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ABSTRACT

We investigate composed image retrieval with text feedback. Users gradually look
for the target of interest by moving from coarse to fine-grained feedback. How-
ever, existing methods merely focus on the latter, i.e., fine-grained search, by har-
nessing positive and negative pairs during training. This pair-based paradigm only
considers the one-to-one distance between a pair of specific points, which is not
aligned with the one-to-many coarse-grained retrieval process and compromises
the recall rate. In an attempt to fill this gap, we introduce a unified learning ap-
proach to simultaneously modeling the coarse- and fine-grained retrieval by con-
sidering the multi-grained uncertainty. The key idea underpinning the proposed
method is to integrate fine- and coarse-grained retrieval as matching data points
with small and large fluctuations, respectively. Specifically, our method contains
two modules: uncertainty modeling and uncertainty regularization. (1) The uncer-
tainty modeling simulates the multi-grained queries by introducing identically dis-
tributed fluctuations in the feature space. (2) Based on the uncertainty modeling,
we further introduce uncertainty regularization to adapt the matching objective ac-
cording to the fluctuation range. Compared with existing methods, the proposed
strategy explicitly prevents the model from pushing away potential candidates in
the early stage, and thus improves the recall rate. On the three public datasets, i.e.,
FashionIQ, Fashion200k, and Shoes, the proposed method has achieved +4.03%,
+3.38%, and +2.40% Recall@50 accuracy over a strong baseline, respectively.

1 INTRODUCTION

Despite the great success of recent deeply-learned retrieval systems (Radenović et al., 2018; Zheng
et al., 2017a; 2020b), obtaining accurate queries remains challenging. Users usually cannot express
clearly their intentions at first glance or describe the object of interest with details at the very be-
ginning. Considering such an obstacle, the retrieval system with feedback is preferable since it is
similar to the human recognition process, which guides the users to provide more discriminative
search conditions. These conditions are used to narrow down the search scope effectively and effi-
ciently, such as “I want similar shoes but with red color”. In this work, without loss of generality,
we study a single-round real-world scenario, i.e., composed image retrieval with text feedback. This
task is also named text-guided image retrieval. Given one query image and one feedback, the re-
trieval model intends to spot the image, which is similar to the query but with modified attributes
according to the text. Such an ideal text-guided image retrieval system can be widely applied to
shopping and tourism websites to help users find the target products / attractive destinations without
the need to express a clear intention at the start (Liu et al., 2012). Recent developments in this field
are mainly attributed to two trends: 1) the rapid development of deeply-learned methods in both
computer vision and natural language processing communities, e.g., the availability of pre-trained
large-scale cross-modality models, such as CLIP (Radford et al., 2021); and 2) the fine-grained met-
ric learning in biometric recognition, such as triplet loss with hard mining (Hermans et al., 2017;
Oh Song et al., 2016), contrastive loss (Zheng et al., 2017b), and infoNCE loss (Oord et al., 2018;
Han et al., 2022), which mines one-to-one relations among pair- or triplet-wise inputs.
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However, one inherent problem remains: how to model the coarse-grained retrieval? The fine-
grained metric learning in biometrics de facto is designed for strict one-to-one fine-grained match-
ing, which is not well aligned with the multi-grained image retrieval with text feedback. As shown
in Figure 1a, we notice that there exists multiple true matchings or similar candidates. If we still
apply pair-wise metric learning, it will push away these true positives, compromising the training on
coarse-grained annotations.

As an attempt to loosen this restriction, we introduce a matching scheme to model an uncertainty
range, which is inspired by the human retrieval process from coarse-grained range to fine-grained
range. As shown in Figure 1b, we leverage uncertain fluctuation to build the multi-grained area
in the representation space. For the detailed query, we still apply one-to-one matching as we do
in biometric recognition. On the other hand, more common cases are one-to-many matching. We
conduct matching between one query point and a point with an uncertain range. The uncertain range
is a feature space, including multiple potential candidates due to the imprecise query images or the
ambiguous textual description. Jointly considering the two kinds of query, we further introduce
a unified uncertainty-based approach for both one-to-one matching and one-to-many matching, in
the multi-grained image retrieval with text feedback. In particular, the unified uncertainty-based
approach consists of two modules, i.e., uncertainty modeling and uncertainty regularization. The
uncertainty modeling simulates the real uncertain range within a valid range. The range is estimated
based on the feature distribution within the mini-batch. Following the uncertainty modeling, the
model learns from these noisy data with different weights. The weights are adaptively changed ac-
cording to the fluctuation range as well. In general, we will not punish the model, if the query is
ambiguous. In this way, we formulate the fine-grained matching with the coarse-grained matching in
one unified optimization objective during training. Different from only applying one-to-one match-
ing, the uncertainty regularization prevents the model from pushing away potential true positives,
thus improving the recall rate. Our contributions are as follows.

• We pinpoint a training/test misalignment in real-world image retrieval with text feedback,
specifically between fine-grained metric learning and the practical need for coarse-grained
inference. Traditional metric learning mostly focuses on one-to-one alignment, adversely
impacting one-to-many coarse-grained learning. This problem identification underscores
the gap we address in our approach.

• We introduce a new unified method to learn both fine- and coarse-grained matching dur-
ing training. In particular, we leverage the uncertainty-based matching, which consists of
uncertainty modeling and uncertainty regularization.

• Albeit simple, the proposed method has achieved competitive recall rates, i.e., 61.39%,
79.84% and 70.2% Recall@50 accuracy on three large-scale datasets, i.e., FashionIQ, Fash-
ion200k, and Shoes, respectively. Since our method is orthological to existing methods, it
can be combined with existing works to improve performance further.

2 RELATED WORK

Composed Image Retrieval with Text Feedback. Traditional image retrieval systems utilize one
relevant image as a query (Philbin et al., 2007; Zheng et al., 2020a). It is usually challenging to
acquire such an accurate query image in advance. The multimodal query involves various input
queries of different modalities, such as image and text, which eases the difficulty in crafting a query
and provides more diverse details. In this work, we focus on image retrieval with text feedback,
also called text-guided image retrieval. Specifically, the input query contains a reference image and
textual feedback describing the modifications between the reference image and the target image.
The critical challenge is how to compose the two modality inputs properly (He et al., 2022; Yang
et al., 2016; Saito et al., 2023; Shin et al., 2021), and align visual and language space (Radford et al.,
2021; Norelli et al., 2022; Saito et al., 2023). The existing methods (Lee et al., 2021; Baldrati et al.,
2022) usually extract the textual and visual features of the query separately through the text encoder
and image encoder. These two types of features are composited as the final query embeddings
to match the visual features of the target image. Generally, there are two families of works on
image retrieval with text feedback based on whether using the pre-trained model. The first line of
work mainly studies how to properly combine the features of the two modalities (Qu et al., 2021;
Han et al., 2022). Content-Style Modulation (CosMo) (Lee et al., 2021) proposes an image-based
compositor containing two independent modulators. Given the visual feature of the reference image,
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Hi, find me a sleeveless dress for party.

Found sleeveless dresses for party like these.  

Coarse-grained Retrieval

I think the third one is great, but I want a red retro style, 
preferably with a rose tie belt and bow collar. 

How about this one?

Great, this is exactly what I want. 

Fine-grained Retrieval

(a) (b)
Figure 1: (a) The typical retrieval process contains two steps, i.e., the coarse-grained retrieval and
fine-grained retrieval. The coarse-grained retrieval harnesses the brief descriptions or imprecise
query images, while the fine-grained retrieval requires more details for one-to-one mapping. The
existing approaches usually focus on optimizing the strict pair-wise distance during training, which
is different from the one-to-many coarse-grained test setting. Overwhelming one-to-one metric
learning compromises the model to recall potential candidates. (b) Our intuition. We notice that
there exist two typical matching types for the fine- and coarse-grained retrieval. Here we show the
difference between one-to-one matching (left) and one-to-many matching (right).

the content modulator first performs local updates on the feature map according to text features. The
style modulator then recovers the visual feature distribution with the original feature mean and std
for matching. Furthermore, CLVC-Net (Wen et al., 2021) introduces two fine-grained compositors:
a local-wise image-based compositor and a global-wise text-based compositor. Following the spirit
of mutual learning (Zhang et al., 2018), two compositors are learned from each other considering
the prediction consistency. With the rapid development of the big model, another line of work
is to leverage the model pre-trained on large-scale cross-modality datasets, and follow the pretrain-
finetune paradigm. For instance, CLIP4Cir (Baldrati et al., 2022) applies CLIP (Radford et al., 2021)
as the initial network to integrate text and image features, and adopts a two-stage training strategy to
ease the optimization. Similar to CLIP, CLIP4Cir fine-tunes the CLIP text encoder and CLIP visual
encoder for feature matching in the first stage. In the second stage, the two encoders are fixed and a
non-linear compositor is added to fuse the text and visual feature in an end-to-end manner. Taking
one step further, Zhao et al. (2022) introduce extra large-scale datasets, e.g., FACAD (Yang et al.,
2020), FashionGen (Rostamzadeh et al., 2018), for pretraining. Different from these existing works,
in this work, we do not focus on the network structure or pretraining weights. Instead, we take
a closer look at the multi-grained matching, especially the coarse-grained one-to-many matching
during training. We explicitly introduce the uncertainty range to simulate the intra-class jittering.

Uncertainty Learning. With the rapid development of data-driven methods, the demands on the
model reliability rise. For instance, one challenging problem still remains how to measure the “con-
fidence” of a prediction. Therefore, some researchers resort to uncertainty. Kendall & Gal (2017)
divide the uncertainty into two major categories, i.e., epistemic uncertainty and aleatoric uncertainty.
The former epistemic uncertainty denotes model uncertainty that the models, even trained on the
same observation (dataset), learn different weights. The typical work of this direction is Bayesian
networks (Jordan et al., 2007; Gal & Ghahramani, 2016), which does not learn any specific weights
but the distribution of weights. In a similar spirit, Monte Carlo Dropout (Gal & Ghahramani, 2016)
is proposed to simulate the Bayesian networks during inference, randomly dropping the network
weights. Another family of works deals with the inherent data uncertainty, usually caused by device
deviations or ambiguous annotations. This line of uncertainty approaches has been developed in
many fields, including image retrieval (Warburg et al., 2021), image classification (Postels et al.,
2021), image segmentation (Zheng & Yang, 2021), 3D reconstruction (Truong et al., 2021), and
person re-id (Yu et al., 2019; Zhang et al., 2022). In terms of representation learning, (Chun et al.,
2021; Pishdad et al., 2022) directly regress the mean and variance of the input data and use the
probability distribution similarity instead of the cosine similarity. Similar to (Chun et al., 2021;
Pishdad et al., 2022), Oh et al. (2018) use Monte Carlo sampling to obtain the averaged distribution
similarity. Besides, Warburg et al. (2021) directly consider the loss variance instead of the feature
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Figure 2: The overview of our network. Given the source image Is and the text Ts for modifica-
tion, we obtain the composed features fs by combining fT

s and f I
s via compositor. The compositor

contains a content module and a style module. Meanwhile, we extract the visual features ft of the
target image It via the same image encoder as the source image. Our main contributions are the
uncertainty modeling via augmenter, and the uncertainty regularization for coarse matching. (1)
The proposed augmenter applies feature-level noise to ft, yielding f̂t with identical Gaussian Noise
N(1, σt) and N(µt, σt), respectively. Albeit simple, it is worth noting that the augmented feature
f̂t simulates the intra-class jittering of the target image, following the original feature distribution.
(2) The commonly used InfoNCE loss focuses on the fine-grained one-to-one mapping between the
original target feature ft and the composited feature fs. Different from InfoNCE loss, the proposed
method harnesses the augmented feature f̂t and fs to simulate the one-to-many mapping, consider-
ing different fluctuations during training. Our model applies both the fine-grained matching and the
proposed coarse-grained uncertainty regularization, facilitating the model training.

variance. In particular, they re-formulate the original triplet loss to involve the consideration of loss
variance. Another line of works (Chang et al., 2020; Dou et al., 2022) directly adds noise to features
to simulate the uncertainty. The variance is also from the model prediction like (Chun et al., 2021;
Pishdad et al., 2022) and a dynamic uncertainty-based loss is deployed as (Kendall & Gal, 2017;
Zheng & Yang, 2021). Similarly, in this work, we also focus on enabling the model learning from
multi-grained annotations, which can be viewed as an annotation deviation. Differently, there are
two primary differences from existing uncertainty-based works: (1) We explicitly introduce Gaus-
sian Noise to simulate the data uncertainty in terms of the coarse-grained retrieval. For instance, we
simulate the “weak” positive pairs by adding intra-class jittering. (2) We explicitly involve the noisy
grade in optimization objectives, which unifies the coarse- and fine-grained retrieval. If we add zero
noise, we still apply the strict one-to-one metric learning objective. If we introduce more noise,
we give the network less punishments. It is worth noting that unifying the fine- and coarse-grained
retrieval explicitly preserve the original representation learning, while preventing over-fitting to am-
biguous coarse-grained samples in the dataset.

3 METHOD

3.1 PROBLEM DEFINITION

We show the brief pipeline in Figure 2. In this paper, we do not pursue a sophisticated network
structure but a new learning strategy. Therefore, we mainly follow existing works (Lee et al.,
2021; Chen et al., 2020) to build the network for a fair comparison, and more structure details
are provided in Implementation Details. Given a triplet input, i.e., one source image input Is, one
text sentence Ts and the target image It, the model extracts the visual feature f I

s of Is, the target
feature ft of It and the textual feature fT

s of Ts. Then we leverage a simple compositor to combine
the source visual feature f I

s and the source text feature fT
s as the composed feature fs. We intend

to increase the cosine similarity between fs and ft in the representation space. During test time, we
extract fs as the query feature to find the most similar ft in the candidate pool.

We mainly consider the uncertainty in the triplet annotations. As shown in Figure 1a, the dataset
usually contains multi-grained matching triplets, considering descriptions and input images. If the
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description is ambiguous or the source image is relatively imprecise, the system should return multi-
ple candidate images. In the training phase, if we still apply strong one-to-one matching supervision
on such triplet, it will significantly compromise the model to recall potential true matches. There-
fore, in this work, we mainly focus on the uncertainty in the triplet matching. If not specified, we
deploy uncertainty to denote matching uncertainty.

3.2 UNCERTAINTY MODELING

We introduce a noise augmenter to simulate the intra-class jittering. As shown in Figure 1b, instead
of strict one-to-one matching, we impel the model to focus on one-to-many matching. Therefore,
we need to generate the jittering via augmenter. The augmenter directly works on the final represen-
tation space. In particular, the augmenter adds Gaussian Noise of the original feature distribution to
the target features ft. The mean µt and standard deviation σt of the Gaussian Noise are calculated
from the original feature ft. We then apply the generated Gaussian noise to the whitened feature.
Therefore, the final jittered feature f̂t can be formulated as follows:

f̂t = α · f̄t + β (1)
where α and β are the noisy vectors with the same shape as the input target feature, α ∼
N(1, σt), β ∼ N(µ, σt), and f̄t is whitened feature f̄t =

ft−µt

σt
. We apply the element-wise multi-

plication to re-scale the input feature, so the Gaussian noise mean of α is set as 1, which is different
from β. It is worth noting that, in this way, we make the feature fluctuate in a limited degree, which
is close to the original distribution.

3.3 UNCERTAINTY REGULARIZATION

The existing methods usually adopt InfoNCE loss (Goldberger et al., 2004; Movshovitz-Attias et al.,
2017; Snell et al., 2017; Gidaris & Komodakis, 2018; Vo et al., 2019a; Lee et al., 2021) which can
be viewed as a kind of batch-wise classification loss. It can be simply formulated as:

Linfo (fs, ft) =
1

B

B∑
i=1

− log
exp

(
κ
(
f i
s, f

i
t

))∑B
j=1 exp

(
κ
(
f i
s, f

j
t

)) . (2)

Given the composed feature fs and the target feature ft of a mini-batch with B samples, InfoNCE
loss maximizes the self-similarity κ

(
f i
s, f

i
t

)
while minimizing the similarity with other samples

κ
(
f i
s, f

j
t

)
(i ̸= j) in the batch. We adopt the cosine similarity as κ, which is κ(f i, f j) = fi·fj

|fi||fj | .

We note that InfoNCE loss merely focuses on the one-to-one fine-grained matching. In this work,
we intend to unify the fine- and coarse-grained matching. Inspired by the aleatoric uncertainty, we
propose the uncertainty regularization. The basic InfoNCE loss is a special case of our loss. Given
two types of features f̂t and fs, our uncertainty regularization can be defined as follow:

Lu

(
fs, f̂t, σ

)
=

Linfo

(
fs, f̂t

)
2σ2

+
1

2
log σ2. (3)

If the σ is a constant, our Lu regresses to a weighted Linfo. The main difference from the InfoNCE
loss is that we adaptively tune the optimization objective according to the jittering level in f̂t. If
the jittering fluctuation is large (i.e., a large σ), the weight of first-term InfoNCE loss decreases. In
contrast, if the feature has limited changes, the regularization is close to the original InfoNCE loss.

To optimize the multi-grained retrieval performance, we adopt a combination of the fine-grained
loss Linf and the proposed uncertainty regularization Lu. Therefore, the total loss is as follows:

Ltotal = γLu

(
fs, f̂t, σt

)
+ (1− γ)Linfo (fs, ft) , (4)

where γ is a dynamic weight hyperparameter to balance the ratio of the fine- and coarse-grained
retrieval. σt is the standard deviation of ft. If we ignore the constant term, which does not
generate backward gradients, we could rewrite this loss in a unified manner as:

Ltotal = γLu

(
fs, f̂t, σt

)
+ (1− γ)Lu

(
fs, ft,

1√
2

)
. (5)

During training, we gradually decrease the coarse-grained learning, and increase the fine-grained
learning by annealing γ = exp(−γ0 · current epoch

total epoch ), where γ0 is the initial weight. By setting the
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exponential function, we ensure γ ∈ [0, 1]. If γ = 0, we only consider the fine-grained retrieval
as existing works (Lee et al., 2021). If γ = 1, we only consider the coarse-grained one-to-many
matching between fluctuated features.

Discussion. 1). What is the advantage of uncertainty regularization in the feature learning?
The uncertainty regularization is to simulate the one-to-many matching case, which leaves space
for multiple ground-truth candidates. It successfully invades the model to over-fitting the strict one-
to-one matching as in biometric recognition. As shown in the experiment, the proposed method
significantly surpasses other competitive methods in terms of the recall rate, especially Recall@50.
2). How about using uncertainty regularization alone? Why adopt the dynamic weight? Only
coarse matching, which is easy to converge, leads the model to miss the challenging fine-grained
matching, even if the description is relatively detailed. Therefore, when the model converges with
the “easy” coarse-grained matching during training, we encourage the model to focus back on the
fine-grained matching again. The ablation study on γ in Section 4 also verifies this point. 3).
Extensibility to the Ensembled Dataset. For instance, in the real-world scenario, one common
challenge is how to learn from the ensembled dataset. The ensembled dataset may contain fine-
grained text descriptions as well as coarse-grained attribute annotations, like key words. For such
a case, the proposed method could, in nature, facilitate the model to learn from multi-grained data.
The experiment on the three subsets of FashionIQ verifies the scalability of the proposed method.

4 EXPERIMENT

Implementation Details. We employ the pre-trained models as our backbone: ResNet-50 (He et al.,
2015) on ImageNet as the image encoder and RoBERTa (Liu et al., 2019) as the text encoder. In par-
ticular, we adopt the same compositor structure in the existing work CosMo for a fair comparison,
which contains two modules: the Content Modulator (CM) and the Style Modulator (SM). The CM
uses a Disentangled Multi-modal Non-local block (DMNL) to perform local updates to the reference
image feature, while the SM employs a multimodal attention block to capture the style information
conveyed by the modifier text. The outputs of the CM and SM are then fused using a simple con-
catenation operation, and the resulting feature is fed into a fully connected layer to produce the final
image-text representation. SGD optimizer (Robbins & Monro, 1951) is deployed with a mini-batch
of 32 for 50 training epochs and the base learning rate is 2 × 10−2 following Lee et al. (2021). We
apply the one-step learning rate scheduler to decay the learning rate by 10 at the 45th epoch. We
empirically set w1 = 1, w2 = 1, which control the scale of augmenter generates Gaussian noise, and
the initial balance weight γ0 = 1. During inference, we extract the composed feature fs to calculate
the cosine similarity with the feature of gallery images. The final ranking list is generated according
to the feature similarity. Reproducibility. The code is based on Pytorch (Paszke et al., 2019), and
annoymous code is at 1. We will make our code open-source for reproducing all results.

Datasets. Without loss of generability, we verify the effectiveness of the proposed method on the
fashion datasets, which collect the feedback from customers easily, including FashionIQ (Wu et al.,
2021), Fashion200k (Han et al., 2017) and Shoes (Guo et al., 2018). Each image in these fashion
datasets is tagged with descriptive texts as product description, such as “similar style t-shirt but
white logo print”. FashionIQ. We follow the training and test split of existing works (Chen et al.,
2020; Lee et al., 2021). Due to privacy changes and deletions, some links are out-of-the-date. We
try our best to make up for the missing data by requesting other authors. As a result, we download
75,384 images and use 46,609 images in the original protocol for training. Shoes. Shoes (Guo et al.,
2018) crawls 10,751 pairs of shoe images with relative expressions that describe fine-grained visual
differences. We use 10,000 samples for training and 4,658 samples for evaluation. Fashion200k.
Fashion200k (Han et al., 2017) has five subsets: dresses, jackets, pants, skirts, and tops. We deploy
172,000 images for training on all subsets and 33,480 test queries for evaluation. Evaluation met-
ric. Following existing works, we report the average Recall@1, Recall@10, and Recall@50 of all
queries.

Comparison with Competitive Methods. We show the recall rate on FashionIQ in Table 1, includ-
ing the three subsets and the average score. We could observe four points: (1) The method with
uncertainty modeling has largely improved the baseline in both Recall@10 and Recall@50 accu-
racy, verifying the motivation of the proposed component on recalling more potential candidates.

1
https://github.com/Monoxide-Chen/uncertainty_retrieval
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Table 1: Results on FashionIQ. The best performance is in bold. Here we show the recall rate
R@K, which denotes Recall@K. Average denotes the mean of R@K on all subsets. It is worth
noting that our method with one ResNet-50 is competitive with CLIP4Cir (Baldrati et al., 2022) of
4×ResNet-50 in R@50. We train models with different initializations as model ensembles. ∗ Note
that FashionViL introduces extra datasets for training.

Method Visual Backbone Dress Shirt Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

MRN (Kim et al., 2016) ResNet-152 12.32 32.18 15.88 34.33 18.11 36.33 15.44 34.28
FiLM (Perez et al., 2018) ResNet-50 14.23 33.34 15.04 34.09 17.30 37.68 15.52 35.04
TIRG (Vo et al., 2019b) ResNet-17 14.87 34.66 18.26 37.89 19.08 39.62 17.40 37.39
Pic2Word (Saito et al., 2023) ViT-L/14 20.00 40.20 26.20 43.60 27.90 47.40 24.70 43.70
VAL (Chen et al., 2020) ResNet-50 21.12 42.19 21.03 43.44 25.64 49.49 22.60 45.04
ARTEMIS (Delmas et al., 2022) ResNet-50 27.16 52.40 21.78 54.83 29.20 43.64 26.05 50.29
CoSMo (Lee et al., 2021) ResNet-50 25.64 50.30 24.90 49.18 29.21 57.46 26.58 52.31
DCNet (Kim et al., 2021) ResNet-50 28.95 56.07 23.95 47.30 30.44 58.29 27.78 53.89
FashionViL (Han et al., 2022) ResNet-50 28.46 54.24 22.33 46.07 29.02 57.93 26.60 52.74
FashionViL∗ (Han et al., 2022) ResNet-50 33.47 59.94 25.17 50.39 34.98 60.79 31.21 57.04
Baseline ResNet-50 24.80 52.35 27.70 55.71 33.40 63.64 28.63 57.23
Ours ResNet-50 30.60 57.46 31.54 58.29 37.37 68.41 33.17 61.39
CLVC-Net (Wen et al., 2021) ResNet-50×2 29.85 56.47 28.75 54.76 33.50 64.00 30.70 58.41
Ours ResNet-50×2 31.25 58.35 31.69 60.65 39.82 71.07 34.25 63.36
CLIP4Cir (Baldrati et al., 2022) ResNet-50×4 31.63 56.67 36.36 58.00 38.19 62.42 35.39 59.03
Ours ResNet-50×4 32.61 61.34 33.23 62.55 41.40 72.51 35.75 65.47

Table 2: Results on Shoes and Fash-
ion200k. We mainly compare ours
with single model-based methods
(the best performance in red, the
second-best in orange). Similar
to the phenomenon on FashionIQ,
we could observe that the proposed
method improves the recall rate over
baseline, which is aligned with our
intuition on multi-grained matching.

Method Shoes Fashion200k
R@1 R@10 R@50 R@1 R@10 R@50

MRN(Kim et al., 2016) 11.74 41.70 67.01 13.4 40.0 61.9
FiLM(Perez et al., 2018) 10.19 38.89 68.30 12.9 39.5 61.9
TIRG(Vo et al., 2019b) 12.6 45.45 69.39 14.1 42.5 63.8
VAL(Chen et al., 2020) 16.49 49.12 73.53 21.2 49.0 68.8
CoSMo(Lee et al., 2021) 16.72 48.36 75.64 23.3 50.4 69.3
DCNet(Kim et al., 2021) - 53.82 79.33 - 46.9 67.6
ARTEMIS(Delmas et al., 2022) 18.72 53.11 79.31 21.5 51.1 70.5
Baseline 15.26 49.48 76.46 19.5 46.7 67.8
Ours 18.41 53.63 79.84 21.8 52.1 70.2

Especially for Recall@50, the proposed method improves the accuracy from 57.23% to 61.39%. (2)
Comparing with the same visual backbone, i.e., one ResNet-50, the proposed method has arrived at
a competitive recall rate in terms of both subsets and averaged score. (3) The proposed method with
one ResNet-50 is competitive with the ensembled methods, such as CLIP4Cir (Baldrati et al., 2022)
with 4× ResNet-50. In particular, ours with one ResNet-50 has arrived at 61.39% Recall@50, sur-
passing CLIP4Cir (59.03% Recall@50). (4) We train our model ensemble with different initializa-
tion, and simply concatenate features, which also surpasses both CLVC-Net (Wen et al., 2021) and
CLIP4Cir (Baldrati et al., 2022). We observe similar performance improvement on Shoes and Fash-
ion200k in Table 2. (1) The proposed method surpasses the baseline, yielding 18.41% Recall@1,
53.63% Recall@10, and 79.84% Recall@50 on Shoes, and 21.8% Recall@1, 52.1% Recall@10,
and 70.2% Recall@50 on Fashion200k. Especially, in terms of Recall@50 accuracy, the model with
uncertainty regularization has obtained +3.38% and +2.40% accuracy increase on Shoes and Fash-
ion200k, respectively. (2) Based on one ResNet-50 backbone, the proposed method is competitive
with ARTEMIS (Delmas et al., 2022) in both Shoes and Fashion200k, but ours are more efficient,
considering that ARTEMIS needs to calculate the similarity score for every input triplets. (3) Our
method also achieves better Recall@50 79.84% than CLVC-Net (Wen et al., 2021) 79.47% with 2×
ResNet-50 backbone, and arrives at competitive Recall@10 accuracy on Fashion200k.

Can Dropout replace the uncertainty regularization? No. Similar to our method, the dropout
function also explicitly introduces the noise during training. There are also two primary differences:
(1) Our feature fluctuation is generated according to the original feature distribution, instead of a
fixed drop rate in dropout. (2) The proposed uncertainty regularization adaptively punishes the net-
work according to the noise grade. To verify this point, we compare the results between ours and the
dropout regularization. In particular, we add a dropout layer after the fully connected layer of the
text encoder, which is before the compositor. For a fair comparison, we deploy the baseline (Linfo)
without modeling uncertainty for evaluation and show the results of different dropout rates in Ta-
ble 3a. We observe that the dropout does not facilitate the model recalling more true candidates. No
matter whether the drop rate is set as 0.2 or 0.5, the performance is close to the baseline without the
dropout layer. In contrast, only using the uncertainty regularization (Lu) improves Recall@50 from
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Table 3: Ablation studies on the Shoes dataset. The average is (R@10+R@50)/2. (a) Impact of
dropout. We compare the impact of the dropout rate and the proposed uncertainty regularization Lu.
We could observe that dropout has limited impacts on the final retrieval performance. In contrast,
the proposed Lu shows significant recall accuracy boost. (b) Parameter sensitivity of w1, w2. The
left side of the table shows the R@Ks of different values of w1 when we fix w2 = 1. Meanwhile, the
right side of the table shows the R@Ks of different values of w2 when we fix w1 = 1. w1 = w2 = 1
has the best performance and the same results on two sides. (c) The influence of the initial balance
weight γ0 on the model. (d) Ablation Study on static γ as constant.

(a)
Uncertainty Drop Rate R@10 R@50 Average
Baseline (Linfo) - 49.48 76.46 62.97
Linfo + Dropout 0.2 49.74 76.37 63.06
Linfo + Dropout 0.5 49.00 75.83 62.42
Dou et al. (2022) - 50.14 77.89 64.01
Augment Source Feature f I

s - 52.20 77.75 64.98
Only Lu - 50.83 77.41 64.12
Ours (Linfo + Lu) - 53.63 79.84 66.74

(b)

Scale w2 = 1, w1 w1 = 1, w2

R@10 R@50 Average R@10 R@50 Average
0.1 48.42 75.57 62.00 51.03 79.10 65.07
0.2 51.35 76.35 63.85 50.49 79.15 64.82
0.5 51.03 78.84 64.94 50.69 77.75 64.22
0.7 51.95 78.95 65.45 50.43 78.38 64.41
1 53.63 79.84 66.74 53.63 79.84 66.74
2 48.71 76.80 62.76 49.83 78.41 64.12
5 51.29 78.06 64.68 48.20 76.83 62.52
7 48.91 76.23 62.57 48.60 77.18 62.89

10 48.71 76.80 62.76 47.02 74.71 60.87

(c)
γ0 R@10 R@50 Average
0.1 50.80 78.64 64.72
0.5 51.20 79.12 65.76
1 53.63 79.84 66.74
2 49.66 77.63 63.65
3 50.83 77.55 64.19
5 50.14 76.32 63.23
10 49.91 76.43 63.17

+∞ (baseline) 49.48 76.46 62.97

(d)
γ R@10 R@50 Average

0.2 30.90 63.12 47.01
0.5 41.87 73.11 57.49
0.8 41.87 72.39 57.13

76.46% to 77.41%. Combining with the fine-grained matching baseline, the uncertainty regulariza-
tion even improves Recall@10 by +4.15% accuracy. Besides, we re-implement (Dou et al., 2022)
by adding two extra branches to regress the feature mean and variance for loss calculation. It has
achieved 50.14% Recall@10 and 77.89 % Recall@50, which is inferior to our method.

Impact of the noise fluctuation. We study the impact of the noise fluctuation in the uncertainty
modeling. In particular, we change the noise scale in Eq. 1 by adjusting the scale of α and β. The
modified formulation is as follows:

f̂t = α′f̄t + β′ (6)
where α′ ∈ N(1, w1σ) and β′ ∈ N(µ,w2σ). w1, w2 are the scalars to control the noise scale. We
show the impact of different noise scales in Table 3b. We fix one of the w to 1 and change the
another parameter. We could observe two points: (1) As we expected, the identical noise setting
(w1 = 1, w2 = 1) achieves the best performance. This is because such noise is close to the original
feature distribution and simulates the fluctuation in the training set. (2) The experiment results also
show that our uncertainty regularization can tolerate large amplitude noise changes. Even if the
training data contains lots of noise, the network is still robust and achieves reasonable performance.
It is attributed to uncertainty regularization that punishes the network according to the noise grade.

Parameter sensitivity of the balance weight γ. As shown in Eq. 4, γ is a dynamic weight to help
balance the fine- and coarse-grained retrieval. During training, we encourage the model to gradually
pay more attention to the fine-grained retrieval. According to γ = exp(−γ0 · current epoch

total epoch ), we set
different initial values of γ0 to change the balance of the two loss functions. We evaluate the model
on the Shoes dataset and report results in Table 3c. If γ0 is close to 0, the model mostly learns the
uncertainty loss on the coarse-grained retrieval, and thus recall rate is still high. In contrast, if γ0
is close to +∞, the model only focuses on the fine-grained learning, and thus the model converges
to the baseline. Therefore, when deploying the model to the unseen environment, γ0 = 1 can be a
good initial setting. Besides, results with fixed γ are shown in Table 3d. The constant uncertainty
loss drives the model to focus on coarse-grained matching, resulting in low recall rates as well.

Qualitative visualization. We show the top-5 retrieval results on FashionIQ, Fashion200k, and
Shoes in Figure 3. (1) Compared with the baseline, our model captures more fine-grained keywords,
like “shiner”. (2) The proposed method also recalls more candidate images with a consistent style.
It also reflects that the proposed method is robust and provides a better user experience, since most
websites display not only top-1 but also top-5 products.

Training Convergence. As shown in Table 4a, the baseline model (blue line) is prone to overfit all
labels, including the coarse-grained triplets. Therefore, the training loss converges to zero quickly.

8



Published as a conference paper at ICLR 2024

Baseline
(𝐿𝑖𝑛𝑓𝑜)

Ours
(𝐿𝑢 +𝐿𝑖𝑛𝑓𝑜)

Ⅰ. FashionIQGround-Truth Target

Query        Rank1→Rank5

is shinier and has more sleeves, and is much lighter in color have lower, thicker heels and ankle buckles

Ⅱ. Shoes

Query        Rank1→Rank5

Baseline
(𝐿𝑖𝑛𝑓𝑜)

Ours
(𝐿𝑢 +𝐿𝑖𝑛𝑓𝑜)

Ground-Truth Target

replace multicolor with black

Ⅲ. Fashion200k

Query        Rank1→Rank5

Ground-Truth Target

Baseline
(𝐿𝑖𝑛𝑓𝑜)

Ours
(𝐿𝑢 +𝐿𝑖𝑛𝑓𝑜)

Figure 3: Qualitative image retrieval result on FashionIQ, Fashion200k and Shoes. We mainly
compare the top-5 ranking list of the proposed method with the baseline. (Please zoom in.)

Table 4: (a) The training loss of the proposed method and baseline. The baseline model is prone to
over-fit all triplets in a one-to-one matching style. In contrast, the proposed method would converge
to one non-zero constant. (b) Compatibility to existing methods, i.e., Clip4Cir (Baldrati et al., 2022),
on FashionIQ. ∗: We re-implemented the method with one ResNet50, and add our method. We also
adopt a state-of-the-art cross-modality backbone Blip (Li et al., 2022), and add our method on the
Shoes dataset. We observe that the proposed method could further improve the performance.

(a)
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(b)
FashionIQ R@10 R@50
Clip4Cir∗ 32.36 56.74
Clip4Cir∗ + Ours 34.19 59.23
Shoes R@10 R@50
Blip (Li et al., 2022) 43.93 70.21
Blip (Li et al., 2022) + Ours 48.40 75.29

In contrast, our method (orange line) also converges but does not force the loss to be zero. Because
we provide the second term in uncertainty regularization as Eq. 3, which could serve as a loose term.

Only Coarse Retrieval Evaluation. We design an interesting experiment only to consider query
pairs with ambiguous coarse descriptions, i.e., less than 5 words in the FashionIQ dress dataset
(about 6,246 of 10,942 queries). Compared with the baseline model, our method improves 1.46%
Recall@10 rate and 3.34% Recall@50 rate. The result verifies that our model can significantly
improve coarse retrieval performance over baseline.

Augment the source feature f I
s . We modify and add feature augments to the source image, but the

Recall@10 rate decreases 1.43% and the Recall@50 rate decreases 2.09% on Shoes (see Table 3a). It
is due to the conflict with the one-to-many matching. If we conduct the source feature augmentation,
it will become to many-to-one matching. As the visual intuition in Figure 1b, it is better to apply
such augmentation on the target feature instead.

Complementary to other works? Yes. We re-implement the competitive method Clip4Cir (Bal-
drati et al., 2022) in Table 4b, and show our method is complementary, further improving the recall.
Similarly, we also adopt a state-of-the-art cross-modality backbone Blip (Li et al., 2022), and add
our method to the Shoes dataset. We observe that the proposed method could further improve the
performance of about 5% on both Recall@10 and Recall@50.

5 CONCLUSION

In this work, we provide an early attempt at a unified learning approach to simultaneously modeling
coarse- and fine-grained retrieval, which could provide a better user experience in real-world re-
trieval scenarios. Different from existing one-to-one matching approaches, the proposed uncertainty
modeling explicitly considers the uncertainty fluctuation in the feature space. The feature fluctuation
simulates the one-to-many matching for the coarse-grained retrieval. The multi-grained uncertainty
regularization adaptively modifies the punishment according to the fluctuation degree during the en-
tire training process, and thus can be combined with the conventional fine-grained loss to improve
the performance further. Extensive experiments verify the effectiveness of the proposed method on
the composed image retrieval with text feedback, especially in terms of recall rate. In the future, we
will continue to explore the feasibility of the proposed method on common-object retrieval datasets,
and involving the knowledge graph (Liu et al., 2020; Sun et al., 2021).
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