
Coarse-to-Fine Cross-modality Generation for Enhancing Vehicle
Re-Identification with High-Fidelity Synthetic Data

Leyang Jin1, Wei Ji1, Tat-Seng Chua1, Zhedong Zheng2

Abstract— Due to the critical issues of privacy and partial
occlusion, license plate information is not always available in
vehicle recognition systems. Consequently, researchers have in-
creasingly turned towards vehicle re-identification (reID) tech-
niques to bridge the gap between cross-view camera systems.
Despite the growing interest, one major challenge persists: the
scarcity of authentic, large-scale training datasets. To address
this challenge, this paper introduces a coarse-to-fine genera-
tion pipeline designed to synthesize high-fidelity vehicle data,
thereby facilitating subsequent vehicle representation learning.
Specifically, the proposed approach consists of three stages:
Prompt Processing, Diffusion Fine-tuning, and Semantic Filter-
ing. First, we collect detailed prompts from vehicle websites and
companies with fine-grained vehicle prototype attributes. Next,
we leverage the prior knowledge of these automotive prototypes
to fine-tune diffusion models. Finally, to ensure the quality of
the synthesized data, we employ pre-trained vision-language
models to filter out substandard images. Building upon the high-
quality data generated by this pipeline, we validate the effective-
ness using vanilla models. Extensive experimental evaluations
demonstrate that our approach achieves competitive accuracy
on public benchmarks such as VeRi-776 and CityFlowV2, and
is compatible with various model architectures.

I. INTRODUCTION

Vehicle re-identification (reID) aims to match images
of a target vehicle across multiple cameras, thus having
increasing demands on the deployment of autonomous ve-
hicles [1] and intelligent traffic systems [2]. Considering
the minor intra-class difference between different car pro-
totypes, vehicle reID is usually regarded as a fine-grained
representation learning task [3], [4]. However, due to the
privacy concerns [5] and annotation difficulties in multiple-
sensor systems [6], [7], we face the scarcity of realistic
data. Therefore, recent researches [8], [9], [10] have resorted
to generating authentic data for vehicle reID to break the
bottleneck. However, generating large-scale training data for
vehicle reID remains challenging, considering high-fidelity
images to capture subtle inter-class discrepancy and intra-
class consistency. As shown in Table II, directly applying
the general generation models even compromises the training
and decreases model performance.

Existing efforts on vehicle reID data generation can be
divided into two directions: 1) Graphics-engine-based meth-
ods, such as PAMTRI [8] and VehicleX [9]. They employ 3D
CAD models to generate vehicle images. While these meth-
ods have made significant strides, they still face challenges.
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Fig. 1: We compare our Vehicle-Diff dataset to existing
synthetic datasets. The second and third rows of datasets
are based on 3D engines (PAMTRI [8] and VehicleX [9]),
while PTGAN [11] and VehicleGAN [10] adopt the data-
driven structure, i.e., Generative Adversarial Networks [12].
We could observe that the proposed method is with a closer
visual appearance compared to the real dataset, i.e., VeRi-
776. Besides, the generated images by the proposed method
are associated with text captions, allowing for cross-modality
knowledge to guide generation.

There is a notable domain gap between rendered 3D CAD ve-
hicle images and actual real-world images. Additionally, the
process of generating the VehicleX dataset relies heavily on a
large amount of labeled vehicle re-identification data, which
is costly and raises privacy concerns. Similarly, synthetic
data from PAMTRI needs to be combined with fully labeled
re-identification datasets. 2) Data-driven methods, such as
generative adversarial networks (GANs) [12]. For instance,
PTGAN [11] and VehicleGAN [10] mainly explore GANs to
synthesize novel vehicle views. Although these methods can
generate vehicle images with relatively good visual quality,
they under-explore the cross-modality guidance and thus the
fine-grained attributes of the same vehicle are often incon-
sistent, compromising the training process of the vehicle re-
identification task.

To address the aforementioned challenges, we propose
Vehicle-Diff, a new pipeline designed to synthesize large-



scale training data for vehicle re-identification, facilitating
the representation learning. In particular, the pipeline consists
of three primary stages: prompt processing, diffusion model
tuning, and semantic filtering. We first collect and process the
prompt for vehicles with a focus on the vehicle attribute. To
harness the pre-trained inherent knowledge of car prototypes,
we employ carefully crafted prompts. Then, we fine-tune
the diffusion model using only 1% of unlabeled target data
during the generation stage. It enables the diffusion model
to adapt to the target vehicle domain at both the content
and stylistic levels. In the subsequent filtering stage, we
apply sophisticated post-processing techniques to enhance
the semantic alignment of the generated data. Our pipeline
is scalable and adaptable to multiple downstream scenarios,
reducing labeling costs and privacy concerns. As shown in
Fig. 1, the generated vehicle images are much closer to the
real-world data. Finally, we construct a new labeled vehi-
cle re-identification dataset, called Vehicle-Diff, comprising
149,472 images of 4,940 distinct vehicles. The efficacy of
Vehicle-Diff is substantiated through comparative evaluations
with synthetic datasets produced by existing approaches. In
summary, our paper makes the following contributions:

• A new coarse-to-fine cross-modality generation pipeline
by prompting the diffusion model to craft a synthetic
vehicle re-identification dataset tailored to a downstream
scene, with only about 1% unlabeled images in the
original dataset. To the best of our knowledge, our work
is among the early attempts for large-scale training data
generation with attributes for vehicle re-identification.

• Extensive experiments have validated that our pipeline
can minimize the gap between synthetic and real
data, facilitating the subsequential reID model learning.
The proposed method has achieved competitive perfor-
mance, e.g., 83.79 mAP on the VeRi-776 dataset.

II. RELATED WORK

Vehicle re-identification. Vehicle re-identification (reID)
retrieves vehicles of interest from a database of images
collected by traffic cameras. Previous studies [13], [14],
[15], [16] rely on supervised learning and have had signif-
icant success. However, supervised training based on well-
annotated datasets suffers from the high cost of annotation,
as well as privacy concerns when collecting and labeling
re-identification data. Some studies [17], [18] utilize unsu-
pervised learning to reduce annotation costs. However, a
substantial amount of real data is still required for general
vehicle reID tasks [16], and attribute annotations [19], [20]
are still preferred. In contrast, we developed a multi-modality
data synthesis approach that reduces both the need for real
data and annotations.
Synthetic datasets for vehicle re-identification task. Syn-
thetic data are frequently utilized to address privacy concerns
as well as the high annotation costs associated with creating
a re-identification dataset [21], [22]. Some previous works
[23], [24], [25] have used 3D engines to create characters for
re-identification scenarios. Similar ideas are used in vehicle
re-identification [8], [9]. However, assets generated by 3D

engines suffer from the intrinsic domain gap between virtual
and real scenes. In addition, hand-crafting 3D assets such
as persons and vehicles is time-consuming. Some methods
apply GAN [12] for data augmentation. For example, Ve-
hicleGAN [10] designs the reconstruction pipeline based on
the idea of AutoReconstruction and puts vehicles in the same
pose. PTGAN [11] synthesizes novel views of a vehicle
based on given pose information. However, they still have
the following limitations. To begin, a large labeled dataset
is required for effective model training. Second, the quality
and patterns of the augmented data are typically constrained
by the original dataset.
Text-to-image diffusion models. Diffusion models [26],
[27] have recently been regarded as promising generative
models. In particular, text-to-image diffusion models are
able to generate images following the description of text
prompts. Recent text-to-image models such as Stable Dif-
fusion [28], Stable Diffusion XL [29], and Midjourney [30],
which are based on diffusion model principles, have achieved
astonishing results in text-to-image generation. Based on
the great power of text-to-image diffusion models, some
methods like [31], [32] utilize diffusion models such as [33]
to generate synthetic data for image classification tasks.
Despite the exciting visual results and some applications of
text-to-image diffusion models, the potential application of
these models for the vehicle re-identification task remains
unexplored. In this paper, we evaluate multiple state-of-the-
art text-to-image models and harness the optimal model for
the downstream vehicle re-identification task.

III. METHOD

The overview of Vehicle-Diff is shown in Fig. 2. Vehicle-
Diff aims to generate high-fidelity data in a coarse-to-fine
manner to boost the training of reID networks, and it con-
tains three stages: (1) prompt processing; (2) diffusion fine-
tuning; and (3) semantic filtering. Specifically, the developed
prompt processing (§III-A) develops a prompt library and
explicitly provides vehicle attributes, e.g., vehicle models
and colors, for the subsequent image generation. In the
second stage (§III-B), Vehicle-Diff fine-tunes the diffusion
model using unlabeled vehicle images, enabling the model
to better adapt to vehicle image generation. In the third stage
(§III-C), Vehicle-Diff coarsely generates vehicle images with
different IDs using a well-developed prompt library and
a fine-tuned diffusion model, and then further filters the
synthesized images with off-the-shelf detection and cross-
modality alignment models.

A. Prompt Processing

The prompt processing stage aims to construct discrimina-
tive vehicle attribute prompts to guide image generation, thus
enhancing inter-class consistency and intra-class diversity.
We first filter the noisy online information to collect vehicle
attributes, i.e., brand, production year, and body style, for
different car models from an online car information website1.

1https://www.autoevolution.com/
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Fig. 2: An overview of our coarse-to-fine cross-modality pipeline Vehicle-Diff. It has three stages: Prompt Processing,
Diffusion Fine-tuning, and Semantic Filtering. (1) We first scrape and filter vehicle model information from online vehicle
websites. Given the diffusion model, we then select the prompt template according to the visual quality. (2) In the second
stage, we leverage the off-the-shelf image captioner to generate the pseudo caption. It is worth noting that the proposed
pipeline only requests a few unlabeled real images from the downstream dataset. After the data preparation, we fine-tune
the diffusion model via Mean Squared Error (MSE) loss. (3) In the third stage, using the refined prompts, we choose the
most effective diffusion model by comparing visual quality, such as consistency. Then, we create synthetic data for the
vehicle re-identification task. We use the cross-modality model to filter out semantically misaligned data. Finally, we feed
the high-fidelity data to train the reID model via cross-entropy loss [34], [35] and circle loss [36].

It is worth noting that color is an important attribute, and we
will use it again in the third stage for semantic filtering.
Moreover, inspired by alternating optimization [37] and
human-diffusion interaction [38], [39], we also develop a
prompt template to improve the quality of the generated im-
ages. Specifically, we adjusted one component of the prompt
template based on feedback from the diffusion model. The
final prompt template is designed as “a [color] [production
year] [brand] [car model] [body style] driving down the
road.” Please also check the bottom of Fig. 1, where we
show several examples of the prompt template, as well as
the resulting images.

B. Diffusion Fine-tuning

Vehicle-Diff leverages a text-to-image diffusion model
to generate vehicle images according to prompts. How-

ever, a pre-trained diffusion model still struggles to adapt
well to the real-world vehicle images, resulting in a do-
main gap between synthesized images and those in vehicle
reID datasets. Therefore, we further fine-tune the diffusion
model to mitigate the domain discrepancy while retaining
its generation capability. As shown in Fig. 2 (Stage 2), we
illustrate the step-by-step fine-tuning stage from the data
preparation to the model optimization. To be specific, we
first deploy an image captioner, i.e., BLIP-2 [40], to predict
text prompts for unlabeled vehicle images, and then employ
the generated image-text pairs to fine-tune the text-to-image
diffusion model. We incorporate additional weights [41] in
the decoder part, while keeping the pre-trained weights
unchanged. Therefore, the additional weights could adapt the
final visual style, while maintaining the generative capability.
The optimization objective is the mean squared error (MSE)



loss. It is worth noting that, our Vehicle-Diff could be trained
with only a few (1%) unlabeled images of the vehicle
dataset for fine-tuning, i.e., 378 images for VeRi-776 and
527 images for CityFlowV2, while previous methods either
require large-scale datasets (GAN-based methods [11], [10])
or rely on labeled images (graphics-engine-based methods
[8], [9]). Moreover, different from these methods, Vehicle-
Diff harnesses the generative power of diffusion models,
enabling to generate more realistic images, as shown in
Fig. 1. Similarly, we fine-tune multiple candidate diffusion
models in preparation for the next stage, which involves
selecting the optimal diffusion model.

C. Semantic Filtering

We first sample approximately 10 prompts from the opti-
mized prompt library to evaluate and select the optimal fine-
tuned diffusion model. With a similar idea to our prompt
template design, the selection of the fine-tuned model is
informed by a qualitative assessment of the images generated
by each candidate model. Fig. 2 (Stage 3) provides illustra-
tive examples of fine-tuned models evaluated alongside the
corresponding generated imagery. Through this evaluation,
we opt for the fine-tuned diffusion model that maintains the
text encoder in a frozen state. We then feed our designed
prompts into the optimal fine-tuned diffusion model, which
generates synthetic images automatically. Because of the lim-
itations of text-to-image generation models in producing fine-
grained and controllable outputs, directly using generated
images is insufficient for training vehicle re-identification
networks due to the following two major challenges, i.e.,
multiple objects and semantic misalignment. We only need
portions of the images that include the high-quality vehicle.
Diffusion models can generate low-quality images, such as
those with multiple vehicles, fragmented vehicles, or no
vehicle at all. To address this issue, we employ the off-the-
shelf detection model, i.e., YOLOv5x6 [42] trained on high-
resolution images of 1280× 1280, for vehicle detection and
cropping. We configure the detection model to detect only
vehicle categories, specifically focusing on cars and trucks.
The number of bounding box per image is limited to one,
focusing on the most prominent vehicle in each scene. We
only keep the image with high vehicle confidence by setting
a threshold, and exclude any small vehicles with heights or
widths smaller than or equal to 250 pixels. After cropping,
we have the vehicle in the center of the image, and we further
screen out noisy images with semantic misalignment, such
as vehicles with incorrect colors. In particular, we employ
a cross-modal vision-language model, i.e., CLIP [43], to
extract the feature for both text and image modalities.
We then remove semantic misaligned images that match
wrong colors. Specifically, the test prompts are constructed
as phrases, e.g., “a red vehicle,” where the color term is
dynamically substituted from a predefined color list, such as
“red,” “yellow,” “green,” “white,” and “black.” The cosine
similarity between image and test text in the feature level is:

simk =
fI · fTk

∥fI∥∥fTk
∥
. (1)

The predicted color k̂ is identified as: k̂ = argmaxk(simk).
We then compare the predicted color to the expected color,
which is specified within the prompt used to generate the
image. If the predicted color matches the expected color, the
image is preserved; otherwise, it is discarded.

D. ReID Learning

In this paper, we do not pursue the network structure, but
focus on the data aspect. Our generated data is compatible
with different networks, and we are free to the reID model se-
lection. Here, we take the typical transformer, Swin-V2 [44],
as an example (please see the bottom of Fig. 2). We follow
the GoogleNet [45] and existing works [46] to add an auxil-
iary classifier to facilitate the backward gradients, especially
for the large-scale dataset. To optimize the network, we adopt
the classification loss [34], [35] and the circle loss [36] as
Ltotal = Lce + Lcircle, where Lce is the cross-entropy loss
to classify different vehicles, and the Lcircle is to optimize
the representation space by pulling closer positive images,
while pushing away the negative samples. We apply the same
loss terms to both the primary and auxiliary classifiers. It
is worth noting that our synthetic data can be combined
with real-world data to improve performance even further.
In practice, we find that a balance sampler can be useful for
reID learning. Experiment contains more details.

IV. EXPERIMENT

A. Implementation Details

Synthetic data generation. The Diffusion Fine-tuning pro-
cess uses the Adam optimizer [47], with a learning rate of
0.0001 at the start and a polynomial scheduler for scheduling.
We train the diffusion model for 100 epochs, with the first 20
serving as a warm-up. During inference, we set the guidance
scale to 8, and the diffusion step to 50. The output size is
set to 1024× 1024. The vehicle detection threshold is set to
0.65. Our generation pipeline, Vehicle-Diff, yields 149,472
images of 4,940 vehicles on VeRi-776.
ReID baseline training. We deploy three widely-used base-
lines to assess the efficacy of our pipeline. Following the
setting of existing works [8], [9], we mainly study two CNN-
based models, i.e., IDE [35], DenseNet121 [48], and one
transformer model, i.e., Swin Transformer V2 [44].

B. Comparison with the State-of-the-art

In Table I, we show the statistics of dataset generated by
our Vehicle-Diff and other existing vehicle re-ID datasets.
We observe that our pipeline could synthesize more high-
fidelity images with more identities, i.e., 4 times larger
number of images and IDs compared with VehicleX [9].
It is worth noting that our proposed Vehicle-Diff could
further generate more images, if more text prompts are
provided. In Table II and Table III, we compare our proposed
Vehicle-Diff with existing vehicle re-ID methods on two real-
world datasets, i.e., VeRi-776 [55] and CityFlowV2 [57],
respectively. For a fair comparison, we follow the setting in
the existing work [9] and utilize the same number synthetic
image during the reID model training. As shown in Table II,



Fine-grained differences between 
front grilles and rear lights

Fine-grained differences between body 
styles: The top ones are couples, while the 
bottom ones are convertibles

Fine-grained differences between 
body styles: The top ones are sedans, 
while the bottom ones are wagons

(a) Inter-class Discrepancy.

Prompt: A red 2019 DODGE 
Charger SRT Hellcat 
Widebodydriving down the road

Prompt: A yellow 2017 
VOLKSWAGEN Golf VII GTE 
Hatchback driving down the road

Prompt: A green 2015 
MERCEDES BENZ GLE W166 
SUV driving down the road

(b) Intra-class Variance.

Fig. 3: Our pipeline could reflect the fine-grained discrepancy between two appearance-similar vehicles, e.g., front grilles,
rear lights, and body types, while we also depict reasonable intra-class variations of the same vehicle, such as vehicle pose.
Please zoom in to get the best view.

Dataset #IDs #Images #Cameras Attr

Real

StanfordCars [49] 196 16,185 N/A ✓
PKU-Vehicle [50] N/A 10,000,000 N/A ✗
CompCar [51] 4,701 136,726 N/A ✗
PKU-VD1 [52] 1,232 1,097,649 1 ✓
PKU-VD2 [52] 1,112 807,260 1 ✓
VehicleID [53] 26,328 222,629 2 ✗
VehicleReID [54] N/A 47,123 2 ✗
VeRi-776 [55] 776 49,357 20 ✓
CityFlow [56] 666 56,277 40 ✗
CityFlowV2 [57] 440 52,717 46 ✗
VRIC [58] 5,622 60,430 60 ✗

Synthetic
PAMTRI [8] 402 41,000 Varied ✓

VehicleX [9] 1,362 75,516† Varied ✓

Vehicle-Diff 4,896 149,472‡ Varied ✓

TABLE I: Comparisons with public real-world and synthetic
vehicle re-ID datasets in terms of the number of vehicle IDs,
images, and viewpoints, and the availability of attributes. †:
Number of images used in their code. ‡: If more text prompts
are given, we could generate more images as other synthetic
methods.

Query ID Model Query Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

ID 1130

Baseline

VehicleX

Vehicle-Diff

Fig. 4: Qualitative retrieval results. Here we compare our
method with both our baseline and VehicleX. The ranking
list is presented in descending order from left to right based
on the similarity score. The images in red boxes are false-
matched, whereas the green ones are true-matched.

Vehicle-Diff enables to achieve competitive vehicle re-ID
accuracy on VeRi-776. This indicates that our proposed
coarse-to-fine generation pipeline adapts well to vehicle re-
ID, and enables to generate high-fidelity training images,
even through our generative diffusion model is fine-tuned
only with 1% of the unlabeled training data. Specifically,
when the reID model is trained solely on synthetic data,
our approach improves mAP by 0.92% compared with Vehi-
cleX on VeRi-776. When the reID backbone is switched to
SwinV2-Base, we observe a consistent mAP improvement,

Method Backbone Data Mix Rank-1 Rank-5 mAP
VehicleX [9] Res50 S - 51.25 67.70 21.29
Vehicle-Diff Res50 S - 57.87 74.97 22.21
VehicleX [9] SwinV2-B S - 66.87 79.80 28.33
Vehicle-Diff SwinV2-B S - 74.14 84.45 34.73
VANet [59] Res50 R - 89.78 95.99 66.34
AAVER [60] Res101 R - 90.17 94.34 66.35
baseline (IDE [35]) Res50 R - 92.73 96.78 66.54
VehicleX [9] Res50 R+S D 93.44 97.26 70.62
Vehicle-Diff Res50 R+S D 94.52 97.97 71.50
PAMTRI [8] DenseNet121 R+S D 92.86 96.97 71.88
SAN [61] Res50 R - 93.30 - 72.50
VehicleGAN [10] Res50 R+S D 93.60 97.30 74.20
CAL [62] Res50 R - 95.40 97.90 74.30
MSDeep [15] Res50 R - 95.10 - 74.50
VehicleX (PCB) [9] Res50 R+S D 94.34 97.91 74.51
Vehicle-Diff (PCB) Res50 R+S D 94.40 97.56 75.45
Vanilla Diffusion [29] SwinV2-B R+S B 95.53 98.03 75.95
baseline SwinV2-B R - 96.72 98.57 77.99
CLIP-ReID [63] ViT-B/16 R - 95.70 - 79.30
DCAL [64] ViT-B/16 R - 96.90 - 80.20
GiT [65] GiT R - 96.86 - 80.34
TransReID [14] ViT-B/16 R - 96.90 - 80.60
PCL-CLIP [66] ViT-B/16 R - 97.10 98.60 82.50
CLIP-ReID [63] ViT-B/16 R - 97.40 - 83.30
VehicleX [9] SwinV2-B R+S D 97.32 98.69 80.36
Vehicle-Diff SwinV2-B R+S D 97.38 98.51 80.98
VehicleX [9] SwinV2-B R+S B 97.08 98.81 81.39
Vehicle-Diff SwinV2-B R+S B 97.68 98.93 83.79

TABLE II: Comparisons with the state-of-the-art methods on
VeRi-776 [55]. “S” and “R” denote synthetic and real data,
respectively. “B” indicates that each training batch selects
equal amounts of synthetic and real data (as introduced
in § III-D), whereas “D” indicates that synthetic and real
data are combined randomly. Results on two backbones, i.e.,
Res50 and SwinV2-B, are both reported.

i.e., +6.40%. Furthermore, combined with the original real-
world training set, our generated dataset can further improve
the reID performance. In particular, our approach achieves
0.94% and 3.57% improvements in mAP compared with
VehicleX and PAMTRI, respectively, when jointly trained
with the original VeRi-776 training set in Res50 backbone
[67]. For SwinV2-Base reID backbone, our method shows
a consistent improvement. In VeRi-776 dataset, Vehicle-Diff
ourperforms VehicleX by 0.62% on mAP when using random
combination strategy (“D” in Table II) and 2.4% on mAP
when using balanced sampling combination strategy (“B” in
Table II). Besides, compared with other state-of-the-art meth-
ods, Vehicle-Diff also shows competitive performances. Our
Vehicle-Diff method achieves 97.68% Rank-1 and 83.79%
mAP, which surpasses CLIP-ReID [63] of 97.40% Rank-1



Method Data Rank-1 Rank-5 Rank-10
CityFlowV2
VehicleX [9] S 22.21 28.83 35.09
Vehicle-Diff S 26.38 33.09 36.54
CityFlowV2→VeRi-776
VehicleX [9] S 62.04 76.16 81.59
Vehicle-Diff S 66.81 77.18 83.61

TABLE III: Comparisons with the state-of-the-art method
on CityFlowV2 [57]. Generative model is fine-tuned on
CityFlowV2, and we do not use any labels in CityFlowV2.

Method FID↓
VeRi-776 CityFlowV2

VehicleGAN [10] 233.0 -
PTGAN [11] 231.1 -
VehicleX 88.20 77.87
Vehicle-Diff 44.84 54.84

TABLE IV: Quantitative comparisons with the state-of-the-
art methods on data generation. For a fair comparison,
Vehicle-Diff is trained on 1% unlabeled images while Ve-
hicleX is trained on 1% labeled images on VeRi-776.

and 83.30% mAP. In CityFlowV2, Vehicle-Diff outperforms
VehicleX by 4.17% on Rank-1 and 4.26% on Rank-5 (see
the upper part of Table III). We also conduct a series of
experiments to verify the generalization ability of Vehicle-
Diff. As shown in the bottom of Table III, we apply the
reID model trained on the source-domain synthesized data
to evaluate performance on the target domain. It should be
noted that we only utilize the images in CityFlowV2 to fine-
tune the generative model, not the labels. Nonetheless, our
Vehicle-Diff consistently outperforms VehicleX.

We further evaluate the quality of the generated data
through both quantitative and qualitative evaluation. For the
quantitative assessment, we utilize the Frechet Inception
Distance (FID) [68], a widely recognized evaluation metric.
Unfortunately, since the PAMTRI dataset is not publicly
available, we are unable to calculate its FID score. To ensure
a fair comparison, we randomly selected 1% of the training
datasets to train VehicleX and generate sample images. As
shown in Table IV, Vehicle-Diff achieves a lower FID score
compared to all other generative methods. For qualitative
comparison, we visualize the sample outputs of competitive
generative methods in Fig. 1. The images in the first row
are from the real-world dataset, while the images in the
remaining five rows are from different synthetic data pipeline
based on both 3D engines and GAN. We could observe that
Vehicle-Diff produces images that are visually closer to the
real-world dataset while keeping the fine-grained texture.

C. Ablation Studies and Further Discussion

Effectiveness of the coarse-to-fine strategy. In Vehicle-
Diff, we adopt a coarse-to-fine generation strategy. Here we
study the effectiveness of each component in our pipeline.
Although the filtering process has little effect on the visual
gap and the FID change after fine-tuning is negligible, the
reID model performance steadily improves (see Table V).
Table V validates that quality matters more than quantity,

Components #IDs #Imgs Rank-1 mAP FIDDFT SF
5,305 191,720 33.19 8.26 126.24

✓ 4,940 160,758 58.34 22.00 44.35
✓ ✓ 4,896 149,472 58.76 22.33 44.78

TABLE V: Ablation study on components, i.e., diffusion
fine-tuning (DFT) and semantic filtering (SF).

Baseline #IDs #imgs Rank-1 Rank-5 mAP

IDE 4,894 45,338 57.87 74.97 22.21
4,896 149,472 58.76 74.43 22.33

TABLE VI: Ablation study on the number of synthetic
images for training the reID model on the IDE baseline.

and Table VI shows that more high-quality data leads to
better results.
Effectiveness of the balanced sampling strategy. Previous
methods, such as VehicleX and PAMTRI, typically conduct
random sampling on mixed real and synthetic data to train
the model. As a by-product of our pipeline, we introduce
a balanced sampling strategy. We merge two mini-batch
samples from real and synthetic datasets as a new mini-batch
for training. We find that our balanced sampling strategy
improves model learning on both VehicleX and Vehicle-Diff
data. As shown in the last four rows of Table II, compared to
the vanilla sampling strategy, our balanced sampling strategy
yields a +1.06% boost in mAP for VehicleX and +2.81%
boost in mAP for Vehicle-Diff.
Retrieval visualization. As shown in Fig. 4, we conduct
the qualitative image retrieval comparison on VeRi-776. Our
method has successfully recalled the target vehicle in the
top-5 of the ranking list, surpassing the same model trained
on real data or VehicleX. It is because that our Vehicle-Diff
contains a large number of vehicle images with fine-grained
attributes and intra-class variances such as camera angle,
facilitating the discriminative feature learning (see Fig. 3).
Therefore, the model trained on our Vehicle-Diff is able to
handle challenging matches with fine-grained differences and
significant camera angle variations.

V. CONCLUSION

In this paper, we explore the efficacy of state-of-the-art
synthetic data generated by a text-to-image model for vehicle
re-identification (reID). We introduce Vehicle-Diff, a new
coarse-to-fine cross-modality generation pipeline that crafts
a synthetic reID dataset tailored to specific downstream sce-
narios using only 1% of unlabeled images from the original
dataset. Our extensive experiments show that this pipeline
significantly narrows the gap between synthetic and real-
world data, thereby enhancing subsequent reID model perfor-
mance. Notably, our method achieves a competitive 83.79%
mAP on the VeRi-776 dataset. Additionally, we analyze the
strengths and limitations of synthetic data across various
settings and identify optimal strategies for its utilization. We
anticipate that our work will contribute to applications such
as privacy protection and intelligent traffic systems.
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