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Abstract— Pre-defined 3D object templates are widely used
in 3D reconstruction of hand-object interactions. However, they
often require substantial manual efforts to capture or source, and
inherently restrict the adaptability of models to unconstrained
interaction scenarios, e.g., heavily-occluded objects. To overcome
this bottleneck, we propose a new Text-Instructed Generation
and Refinement (TIGeR) framework, harnessing the power of
intuitive text-driven priors to steer the object shape refinement
and pose estimation. We use a two-stage framework: a text-
instructed prior generation and vision-guided refinement. As
the name implies, we first leverage off-the-shelf models to
generate shape priors according to the text description without
tedious 3D crafting. Considering the geometric gap between the
synthesized prototype and the real object interacted with the
hand, we further calibrate the synthesized prototype via 2D-3D
collaborative attention. TIGeR achieves competitive performance,
ie., 1.979 and 5.468 object Chamfer distance on the widely-
used Dex-YCB and Obman datasets, respectively, surpassing
existing template-free methods. Notably, the proposed framework
shows robustness to occlusion, while maintaining compatibility
with heterogeneous prior sources, e.g., retrieved hand-crafted
prototypes, in practical deployment scenarios.

I. INTRODUCTION

In this paper, we study 3D reconstruction of hand-object
interactions in a monocular scene. Given a single-view RGB
image containing interactive behavior, we predict the 3D
point clouds of hands and objects. This endeavor is crucial
for enabling robots to comprehend and interact with the
environment in a human-like manner, which serves as a key
technology for applications, e.g., Mobile ALOHA [1]. The
undertaking necessitates a profound understanding of the input
image and leverages the inherent 3D geometric structure priors
of hands and objects to enhance the reconstruction quality.
Since objects manipulated by hand have varied shapes, it is
relatively challenging to obtain 3D prior knowledge of target
object shapes. Some works, dubbed template-based meth-
ods [2], [3], [4], directly apply predefined object templates,
e.g., hand-crafted meshes, to hand-object interaction tasks.
For instance, some researchers [2] resort to ground-truth
object templates from the YCB dataset [5], and only need to
estimate 6D-pose of the given template to match input images.
However, 3D object templates are usually inaccessible in real-
world scenarios. Different from template-based methods, other
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Fig. 1: Here we show the input images, generated shape priors,
predicted object and hand point clouds, and the corresponding
2D projections. We could observe that the shape priors provide
the common object geometry, which eases the further shape
alignment. The proposed method, thus, achieves competitive
reconstruction, especially for the heavy occlusions (bottom).

studies [6], [7], [8], [9], [10], referred to as template-free
methods, recover UV maps or SDF representations from input
RGB images. However, this line of methods typically suffers
from self-occlusion by hand and thus fails to complete the
entire object.

Inspired by the high-fidelity generation capabilities of cross-
modal systems (particularly text-to-3D [11] and image-to-3D
synthesis [12], [13], [14]), we posit that a critical research
question remains underexplored: Can synthesized 3D models
function as viable foundational priors to encode generalized
knowledge for open-world interaction scenarios? As an early
attempt to address this problem, we propose a Text-Instructed
Generation and Refinement (TIGeR) framework that not only
explores the prior generation pipeline but further bridges the
gap between the generated prior and real-world observations.
In particular, our framework consists of two sequential stages:
text-instructed prior generation and vision-guided refinement.
Given a hand-object interaction image, we first apply a large
multimodal question-answering (QA) model to obtain the
description of the target object, and then leverage the cross-
modal generative models to craft the corresponding shape
prior. Next, we introduce a 2D-3D collaborative attention to
fuse the 3D features of the shape prior and the 2D features
of the input image. Based on the fused features, our model
further refines point clouds to match the target object with
geometric variants, if any. Finally, TIGeR involves the hand
estimation, to co-optimize hand poses, hand meshes, and
translations of both hand and objects. Our method establishes



correspondences between 3D point clouds and 2D images,
enabling alignment for real hand-object interaction data. The
entire process does not require any 3D template annotations,
easing pre-requisites for real-world scenarios. Therefore, our
contributions are as follows:

Template-free Framework. Different from existing works
demanding a pre-defined object template, we introduce a Text-
Instructed Generation and Refinement (TIGeR) framework
to improve the scalability and ease the prerequisites for
3D hand-object interaction reconstruction. Inspired by the
recent success of text-based 3D object generation, we borrow
the strength of text-driven prior to replace the hand-crafted
template, and validate the feasibility.

Cookbook for Prior Refinement. Given the gap between
the 3D prior and the real object in the photo, we introduce
an attention-based paradigm to further register the object
according to the visual cues. In particular, we integrate
both 2D and 3D features via 2D-3D collaborative attention
module, simultaneously performing shape refinement and
object registration.

Competitive and Robust Performance. We evaluate our
framework on two large-scale hand-object interaction datasets,
i.e., Dex-YCB[15] and Obman [8], surpassing competitive
template-free approaches. Moreover, our method is robust
against the common hand-occluded cases and also scalable to
other prototype sources, e.g., retrieved hand-crafted samples.

II. RELATED WORK

3D hand pose and shape estimation. Hand pose estima-
tion methodologies have evolved through three technical
paradigms. Early learning-based approaches [16], [17], [18],
[19] employ direct 3D keypoint regression from RGB inputs,
and produce anatomically inconsistent surfaces that hinder
downstream applications. This limitation motivates parametric
modeling [20], [21], e.g., MANO [21] establishing a kine-
matic hand model. Besides, non-parametric paradigms [22],
[23] circumvent shape space constraints through vertex-
level prediction, employing disentangled autoencoders to
isolate pose dynamics from background interference. Recent
approaches integrate neural texture representations via UV
mapping [24], [9] and geometric attention mechanisms in
transformer architectures [25], [26], [27], [28], enabling joint
optimization of skeletal pose and surface deformation.

3D object reconstruction. Early voxel-based approaches [29],
[30], [31] establish grid-form representations, yet remain con-
strained by cubic memory complexity. Subsequent approaches
transitioned to point cloud representations [32], [33], [34],
[35], employing graph-based aggregation modules to model
local geometric structures. The field advances through implicit
surface representations, with Park er al. [36] pioneering
memory-efficient shape encoding via continuous signed dis-
tance fields. Concurrent surface deformation strategies emerge,
including FoldingNet’s parameterized grid transformation [37]
and AtlasNet’s MLP-driven mesh generation from primitive
patches [38]. Beyond geometric reconstruction, some works
on pose estimation [39], [40], [41], [42] fuse RGB-D data
to recover 6D object poses. Modern frameworks [43], [44]

instead perform cross-modal feature alignment, establishing
geometric correspondences between 2D projections and 3D
assets to derive pose parameters.

3D hand-object interaction. Recent works primarily fall into
two categories: template-based and template-free approaches.
Template-based methods [2], [45], [46] rely on RGB images
paired with 3D object templates, leveraging multi-modal
inputs for enhanced precision. Traditional pipelines [46]
employ hand pose regression followed by SfM initialization
and refinement. Recent implementations extract global image
features to estimate MANO parameters and 6D object
poses [2], while hybrid architectures combining single- and
dual-stream backbones through ROIAlign operations [45].
Template-free approaches [8], [6], [47] reconstruct geometry
directly from RGB images without explicit shape priors.
Early methods deform a parametric sphere using global
features [8], [38], while recent techniques employ SDF
decoders to integrate visual and pose cues [6], [47]. Despite
their applicability to real-world data, these methods remain
sensitive to image degradation and occlusion-induced ambi-
guities. Our framework mitigates these issues by introducing
text-guided shape priors from multimodal generative models,
enabling detailed single-view reconstruction via semantic-
geometric alignment.

III. METHOD

Given a hand-object interaction image, our task is to
reconstruct both 3D hand and object without relying on hand-
crafted templates, which is usually inaccessible in real-world
scenarios. Our framework contains two primary stages, i.e.,
text-instructed prior generation (see Fig. [2), and vision-guided
refinement (see Fig. [3). During the first prior generation
stage, we leverage off-the-shelf generative models to craft
coarse shape prior V' from the input image I. While this prior
captures general semantic structure, it often lacks fine-grained
geometric details aligned with the input image. In the second
vision-guided refinement stage, we intend to explicitly reduces
the geometric discrepancy between the generated prior and
the actual object in the image. In particular, we extract 2D
visual features from the input image I and 3D geometric
features from the prior V and integrate both 2D and 3D
features by leveraging 2D-3D collaborative attention modules.
The fused features are then decoded into a refined point cloud
V. Finally, we perform joint optimization of both the 3D
hand and object to estimate their poses and output the final
hand-object point clouds. In the following subsections, we
elaborate two stages respectively.

A. Text-instructed Prior Generation

Prior Generation. As shown in Figure 2| our generation
pipeline contains three phases: (1) Captioning, (2) Text-to-
Image Generation, and (3) Image-to-Point Cloud Generation.
We intend to obtain category information of target objects
in the first phase. To this end, we query a pre-trained image
caption model, e.g., InstrucBLIP [48], using the prompt "What
is being held by hand?" The output text follows a specific
format: "In this image, the hand is holding a [The category
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Fig. 2: A brief text-instructed prior generation pipeline. (1) Captioning. Given an input image depicting hand-object interaction,
we first identify the occluded object by querying a multimodal large-scale model with the prompt: “What is being held by
hand?” (2) Text-to-Image Generation Using the generated caption, we condition a diffusion model to synthesize a canonical
view of the object without occlusions. (3) Image-to-Point Cloud Generation. Finally, we employ an off-the-shelf 2D-to-3D
lifting model to generate a 3D shape prior from the synthetic image. (4) Auxiliary Transformation Estimation. We estimate
the auxiliary transformation A between the shape prior and the ground-truth point cloud by Iterative Closet Point (ICP).

name of the object].” Then, in the Text-to-Image Generation
phase, we feed the structured text prompt "A [The category
name of the object] in a clean surface" into a text-to-image
generator, e.g., Diffusion Model [49], to obtain a synthetic
image with a clear background that only contains the target
object. Next, we leverage the off-the-shelf image-to-point
cloud model, e.g., Point-E [12], to generate the coarse-grained
point cloud V' as the 3D shape prior. Lastly, we apply Iterative
Closest Point (ICP) to find the optimal transformation for V.
In this work, we do not pursue an optimal 3D prior but
focus on validating the feasibility of the text-driven prior
to replace the hand-crafted template.

Auxiliary Transformation Estimation. To facilitate the
model training, we also estimate the optimal transformation
between the generated prior and the ground-truth mesh in the
training set. In this way, we could have a pseudo one-to-one
correlation during training to stabilize the model training in
the early stage. Given the synthesized V' and the ground-truth
mesh V, we derive the optimal transformation matrix A by
Iterative Closest Point (ICP):

A = argmin||V — AV||2. (1)
A

Given the predicted transformation A, we could have a pseudo
one-to-one mapping between synthesized V' and the ground-
truth mesh V' as 7 (i) = argmin; ||V; — AVj][3. J (i) denotes
the index of Vj, which is the nearest neighbor of V;. We
note that we do not use such estimation during inference.
The auxiliary pseudo transformation is only estimated

for training.

B. Vision-guided Refinement

Shape refinement. As shown in Figure [3] we show the brief
structure of our vision-guided refinement stage. Given a coarse
shape prior V' and an input image I, we first extract comple-
mentary 2D and 3D features through dedicated visual and
geometric encoders. Since shape prior V' contains category-
level geometric knowledge, such as the cuboid structure
of boxes, the object shape geometric encoder processes V/
through two hierarchical layers, producing local features Fg1

and Fq2 Similarly, we obtain multi-resolution visual features
from the input image I via the object shape visual encoder,
yielding local visual features F)}, F> and global feature F,
via average pooling. To align the shape prior V' with the
hand-object interaction scene, we propose a cross-modal
feature fusion approach that establishes correspondences
between 3D patches and 2D image regions. The fusion
process begins by repeating and concatenating the global
visual feature F,,, with each 3D patch’s geometric features to
form an initial fused representation. The fused representation
is then processed by MLPs followed by softmax to generate
attention weights Wy, € {1, 2}, which identify the relevant
image regions for each 3D patch. W; are applied to the
visual features F! . We finally concatenate F'  with Fé to
get the fused feature F}used, which contains both precise
information from 3D patches and rich visual cues from the
corresponding image regions. Given the fused local feature
F]lcused, the object shape geometric decoder predicts adjusted
3D coordinates to align the shape prior with the interaction
scene. The decoding, following U-net [50] style, consists of
two processes. First, F?used is processed through MLPs and
interpolated to generate features for intermediate points. The
F}used is then concatenated with these intermediate features
and passed through additional MLPs, followed by linear
interpolation to complete features for all remaining points.
Finally, the network regresses 3D coordinates for every vertex
to produce the aligned object point cloud V.

Pose estimation. Simultaneously, we predict the object center
location and the hand pose through two independent object
and hand pose visual encoders, respectively. As shown in the
bottom of Figure [3] we apply the hand pose visual encoder
to extract 21 feature maps from the input image I. Then, we
obtain the uvd (u+v+depth) location of the max activation
values in every heatmap as 21 hand key points. Given the
camera intrinsic, the uvd coordinates can be transformed
into 3D positions Cy, in the world coordinate system. We
apply Inverse kinematics [51] to convert C), into MANO
parameters, which are then provided to the MANO model
to get the hand vertices H. Similarly, given the input image,
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Fig. 3: Overview of vision-guided refinement stage. Top: Given the text-driven shape prior V' and the RGB image I, we
extract the 2D visual feature via object shape visual encoder and the 3D geometric feature via object shape geometric encoder.
Then we apply 2D-3D collaboration attention blocks (top right) to fuse the visual feature and the geometric feature. The
fused features are then fed to the object shape geometric decoder to predict the object shape V. Bottom: Given the input
image I, we estimate the object center in the image and hand poses, i.e., 21 key points. On one hand, the input image is fed
to the object pose visual encoder, which does not share weight with the object shape visual encoder, to obtain the center
estimation. On the other hand, we apply the hand pose visual encoder to predict 21 key points. We then manipulate the
MANO model to reconstruct the hand H. Finally, we fuse the object point cloud and hand point cloud supervised by L, ...

we apply the object pose visual encoder to extract the object
heat map, and then obtain the index for the point with the
maximum activation value. Then we transform the point index
into the 3D coordinates of the object center C,. We translate
the refined object V to the predicted center, and compose the
reconstructed object and hand as the final output.
Optimization objectives. To facilitate reconstructing the
geometric shape of the target object in the early training, we
introduce several auxiliary tasks. For instance, we leverage the
pseudo one-to-one mapping J (7) (defined in Section
from the point index of the target object V' to the point index
of the shape prior V to supervise the intermediate attention
weight Ws, which is in the second 2D-3D Collaboration
Attention Block as:

‘Cweight = m Z H(b(vl) - argmax(Wg(j)))Hg, @)
i,j=7 (%)

where ¢ denotes the 2D projection of the vertex in the ground-

truth V. The second term is the coordinates of max activation

in the corresponding heatmap W,. Similarly, we apply the

pseudo one-to-one mapping to supervise the projection of the

final reconstructed object as:

T -

1,j=T (4)

(V). 3)

['PTOJ' =

For 3D supervision, we apply the conventional group-to-group
reconstruction loss via Chamfer Distance as :

V| 1 4 _
menv Vil3 + |V|an.inllvj—vi||§-
j=1
4

Furthermore, we introduce foreground mask supervision
as an auxiliary task to make our object shape visual encoder
concentrate on the target object and mitigate the negative
impact of occlusion. Specifically, we take F? as input
followed by a 2D-convolutional layer, a max pooling layer and
sigmoid function to estimate M as the foreground probability.
The foreground mask loss is a binary classification task as:

Loinask = — Z(leog(Mi) + (

g

rec =

M;)log(1 — M), (5)

where M is the resized ground-truth amodal mask. For the
two pose visual encoders, we introduce L), and L, as L2
distance between the prediction C' and the corresponding
ground truth C, which can be formulated as:

Lo = |Ch = Cull3, Lpo = |Co = Coll3- ©)

Therefore, the final loss function for the shape refinement



stage is:

Eregistration = Erec+£mask+£ph +Epo+)\weight£weight+)\pr(

(N
Considering that L,cignt and Lp,o; are based on the pseudo
alignment, we empirically set a relatively small weight, i.e.,
Aweight = 0.1, Apro; = 0.01.

IV. EXPERIMENT

Datasets. (1) DexYCB contains 582K RGB-D frames of
single-hand object grasping from 8 views, providing 3D hand
poses and 6D object poses for 20 YCB-Video objects [41].
Each frame includes a target object and 1-3 distractors on a
black table. Following [47], we sample every 6th frame, re-
sulting in 29K training and 5K test samples. Original 640x480
RGB images are cropped to 256x256, centered on the target.
(2) Obman [8] is a synthetic dataset with 150K images,
using 2,772 ShapeNet object meshes [52]. Hand poses and
meshes are generated via Grasplt [53] and MANO [21], then
rendered with LSUN [54] and ImageNet [55] backgrounds
at 256x256 resolution. Following [47], we split it into 87K
training and 6K test samples.

Metrics. We evaluate the quality of both hand and object
reconstruction by computing the Chamfer Distance(mm)
between the predicted point clouds and the ground truth
point clouds. We also report F-score at 5 mm (£'S,@5) and
10 mm (F'S,@10) as thresholds for predicted object point
clouds and F-score at 1 mm (F'S;,@1) and 5 mm (F'S;,@5)
as thresholds for predicted hand point clouds.

Compared methods. We mainly compare our method with
3 competitive template-free methods. (1) Hasson et al. [8]: A
classical template-free method that reconstructs hand and
object meshes from an RGB image using global visual
features decoded via AtlasNet [38] (object) and MANO
layers [21] (hand). (2) AlignSDF [6]: An SDF-based approach
leveraging global visual features and pose information to
reconstruct hand and object surfaces using an SDF decoder. (3)
gSDF [47]: Another SDF-based method utilizing local visual
features from image feature maps. It predicts 3D keypoints
from heatmaps and employs Inverse Kinematics [51] to refine
hand pose estimation.

Implementation details. The hand-object reconstruction
pipeline comprises two stages. (1) Text-instructed prior
generation: Three pre-trained generative models are utilized
to produce shape priors from RGB images: InstructBLIP [48]
for captioning, FLUX-1 [49] for image synthesis, and Point-
E [12] for point cloud generation. Note that this work does
not seek optimal priors but validates their effectiveness;
the method supports alternative prior sources (see Sec-
tion [IV-B). (2) Vision-guided refinement: HRNet [56] and
PointNet++ [33] serve as visual and geometric backbones
for shape feature extraction. ResNet-50 [57] is used for both
hand and object pose encoding. The model is trained for
1,600 epochs using Adam [58] with an initial learning rate of
5¢~> on 4 NVIDIA RTX A5000 GPUs. To reduce assembly
error, the full pipeline is fine-tuned for 100 epochs with L.
at a learning rate of 1le~°, while freezing the object shape
and hand pose encoders.

@R %\ e
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Fig. 4: Qualitative comparision of TIGeR (Ours) and prevail-
ing template-free methods [47], [6], [8] on DexYCB (left)
and Obman (right).

A. Comparison with the State-of-the-Art Methods

As shown in Table [, we could observe that the quality of
objects reconstructed by our method surpasses the quality of
objects produced by template-free SOTA methods on both the
DexYCB dataset and the Obman dataset. For instance, our
method has arrived at 1.979 median Chamfer Distance (C'D,)
0.292 F'S,@5 and 0.637 F'S,@10 on the DexYCB dataset,
which surpasses gSDF [47] by a clear margin. We observe
a similar phenomenon on the Obman dataset. Our method
has achieved 5.468 C'D,,, and competitive 0.199 F'S,@5 and
0.462 I'S,@10 scores. As for reconstructed hands, on both
datasets, our method yields high-quality hands with the lowest
median Chamfer Distance (C'Djy), while yielding the highest
FS,Q1 and F'S),@5. Furthermore, we show the qualitative
comparison of our methods and SOTA methods in Figure F]
Our method achieves superior geometric fidelity for both
simple primitives (e.g., cans, boxes) by preserving sharp edges
and planar surfaces, and complex articulated objects (e.g.,
scissors, drills) through high-fidelity detail retention, whereas
competitive methods exhibit significant shape distortions and
topological oversimplification. Note that SDF-based methods
generate uniformly distributed points in the reconstructed
surface geometry, resulting in geometrically ambiguous
reconstructions of articulated hand regions. This inherent
uniformity inadequately captures the non-linear deformation
patterns required for dexterous finger manipulation in real-
world scenarios. In contrast, the proposed method leverages
the straightforward kinematic-aware hand parametric model
and generated object priors to ease the optimization difficulty,
while preserving more interaction details.

B. Ablation Studies and Further Discussion

Comparison of the object reconstruction only. To isolate ob-
ject reconstruction quality, we center-normalize both predicted
and ground-truth objects by aligning their centroids to the
origin. Our re-implementation of three competitive methods
reveals that Hasson [8] achieves optimal CD,, (1.17/2.90) and
FS, scores when evaluated purely on object reconstruction.
As shown in Table[IT} our method further reduces the Chamfer
distance as 0.62 on DexYCB and 2.78 on Obman, surpassing
Hasson by a clear margin.

Robustness against occlusions. The target objects interacted
by the human are usually occluded by hands or other objects.



Dataset Method cDh,| FS,@Q51 FS,Q101 | CD,l) FS,@11 FS,Q51
Hasson [8] 5.831 0.155 0.405 6.375 0.003 0.162
DexYCB AlignSDF [6] 2.669 0.254 0.588 2.768 0.003 0.222
gSDF [47] 2.769 0.258 0.591 2.770 0.003 0.222
TIGeR (Ours) 1.979 0.292 0.637 1.132 0.008 0.413
Hassonl19 [8]F - - - - - -
Obman AlignSDF [6] 5.584 0.203 0.476 2.117 0.004 0.248
gSDF [47] 5.626 0.207 0.482 2.116 0.004 0.249
TIGeR (Ours) 5.468 0.199 0.462 0.787 0.013 0.537

TABLE I: Quantitative results of hand-object reconstruction performance on DexYCB and Obman. *: We re-implement the
official code but the method does not converge when involving both hand and object.

Method DexYCB Obman

CD, | FS,@5 1 FS,@10 1|CD, | FS,@5 1 FS,@10 1
Hasson [8] 1.17 0.36 0.78 2.90 0.27 0.61
AlignSDF [6]| 1.41 0.37 0.73 3.65 0.24 0.54
¢SDF [47] 1.53 0.36 0.72 3.88 0.23 0.53
TIGeR (Ours)| 0.62 0.54 0.90 2.78 0.30 0.63

TABLE II: Comparison of reconstructed object only. We have
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Fig. 5: Comparison between ours and the competitive gSDF
against the occlusion. We could observe that our method has
achieved lower Chamfer distance than gSDF in all ranges of
occlusion rate, especially for heavy occlusion.

We analyze the relationship between the reconstruction quality
of objects and the degree of occlusion. We employ the ground
truth amodal mask M ;0441 and visible mask M ;sip1e Of the
target objects to measure the occlusion rate of testing samples
as Rocciusion = 1 — %, where Area(-) denotes
the area of the foreground in the corresponding mask. We
split the samples into 10 equal-numbered groups according
to their occlusion rate. In Figure [5] we report the median
Chamfer Distance between the predicted point clouds and the
ground truth point clouds for every group. As the increasing
occlusion rate, the proposed method yields a clear margin
towards competitive gSDF. As shown in Figure[f] we visualize
some samples with severe occlusion compared to gSDF. This
robustness stems from our shape prior to provide geometric
cues: (1) For simple geometric objects, e.g., cans and boxes,
the prior effectively preserves sharp edges and planar surfaces
even under heavy occlusion; (2) For complex articulated
objects, e.g., scissors, the prior maintains proper handle and
blade geometry. We highlight the discrepancy in Figure [§]
with green circles.

Study of prior quality. We show intermediate results of the
first text-instructed prior generation stage in Figure [7] We
observe that our generation result gradually approaches the
target object. We also quantitatively study the generated prior

Input Image

Ground Truth

Ours

gSDF

Fig. 6: Qualitative comparison between our method and gSDF
under severe occlusion scenarios. The green circles highlight
the prediction discrepancy.

Fig. 7: Here we show the intermediate during generation,
including the text-to-image result (i.e., synthetic image),
image-to-3D result (i.e., shape piror), and the pseudo trans-
formation (i.e., transformed priors) and ground-truth object
on the training set of DexYCB (left) and Obman (right).

quality by comparing it with the commonly-used unit sphere.
In particular, we adopt DGCNN [59] to extract perceptual
features, and calculate the feature similarity with the ground-
truth. As shown in Figure [8a] we find that the generated prior
easily surpasses the sphere unit. We further apply the pseudo
transformation to both our prior and the sphere in Figure [8b}
The proposed method yields a higher similarity score among
all subcategories.

Scalability to different prior sources. To validate that our
framework is compatible with different prior sources, we
adopt the retrieved images to replace the synthetic images
during the prior generation. As shown in Table [[ITa] we
observe that priors from synthetic images also perform well,
surpassing the baseline with unit sphere by a clear margin. We
further analyze the performance of different object categories
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Fig. 8: Similarity between our prior and ground-truth template
(red), sphere and ground-truth template (blue) in terms of
different object categories on the DexYCB training set.
Higher is better. We observe that whether the transform
is performed or not, the generated prior is more similar to
the ground truth than the widely-used sphere initialization,
facilitating the optimization.

(i.e., boxes, cans, bottles, others on DexYCB) in Table
Except for the sphere-alike ‘can’ objects, our prior usually
achieves lower median Chamfer Distance than the unit sphere.

Effect of two vision-guided losses. We introduce two
vision-guided loss terms, i.e., Lyeight and Ly, to regulate
attention mechanisms in correlating 3D prior patches with
2D image regions. Our ablation studies on the DexYCB
dataset (Table validate the effectiveness of Lycignt
and Lp.,;. When training without Lciqn:, We observe a
significant increase in the median Chamfer distance between
the centered predicted point clouds and ground truth. Similarly,
removing L,,.,; leads to a 0.7 increase in this metric. We
further visualize attention maps in Figure [9] for 512 points
with and without these two losses. Without L.,¢ign¢, all query
points incorrectly focus on the zero (u,v) region, forcing the
decoder to use uninformative top-left corner features for co-
ordinate prediction. Without £,,,;, attention becomes overly
concentrated at the object center, neglecting edge features.
Joint application of both losses enables spatially distributed
attention, providing the decoder with comprehensive local

TABLE III: Ablation studies. (a) We adopt different prior
sources for comparison. (b) We study the effect of two
projection losses. (¢) We study the performance of four
different sub-categories based on the proposed prior and
commonly-used sphere prototype.

(@) ©

Source of prior |CD, | FS,@Q5 1t FS,@10 1 Category Prototype Sim.1t CDg |
Unit Spheres 067 053 0.8 | Prior_Sphere : °
Retrieval Images | 0.65 054 0.90 Boxes | 7 0.775 0.585
Synthetic Images | 0.62 0.55 0.90 v 0.496 0.635
® Cams 7 0.707 0585
. v 0563 0.572
Lweight Lproj|CPo { FSo@5 T FS,@10 T ol 7 0.743 0.639
X % 338 024 057 ottles v 0.639 0.705
v X 1.32 0.38 0.77 Others "2 0.712 0.678
v 4 0.62 0.55 0.90 > v 0.561 0.780

Input Image

Train without

Euw:zghl

Train without

Lyroj

Train with

L:urm_qh,t & 'Cprnj

Fig. 9: Attention maps of 512 query points on the shape prior.
The bright areas indicate the high probability to be an object.

visual cues for decoding.

Limitation. TIGeR inherits the constraints from off-the-shelf
generative models. Specifically, our current implementation
struggles with objects exhibiting significant intra-class shape
diversity under functional states, e.g., modeling both open and
closed configurations of scissors. This limitation stems from
existing generative priors prioritizing inter-class discriminabil-
ity over fine-grained state variations, occasionally leading to
ambiguous geometric reconstructions in dynamic interaction
scenarios. Based on more future work on fine-grained 3D
generation, our method would further improve the scalability.

V. CONCLUSION

In this paper, we present Text-Instructed Generation and
Refinement (TIGeR) for 3D hand-object interaction estimation
that addresses the scalability of template-based approaches.
By synergizing cross-modal generative model with geometric
refinement, TIGeR eliminates reliance on hand-crafted tem-
plates while maintaining interpretability through its two-stage
design, i.e., text-instructed prior generation and vision-guided
refinement. We also provide a cookbook to complete prior
registration and shape deformation using attention blocks to
fuse the local 2D visual features and 3D geometric features.
Extensive evaluations on two widely-used benchmarks, i.e.,
DexYCB and Obman, verify the effectiveness of the generated
3D prior, outperforming existing methods by 0.034 in
F-score@5 while reducing shape reconstruction Chamfer
Distance by 0.69. The framework’s generalizability is further
evidenced by its robustness against occlusions and seamless
integration with different priors, e.g., retrieved priors.
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