.2 ODFA on Classification-based Retrieval Models

We first compare the attack performance of ODFA with ex-
isting classification-based attack methods on the victim re-
trieval model with class predictions. Quantitative results,
i.e., Recall@1, Recall@10 and mAP, on Food-256 using
clean and adversarial queries are summarized in Fig. 3. The
victim model using clean queries gives Recall@1 = 66.02%

and mAP = 32.95%. As mentioned, the classification at-
tack methods change the semantic prediction, which only
implicitly changes the retrieval features, so would not be
very effective in attacking. Although Recall@10 decreases
with increasing ϵ, the best method, the iterative least-likely

2 https://github.com/layumi/U_turn

https://github.com/layumi/U_turn
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Table 2 Comparing methods attacking retrieval models trained by the classification loss (cross-entropy loss). Three datasets are used: Food-256,
CUB-200-2011 and Market-1501. Here we show the results in percentage. Perturbation rate is fixed to ϵ = 16. We compare the three existing attack
methods, i.e., Fast (Goodfellow et al., 2015), Basic (Kurakin et al., 2017), Least-likely (Kurakin et al., 2017). If not specified, the learning rate of
PIRE and TMA is set to 0.1. ∗ We directly borrow the reported results from the corresponding paper considering a similar victim model. RS denotes
random start (Madry et al., 2018).

Methods #Iters Food-256 CUB-200-2011 Market-1501
Recall@1 ↓ mAP ↓ ASR ↑ Recall@1 ↓ mAP ↓ ASR ↑ Recall@1 ↓ mAP ↓ ASR ↑

Victim - 66.02 32.95 - 55.47 28.18 - 88.54 71.08 -
UPA (Zhao et al., 2020) extra training 53.32 26.38 12.30 52.94 27.07 13.81 69.98 53.90 12.11
AP-GAN (Zhao et al., 2020) extra training - - - - - - 15.60∗ 11.70∗ 64.90∗

PIRE (Liu et al., 2019b) 20 40.23 21.34 17.77 37.22 19.18 27.46 65.38 48.70 14.25
PIRE+RS (Liu et al., 2019b) 20 35.55 19.46 26.17 31.74 16.64 34.89 54.54 40.62 22.09
PIRE (Liu et al., 2019b) (lr=1e-4) 100 61.91 30.99 6.05 49.16 25.16 16.93 86.58 69.50 3.33
PIRE (Liu et al., 2019b) 100 27.93 16.07 33.98 15.34 8.71 55.27 16.33 11.48 61.88
TMA (Tolias et al., 2019) 20 41.80 20.73 19.73 36.88 18.92 28.26 64.82 47.96 14.91
TMA+RS (Tolias et al., 2019) 20 35.16 18.91 22.85 30.52 16.41 35.40 54.04 39.66 23.55
TMA (Tolias et al., 2019) (lr=1e-4) 100 62.70 31.01 6.84 49.34 25.15 16.88 86.82 69.48 3.44
TMA (Tolias et al., 2019) 100 13.87 8.47 57.42 20.17 10.90 48.24 2.26 1.90 91.63
Fast (Goodfellow et al., 2015) 1 30.66 15.41 32.42 15.80 8.50 57.24 15.35 10.51 67.55
Basic (Kurakin et al., 2017) 20 23.63 13.43 39.06 15.63 9.27 55.17 9.89 7.06 70.46
Basic+RS (PGD) (Madry et al., 2018) 20 17.77 11.68 43.95 14.11 8.69 57.95 9.68 6.91 72.71
SMA (Bouniot et al., 2020) 20 13.28 9.21 53.52 11.24 7.03 62.02 2.82 2.05 90.14
SMA+RS (Bouniot et al., 2020) 20 12.30 8.61 61.52 8.59 5.87 68.70 1.96 1.66 92.46
Least-likely (Kurakin et al., 2017) 20 10.74 8.12 61.13 21.40 11.31 46.25 4.16 3.46 88.24
Least-likely+RS (Kurakin et al., 2017) 20 10.55 7.70 65.43 19.29 10.50 50.47 4.04 3.25 88.09
ODFA 20 6.64 4.65 73.05 10.28 6.34 65.75 0.15 0.22 99.02
ODFA+RS 20 6.64 4.89 71.09 7.63 5.15 72.01 0.24 0.23 99.35

class method, gives a Recall@10 of 38.87%. In compari-
son, the proposed ODFA achieves a lower Recall@1 and
Recall@10 at ϵ = 8. This can be attributed to the explicit
opposite direction attack mechanism on the feature. As we in-
crease the perturbation rate ϵ to 16, the victim model attacked
by ODFA yields Recall@1 = 6.64%, Recall@10 = 26.95%,
mAP = 4.65%, which are lower than the traditional classi-
fication attack methods, i.e., Fast (Goodfellow et al., 2015),
Basic (Kurakin et al., 2017) and Least-likely (Kurakin et al.,
2017). This is also consistently more effective compared with
re-implemented feature-based approaches, e.g., PIRE (Liu
et al., 2019b), TMA (Tolias et al., 2019) and SMA (Bouniot
et al., 2020). Experiments on the fine-grained retrieval dataset,
i.e., CUB-200-2011, and person re-id dataset, i.e., Market-
1501, indicate similar observations (see Fig. 4 and Fig. 5).
More quantitative results are shown in Table 2.

Discussion. Here we discuss and compare the difference
between ODFA and six recent methods, i.e., PIRE (Liu et al.,
2019b), TMA (Tolias et al., 2019), SMA (Bouniot et al.,
2020), PGD (Madry et al., 2018), AP-GAN (Zhao et al.,
2020) and UPA (Li et al., 2019a). First, similar to our method,
PIRE (Liu et al., 2019b) enlarges the distance between the
original input and adversarial query in the feature space,
but PIRE does not explicitly introduce the “opposite direc-
tion” for optimization. Instead, PIRE initializes the random
perturbation and leverages the Adam optimizer to greedily
search the input space. Therefore, PIRE, in practice, usu-
ally sets more iterations, like 100 iterations. As shown in

Table 2, PIRE is inferior to the proposed method under both
20 iterations and 100 iterations. Similarly, we observe that
TMA (Tolias et al., 2019) is superior to PIRE due to the nor-
malized feature but is still neither more efficient nor effective
when compared with the proposed method.

Second, SMA(Bouniot et al., 2020) does not harness di-
rection guidance in their pushing strategy, while ODFA pulls
the adversarial sample to the opposite direction. Moreover,
SMA needs one extra network forward for the jittering input
in the first iteration; otherwise, the initial loss will be zero.
In comparison, ODFA does not require jittering at the begin-
ning and costs less running time as shown in Section 5.4. We
observe that ODFA consistently performs better than SMA.

Third, we evaluate the effectiveness of random start (RS).
We re-implement PGD (Madry et al., 2018) following clever-
hans3, which replaces the zero start with RS for Basic It-
erative Method. We further apply such random start to all
comparable iterative methods, including PIRE, TMA, SMA,
Least-likely and the proposed ODFA in Table 2, since random
start is a frequently used add-on. The experiments show that
RS usually increases the attacking success rate of the iterative
method, since it provides a large perturbation at the begin-
ning. Despite the performance improvement of counterparts
with RS, ODFA still outperforms other existing methods.

Finally, while AP-GAN (Zhao et al., 2020) applies ad-
ditional training for a generative model to synthesize ad-
versarial noise, our method is still better, as shown on the

3 https://github.com/cleverhans-lab/cleverhans

https://github.com/cleverhans-lab/cleverhans
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Fig. 6 Comparing attack methods on the Cifar-10 dataset under various
perturbation rates ϵ. Top-1 (%) and Top-5 (%) accuracy scores of the
victim model (ResNet-20 backbone trained with cross-entropy loss) are
shown. “Clean” denotes the accuracy using original query images.

Market-1501 dataset. In addition, we observe that applying
the unified perturbation learned in UPA (Li et al., 2019a) has
worse attack performance than ours on all three datasets.

5.3 ODFA on Ranking-based Retrieval Models

Ranking-based retrieval models optimize the feature dis-
tances and usually do not have a class prediction. The clas-
sification attack methods, which attack category prediction,
thus does not work on these retrieval models. In compar-
ison, the proposed method can still be applied. Here, we
compare ODFA with attack methods that do not depend on
class predictions. Results are presented in Table 3, where
the victim model is borrowed from (Radenović et al., 2018).
The victim model using clean queries arrives at a high perfor-
mance: Recall@1 = 100.00%, mAP = 86.24% on Oxford5k
and Recall@1 = 100.00%, mAP = 90.66% on Paris6k. When
ϵ = 16, the proposed method successfully fools the vic-
tim model, where retrieval accuracy drops to Recall@1 =
0.00%, mAP = 0.80%, ASR=99.45% on Oxford5k and Re-
call@1 = 1.82%, mAP = 3.00%, ASR=96.91% on Paris6k,
respectively. ODFA also surpasses other competing methods,
i.e., UPA (Li et al., 2019a), AP-GAN (Zhao et al., 2020),
PIRE (Liu et al., 2019b) and TMA (Tolias et al., 2019). To
ensure a fair comparison, we re-run ODFA with the setting in
UPA, i.e., ϵ = 10, and we observe that ODFA is still superior
to UPA under its setting. Besides, it is worth noting that the
victim model (Radenović et al., 2018) utilizes Euclidean dis-
tance instead of cosine similarity to rank the gallery images.
Therefore, TMA is identical to PIRE because both maxi-
mizing Euclidean distance. In the single-scale setting, PIRE
has competitive performance with the proposed method but
demands 100 iterations, introducing five times running cost.

Attacking multi-scale queries. We evaluate ODFA on
attacking multiple-scale inputs. Following (Radenović et al.,
2018), we extract and fuse the features of multiple-scale
inputs, which leads to robust representations against scale

variations and slightly improves the performance of the vic-
tim retrieval. Specifically, with multi-scale queries, the victim
model gives Recall@1 = 100.00%, mAP = 88.17% on Ox-
ford5k and Recall@1 = 100.00%, mAP = 92.52% on Paris6k.
We observe that the imperceptible noise generated by ODFA
is somehow deprecated after resizing the image, and the at-
tack performance is compromised (see Table 3). In compari-
son, the proposed ODFA+EoT (MS) method, benefiting from
considering the multiple-scale adversarial gradients, success-
fully fools the victim model. As a result, the performance
of the victim model with multi-scale inputs drops signifi-
cantly: Recall@1 = 1.82%, mAP = 2.21%, ASR = 98.55%

on Oxford5k and Recall@1 = 3.64%, mAP = 4.77%, ASR
= 96.73% on Paris6k. ODFA+EoT (MS) surpasses PIRE /
TMA and the basic ODFA by a large margin.

5.4 Further Analysis and Discussions

Performance of ODFA in image classification. We further
evaluate ODFA in the image recognition task. Results on
Cifar-10 are shown in Fig. 6. We find ODFA does not achieve
the largest top-1 accuracy drop when ϵ is small. This can be
explained by the fact that image classification directly relies
on the classification head. The most competitive iterative
least-likely class method aims to make the model misclassify
the adversarial example into the least-likely class. In compar-
ison, our method does not explicitly increase the probability
of a specific class while usually serving to decrease the confi-
dence score of the correct class.

Interestingly, for top-5 classification accuracy, the pro-
posed method converges to a lower point than all other three
methods. While the basic iterative method and the fast gradi-
ent sign method also directly work on decreasing the confi-
dence score of the ground-truth, they are less effective than
ours. It is because of the explicit feature direction change
from f to −f . To briefly explain this idea , assume that the
value of the bias term b for 10 classes is close, so we over-
look the influence of b in p = Wf + b. The top-1 prediction
p = Wf becomes the lowest probability p′ = −Wf , as our
method converges. Therefore, the correct class is more likely
to instantly move out of the top-5 predicted classes. When
ϵ = 16, the adversarial images generated by our method
compromise the top-5 accuracy from 99.76% to 0.76%. The
attacked top-1 accuracy of 0.06% is also competitive to the
result of the iterative least-likely class method 0.03%. In
summary, the proposed ODFA method reports competitive
performance and is not evidently superior to the competing
methods as the case in image retrieval (see Table 4).

Effectiveness of ODFA in the black-box setting. As
shown in previous works (Liu et al., 2017b; Moosavidezfooli
et al., 2017; Papernot et al., 2016a, 2017, 2016b; Szegedy
et al., 2014), adversarial examples have good transferabil-
ity that can successfully attack other black-box models in
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Table 3 Comparing attack methods on retrieval models trained with the ranking loss. We adopt Oxford5k and Paris6k datasets, with and without
multiple-scale (MS) queries. Numbers are in percentage. Perturbation rate is fixed to ϵ = 16. ∗ We directly quote the reported results from the
corresponding paper.

Methods #Iters Oxford5k Paris6k
Recall@1 ↓ mAP ↓ ASR ↑ Recall@1 ↓ mAP ↓ ASR ↑

Victim (Single-scale) - 100.00 86.24 - 100.00 90.66 -
PIRE (Liu et al., 2019b) / TMA (Tolias et al., 2019) 20 72.73 45.12 43.04 89.09 63.25 14.18
PIRE (Liu et al., 2019b) / TMA (Tolias et al., 2019) 100 0.00 0.75 99.82 1.82 2.97 98.18
UPA (Li et al., 2019a)∗ (ϵ = 10) extra training - 31.73 - - 32.07 -
AP-GAN (Zhao et al., 2020)∗ extra training 29.00 27.60 - 25.40 29.50 -
ODFA (ϵ = 10) 12 0.00 1.25 99.27 1.82 4.79 93.82
ODFA 20 0.00 0.80 99.45 1.82 3.00 96.91
Victim (Multiple-scale) - 100.00 88.17 - 100.00 92.52 -
PIRE (Liu et al., 2019b) / TMA (Tolias et al., 2019) 20 98.18 84.93 7.50 100.00 91.33 0.36
PIRE (Liu et al., 2019b) / TMA (Tolias et al., 2019) 100 100.00 79.75 10.59 100.00 88.89 0.36
ODFA 20 94.55 74.44 20.23 100.00 88.28 0.18
ODFA+EoT (MS) 20 1.82 2.21 98.55 3.64 4.77 96.73

(a) (b) (c) (d)

Fig. 7 Performance of attacking stronger victim models. (a) and (b): Recall@1 (%) and mAP(%) on Market-1501 when attacking the victim model
PCB (Sun et al., 2018). (c) and (d): Top-1 and Top-5 accuracy (%) on Cifar-10 when attacking WideResNet-28 (Zagoruyko and Komodakis, 2016).

Table 4 Performance of attacking the image recognition model on
Cifar-10. Here we show the top-1 and top-5 accuracy in % (Lower is
better). The perturbation rate is fixed to ϵ = 16. We compare the three
classification attack methods, i.e., Fast (Goodfellow et al., 2015), Basic
(Kurakin et al., 2017), Least-likely (Kurakin et al., 2017).

Methods Cifar-10
Top-1 Top-5

Victim 93.14 99.76
Fast 14.95 67.55
Basic 4.74 21.47
Least-likely 0.03 45.58
ODFA 0.06 0.76

the recognition scenario, because the models learn a similar
decision boundary in the classification space. In this sec-
tion, we study the transferability of the adversarial queries in
terms of the retrieval scenario. For the classification-based
retrieval model, we train a stronger victim with DenseNet-
121 (Huang et al., 2017) as the black-box model, which
arrives at Recall@1 = 90.17% and mAP = 75.60% using
“clean” images on Market-1501. The adversarial queries
are independently generated by the white-box ResNet-50
(ϵ = 16). The experiment shows that adversarial samples
generated by ResNet-50 also compromise the performance

Table 5 Effectiveness of ODFA in the black-box setting on Market-
1501. The adversarial queries are independently generated by the white-
box ResNet-50 (ϵ = 16) to cheat the unseen DenseNet-121 (Huang
et al., 2017). More details are provided in the Section 5.4.

Methods #Iters Market-1501
Recall@1 ↓ mAP ↓ ASR ↑

Victim - 90.17 75.60 -(DenseNet-121 (Huang et al., 2017))
UPA (Li et al., 2019a) extra 81.21 64.83 5.46
PIRE (Liu et al., 2019b) 20 86.13 69.94 3.71
TMA (Tolias et al., 2019) 20 85.84 69.75 3.92
PIRE (Liu et al., 2019b) 100 71.08 54.04 9.62
TMA (Tolias et al., 2019) 100 68.26 51.06 11.79
Basic (Kurakin et al., 2017) 20 69.80 53.01 9.71
Least-likely (Kurakin et al., 2017) 20 69.33 52.12 10.84
SMA (Bouniot et al., 2020) 20 62.08 45.10 15.59
ODFA 20 52.88 37.77 21.62

of DenseNet-121: Recall@1 = 52.88%, mAP = 37.77% and
ASR = 21.62%, which surpasses other methods in Table 5.
We observe a similar phenomenon on attacking the ranking-
based retrieval model. We train the white-box model with
ResNet-101 and apply the ResNet-101 generated adversarial
query to attack the black-box model based on VGG-16 (Si-
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Fig. 8 Ranking results of the original queries and the adversarial queries generated by Least-likely (Kurakin et al., 2017), SMA (Bouniot et al.,
2020) and our method. The proposed approach introduces trivial noise on original queries to fool the retrieval system, while the human is robust to
such noise. Three original queries are from Food-256 (Kawano and Yanai, 2014), CUB-200-2011 (Wah et al., 2011) and Market-1501 (Zheng et al.,
2015), respectively. The corresponding top-10 retrieval results are also provided. The proposed adversarial queries successfully fool the retrieval
model to predict irrelevant ranking results. We could observe that Least-likely (Kurakin et al., 2017) is prone to return one specific wrong class, and
SMA (Bouniot et al., 2020) is still prone to return visually similar objects / humans. In contrast, the proposed method prefers to return more noisy
ranking results. The perturbation rate is fixed to ϵ = 16. (Best viewed when zoomed in)

monyan and Zisserman, 2015). The generation process of the
adversarial queries is totally independent with the black-box
model. The accuracy of the black-box model also drops from
100.00% to 0.00% Recall@1 and 85.24% to 0.79% mAP on
the Oxford5k dataset. It verifies that the adversarial queries
have good transferability and could also be applied to the
black-box setting.

Attacking stronger victims. Furthermore, we evalu-
ate our method on stronger victim models, which achieve
competitive accuracy on benchmarks. Specifically, for per-
son retrieval (image retrieval), we attack a widely adopted
model called PCB (Sun et al., 2018). On Market-1501, our
re-implementation arrives at Recall@1 = 92.70%, mAP =
77.78% using clean queries for the victim model. As shown
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Fig. 9 Retrieval results of original queries and adversarial queries generated by PIRE (Liu et al., 2019b) and our method on Oxford5k and Paris6k.
The query images (original and adversarial) are also shown on the left. The proposed adversarial queries successfully fool the retrieval model into
giving irrelevant ranking results. For the example on Paris6k, we find that PIRE (Kurakin et al., 2017) fails to cheat the retrieval system, while the
proposed method returns noisy results. The perturbation rate is fixed to ϵ = 16. (Best viewed when zoomed in)

Fig. 10 Feature visualization on Cifar-10 (best viewed in color). As the perturbation rate ϵ increases, the feature gradually moves to the opposite
side of the original direction. Top-1 (%) and Top-5 (%) accuracy of the victim model (in the title of each subfigure) also decrease.

in Fig. 7 (a,b), Recall@1 and mAP drop to 1.34% and 1.11%

respectively by the proposed ODFA. The second best method,
SMA, also arrives at a relatively low accuracy 20.07% and
13.53%, but is still inferior to the proposed method in terms
of the accuracy drop. For image recognition, we evaluate
our method on the prevailing WideResNet-28 (Zagoruyko
and Komodakis, 2016). Our re-implementation arrives at
Top-1 accuracy 96.14% and Top-5 accuracy 99.91% using
clean queries, respectively. As shown in Fig. 7 (c,d), we have
consistent observations with the baseline victim models, i.e.,
competitive top-1 accuracy drop and the largest top-5 accu-
racy drop. Our method arrives at Top-1 accuracy of 0.34%
and Top-5 accuracy of 1.29%.

Visualization of retrieval results. We provide one quali-
tative comparison of the retrieval results with original queries
and adversarial queries in Fig. 8 and Fig. 9. The attack rate
ϵ is fixed to 16. Since we employ an iterative policy with
small steps, the adversarial queries generated by our method
are visually close to the original query, which simulates ex-
treme retrieval cases to evaluate the model robustness. In
these examples, the ranking results obtained by the original
queries are good. In contrast, when using adversarial queries,
the top-10 ranked images are all false matches with a sig-
nificantly different appearance to the query. The adversarial
query successfully makes the victim model predict low ranks
to the true matches.
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Fig. 11 Visualization result of the original features and attacked fea-
tures in the latent feature space on the Market-1501 dataset. The same
color denotes the same query. The circle denotes the original query,
while the stars are the adversarial query. Due to limited color for vi-
sualization, we can not plot all sample points in one figure. Therefore,
we select the first 20 features (10 original queries and 10 adversarial
queries) to visualize the clustering result in the feature space. We can
observe that the proposed method successfully pushes away the distance
of the original feature (circles) and the feature of the adversarial queries
(stars) of the same query (the same color). The perturbation rate ϵ is 16.

Visualization of attacked features. Following the visu-
alization trick in (Liu et al., 2016), we train the victim model
with an extra 2-dim fully-connected layer on Cifar-10 and
then extract the 2-dim feature of every test image to plot maps.
Due to applying the visualization trick (using the 2-dim fea-
ture to classify 10 classes), the accuracy of the new victim
model is a little bit lower than the baseline result in Table 4,
but still arrives at relatively high accuracy, Top-1=89.37%,
and Top-5=98.50%. It is good enough to verify our intuition
in the feature space. As shown in Fig. 10, the points in the
same color belong to the same class. We plot four maps with
different perturbation rates ϵ = 0, 4, 8, 16 to see the feature
movement. ϵ = 0 is the output of the victim model on clean
test images. The features gradually move to the opposite side
of the original direction, when ϵ increases. The observation
verifies the effectiveness of our objective, i.e., moving to the
opposite direction. Comparing ϵ = 0 with ϵ = 16, the fea-
ture of most adversarial examples successfully moves to the
opposite side of the original feature. Due to the change in
intermediate features, the classification accuracy in the title
of every subfigure, also gradually drops. The observation
validates the mechanism of the proposed method.

Besides, we add one visualization on clustering the origi-
nal features and attacked features on the Market-1501 dataset
(see Fig. 11). The attack rate ϵ = 16. Specifically, we adopt
the unsupervised clustering method, t-SNE (Van der Maaten
and Hinton, 2008) to map the feature to 2-dimension for
plotting. The same color denotes the same query. The circle

Table 6 Mean query-query similarity between the original query and
the adversarial query on Market-1501 by different attack methods. It
verifies our intuition that the three classification-based attack methods,
i.e., Fast, Basic and Least-likely, only have an indirect impact on the
feature, yielding limited feature changes. Besides, we observe that our
method, compared with other competitive approaches, arrives at a much
lower similarity with the original feature. Here we fix ϵ = 16.

Fast Basic Least PIRE TMA UPA SMA Ours
0.3801 0.3870 0.2061 0.3227 0.1297 0.8129 0.2127 -0.1494

Clean Fast Basic Least-likely SMA Ours

Fig. 12 Adversarial samples on Market-1501 (Zheng et al., 2015) gen-
erated by various methods. The perturbation rate is fixed to ϵ = 16.
(Zoom in for better visualization.)

denotes the original query, while stars are adversarial queries.
We leverage all 3,368 queries in Market-1501 and the 3,368
adversarial queries. Therefore, 6,736 features are utilized
to learn reliable clustering results. Due to limited color for
visualization, we can not plot all sample points in one fig-
ure. Therefore, we select the first 20 features (10 original
queries and 10 adversarial queries) to visualize the clustering
result in the feature space. We can observe that the proposed
method successfully pushes away the distance of the original
feature and the feature of adversarial queries.

OFDA significantly decreases the similarity between
the original query and the attacked query. We calculate
the feature similarity between the original query and the
adversarial query on Market-1501. The mean query-query
similarity reflects the degree of feature changes. From Ta-
ble 6, we have two observations. First, ODFA motivates the
adversarial feature to the opposite direction, yielding very
low similarity scores. Second, since the classification-based
attack methods do not directly work on the feature, their at-
tacked queries have higher similarity with the original query,
indicating that these attack methods are less effective.

Visualization of more adversarial queries. We show
some adversarial images generated by different attack meth-
ods on Market-1501 and Cifar-10 (see Fig. 12 and Fig. 13).
Attack rate ϵ is set to 16. As discussed in some previous
works (Kurakin et al., 2017), the fast-gradient sign method
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Fig. 13 Adversarial samples on Cifar-10 (Krizhevsky and Hinton, 2009)
generated by various methods. The perturbation rate is fixed to ϵ = 16.
(Zoom in for better visualization.)

[without Adversarial Training] [with Adversarial Training]

Fig. 14 Comparison between the original model (left) and the adver-
sarially trained model (right) on Market-1501. The adversarial trained
model is robust against various attacking methods, yielding relatively
less performance drop. However, it still fails if a larger ϵ is applied.

(Goodfellow et al., 2015) may introduce visible artifacts and
make perturbation perceptible to the human. In comparison,
the proposed method and three other adversarial methods
(Bouniot et al., 2020; Kurakin et al., 2017) iteratively update
the gradient on the clean images, which makes the adversarial
perturbation more smooth and imperceptible.

Method efficiency. We compare the efficiency of vari-
ous attack methods on the Market-1501 dataset using the
P5000 GPU. ϵ is 16. Our method has lower efficiency than
Basic (Kurakin et al., 2017), but is on the same level as the
rest competitors. Specifically, our method consumes 0.1113
seconds to generate an adversarial query. In comparison,
it takes 0.0134s, 0.1119s, and 0.1131s for Basic (Kurakin
et al., 2017), Least-likely (Goodfellow et al., 2015), and
SMA (Bouniot et al., 2020), respectively, to attack a query im-
age. The efficiency of PIRE (Liu et al., 2019b) and TMA (To-
lias et al., 2019) is close. Both take 0.1586 seconds under the
20-iteration setting, and 0.7654 seconds for 100 iterations to
craft one adversarial query.

Defense. We further explore whether online adversarial
training (Madry et al., 2018) using ODFA as an adversar-

ial augmentation could improve system robustness against
various attack methods. The experiment is conducted on
Market-1501. We have the following observations. First, the
adversarially trained model is slightly inferior to the baseline
model on the original test set in terms of retrieval accuracy.
In our experiment, the model trained with online-generated
ODFA adversarial samples yields 88.24% Recall@1, 96.88%
Recall@10 and 69.70% mAP, the performance of which is
slightly worse than the baseline model trained on “clean” data
(88.54% Recall@1, 96.85% Recall@10 and 71.08% mAP). A
similar phenomenon is also observed in the existing defense
works (Bai et al., 2020a; Bouniot et al., 2020). It is mainly be-
cause the newly-added adversarial samples are different from
the “natural” distribution as in the original training/test set.
Second, adversarial training makes the model more robust
against various adversarial methods. As shown in Fig. 14,
the model with adversarial training (right) yields relatively
less performance drop than the one trained on “clean” data
(left). This observation is particularly noticeable when the
perturbation is small (ϵ = 2,4). Third, the proposed attacking
method ODFA still fools the model after adversarial training
under larger perturbations. For example, when ϵ = 16, model
performance drops significantly to 0.50% Recall@1, 2.55%
Recall@10 and 0.73% mAP. We think our attack success is
mainly attributed to the inherent design of the current deep
learning structure. Despite various regularization terms, the
learned models are sensitive to small perturbations. In this
work, since we focus on adversarial attacks, we only provide
a preliminary study on defense and leave the insights derived
from such experiments in future works.

6 Conclusion

In this paper, we consider the adversarial attack for the im-
age retrieval problem and propose an attack method named
opposite-direction feature attack (ODFA) tailored for the re-
trieval scenario. Different from previous works, ODFA does
not depend on category prediction but instead takes advan-
tage of the intermediate feature and explicitly changes the
feature direction in the representation space like a U-turn.
On five image retrieval datasets, i.e., Food-256 (Kawano and
Yanai, 2014), CUB-200-2011 (Wah et al., 2011), Market-
1501 (Zheng et al., 2015), Oxford5k (Philbin et al., 2007)
and Paris6k (Philbin et al., 2008), we validate the effective-
ness of the proposed method on two kinds of retrieval victims,
i.e., classification-based retrieval model and ranking-based re-
trieval model. Compared with existing works, ODFA leads to
a greater performance drop in ranking accuracy with human
imperceptible perturbation. Furthermore, we extend ODFA
to adapt a common query augmentation: multi-scale query
inputs, yielding a high attack success rate. We also verify the
effectiveness of ODFA in the black-box setting and present a
preliminary study on the adversarial defense.
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