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Abstract—Convolutional Neural Networks (CNNs) have signif-
icantly advanced Image Super-Resolution (SR), yet most CNN-
based methods rely solely on pixel-based transformations, often
leading to artifacts and blurring, particularly under severe
downsampling rates (e.g., 8x or 16x). The recently developed
text-guided SR approaches leverage textual descriptions to en-
hance their detail restoration capabilities but frequently struggle
with effectively performing alignment, resulting in semantic
inconsistencies. To address these challenges, we propose a multi-
modal semantic enhancement framework that integrates textual
semantics with visual features, effectively mitigating semantic
mismatches and detail losses in highly degraded low-resolution
(LR) images. Our method enables realistic, high-quality SR
to be performed at large upscaling factors, with a maximum
scaling ratio of 16x. The framework integrates both text and
image inputs using the prompt predictor, the Text-Image Fusion
Block (TIFBlock), and the Iterative Refinement Module, lever-
aging Contrastive Language-Image Pretraining (CLIP) features
to guide a progressive enhancement process with fine-grained
alignment. This synergy produces high-resolution outputs with
sharp textures and strong semantic coherence, even at substantial
scaling factors. Extensive comparative experiments and ablation
studies validate the effectiveness of our approach. Furthermore,
by leveraging textual semantics, our method offers a degree of
super-resolution editability, allowing for controlled enhancements
while preserving semantic consistency.

Index Terms—Image Super-Resolution, CLIP, Multi-modal
Fusion, Language Guidance

I. INTRODUCTION

The advent of Convolutional Neural Networks (CNNs) has
significantly advanced the field of image super-resolution (SR)
[1]-[6]. Early CNN-based SR methods, which relied solely
on low-resolution (LR) images to reconstruct high-resolution
(HR) counterparts, often struggled to increase the reconstruc-
tion quality of their outputs. To overcome these limitations,
subsequent research [7]-[15] introduced prior information to
guide the SR process, aiming to compensate for the missing
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Fig. 1. Visualization of the results recovered by our method from low-
resolution (LR) inputs. We highlight the semantic coherence part by aligning
the textual guidance with the high-resolution (HR) ground truth.

white underside.

LR

details in LR images. While prior-based approaches have
demonstrated improvements, they tend to be restricted to
specific types of images, such as those with well-defined
structures or attributes (e.g., facial images). Moreover, methods
such as SFTGAN [16], which leverage semantic segmentation
maps to assist the SR reconstruction procedure, often introduce
additional computational costs and are highly dependent on the
accuracy of the segmentation process.

The use of text descriptions as a form of semantic guidance
has emerged as a more flexible and comprehensive alternative
for addressing these limitations. Text offers richer and more
detailed semantic information, which can guide the super-
resolution process across a broader range of images. TGSR
[17] was the first method to explore this approach; it uses text
to enhance its ability to generate SR image details. However,
challenges remain with regard to this method, particularly
in terms of achieving effective text-image feature matching
and semantic alignment, leading to inconsistencies between
the input LR images and the generated SR results. In this
paper, we propose a novel approach that ensures semantic
consistency while achieving large-scale super-resolution. Our
method leverages text descriptions to guide the SR process,
ensuring that the reconstructed HR images are both seman-
tically coherent and visually realistic. As shown in Figure
1, our approach addresses the limitations of the previously
presented methods, providing a robust solution for conducting
high-fidelity SR.

To address the challenges posed by the limitations of prior-
based methods and ineffective text-image feature matching
techniques, particularly when handling large-scale resolution
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Fig. 2. An example comparison between the 16x image SR results of our
method and two SOTA SR methods: DICGAN [18] and CRAFT [19]. Here,
DICGAN and CRAFT are retrained on the same dataset as that used by our
approach;

LR is the input low-resolution image, and GT is the

high-resolution ground truth (enlarged appropriately for
visualization purposes).

degradation and high semantic ambiguity in real-world scenar-
ios, we introduce a novel approach: Multi-modal Collaborative
Semantic Enhancement for Super-Resolution (SR). Rather
than treating the relevant text as mere prior guidance, we
leverage the text information in conjunction with the LR
image as two inputs modalities for SR tasks. Combining
these modalities enhances their local semantics and enables
high-performance, large-scale SR. Specifically, we introduce
a prompt predictor designed to extract essential semantic
elements from the input text. Inspired by VPT [20] and
GALIP [21], the prompt predictor incorporates a fully con-
nected layer and a self-attention mechanism, serving as a
text-driven attention module. Unlike directly inputting raw
text vectors into the pre-trained CLIP-ViT, the refined text
vectors generated by the prompt predictor enable CLIP-ViT to
better align the semantic features between the text and image,
thereby improving the quality of the produced cross-modal
representation.

To further optimize text-image interactions, we introduce
TIFBlock, a novel alignment and fusion module that is specifi-
cally designed to enhance the cross-modal integration process.
Leveraging pre-trained models such as CLIP [22] for the initial
feature extraction step, TIFBlock effectively synthesizes and
refines representations, resulting in a significant improvement
in its text-to-image matching performance. Building upon
TIFBlock, we develop an iterative refinement module, which is
a structure dedicated to iterative detail recovery and semantic
enhancement. This module progressively refines local details,
addresses blurred regions, and maintains semantic consistency
across different iterations. A core component of the iterative
refinement module is the inclusion of a customized residual
connection that is tailored to our framework, which facili-
tates smooth feature propagation while preserving semantic
integrity. The customized residual connection is seamlessly
integrated within this module to further optimize the pixel

transition and feature propagation tasks, ensuring robust multi-
modal fusion. Together, these components align with our
design objectives of delivering seamless and effective collab-
oration between modalities.

By integrating textual descriptions with LR images, the
proposed method enhances SR by leveraging both linguistic
semantics and visual features. The traditional SR methods rely
solely on visual information and struggle to reconstruct fine
details in severely degraded images. In contrast, our collabo-
rative framework uses textual guidance to refine structures and
textures, producing SR images that are both visually realistic
and semantically aligned with the input text. As shown in
Figure 2, our method achieves high-fidelity reconstruction
effects for a 16x downsampled facial image, demonstrating
competitive performance with state-of-the-art SR techniques.
Furthermore, it offers strong interpretability and ensures se-
mantic consistency with the given text descriptions.

The primary contributions of this work are as follows:

e« We introduce a new multi-modal semantic coherence
approach for large-scale image super-resolution, generat-
ing semantically consistent and realistic high-resolution
images from severely degraded low-resolution inputs.

o We design a novel Text-Image Fusion Block (TIFBlock)
and integrate it with a pre-trained cross-modality model to
form an iterative collaborative fusion structure, enabling
our framework to progressively restore image details
while enhancing local semantics.

o We investigate the impact of diverse textual semantics
on image super-resolution. Comprehensive comparative
experiments and ablation studies validate the effective-
ness of our SR approach, which also maintains semantic
coherence.

II. RELATED WORK
A. Prior-Based Image Super-Resolution

Single-image super-resolution (SISR) has become a dy-
namic area within end-to-end deep learning [23]. The devel-
opment of diverse models and mechanisms has significantly
improved SR methods, particularly in terms of their pixel
reconstruction and detail approximation capabilities. Early SR
approaches [4], [24]-[28] usually assume that LR image pixels
are obtained through bicubic downsampling performed on their
HR counterparts. These methods employ various deep map-
ping networks to directly reconstruct SR image pixels from
LR inputs. While these approaches can produce promising
results on synthetic data with small-scale degradation, their
effectiveness deteriorates significantly in real-world, large-
scale degradation scenarios because of the full or partial loss
of LR semantics.

To attain improved performance in real-world SR scenarios,
numerous prior-based approaches, which deploy explicit or
implicit priors to enrich the detail generation process, have
been proposed. A representative explicit method is reference-
based SR [29]-[32], which leverages one or more high-
resolution reference images that share similar textures to those
of the input low-resolution image to guide the process of
generating an HR output. However, matching the features of
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the reference with a low-resolution input could be challenging,
and these explicit priors may not be available.

The recent methods, including FSRNet [7], DeepSEE [ 1],
and SFTGAN [8], have shifted toward leveraging implicit
priors, yielding improved results by integrating prior infor-
mation directly into the SR process. For example, FSRNet [7]
leverages geometric priors to improve the SR effects produced
for facial images, whereas Zhang et al. [33] harnessed multi-
view consistency. DeepSEE [11] utilizes semantic maps to
explore extreme image SR. SFTGAN [&] introduces image
segmentation masks as prior features for facial image SR.
Although they are effective, these implicit priors are often
tailored to specific situations, such as restricted categories
[34], [35] or facial images [7], [8], [36], [37], limiting their
applicability to more complex, real-world SR tasks. Recent
progress in single-image super-resolution has leveraged vi-
sual language models and text-guided techniques to achieve
increased restoration quality. Methods such as TGSR [17],
CoSeR [38], XPSR [39], and TGESR [40] incorporate text
semantics as prior conditions, providing additional contextual
guidance for the SR reconstruction procedure.

B. Multi-modal Fusion Guided Image Generation

Multi-modal fusion has become an increasingly prevalent
approach in various visual tasks, such as image generation,
style transfer, and image editing. For example, keypoints
are commonly utilized in motion generation [41] and auto-
matic makeup applications [42]. In text-based image synthe-
sis scenarios, GAN-INT-CLS [43] employs text descriptions
to generate images using conditional Generative Adversar-
ial Networks (cGANs). To enhance the quality of image,
Stack-GAN [44], AttnGAN [45], and DM-GAN [46] lever-
age multiple generators and discriminators. DF-GAN [47]
simplifies the text-to-image synthesis process with a more
streamlined and effective approach. LAFITE [48] introduces
a contrastive loss based on the CLIP model [22], offering
more accurate guidance for generating precise images. In
artistic style transfer cases, CLIPstyler [49] enables domain-
independent texture transfer from text descriptions to source
images, whereas CLVA [50] employs a patchwise style dis-
criminator to extract visual semantics from style instructions,
thereby achieving detailed and localized artistic style transfer.
SISGAN [51] pioneered the use of an encoder-decoder archi-
tecture for conducting text-based semantic editing on images.
ManiGAN [52] introduces a two-stage architecture with an at-
tentional cropping module (ACM) and a deformable cropping
module (DCM) to facilitate independent network training for
text-based image editing. The lightweight GAN [43] further
improves the efficiency of the process by applying a word-
level discriminator. ManiTrans [53] employs a pre-trained
autoregressive transformer, utilizing the CLIP model [22] for
addressing semantic losses. More recently, Zeng et al. [54] de-
veloped a multiround image-editing framework using language
guidance.

The emergence of large language models has further spurred
advancements in the text-to-image generation field. DALL-
E [55] uses VQ-VAE [56] to decompose images into dis-
crete tokens, framing image synthesis as a translation task.

LDM [57] applies diffusion models to latent image vectors,
enabling an efficient training process with high-quality re-
sults. GLIDE [58], which is a diffusion-based text-to-image
generation model, uses guided diffusion to enhance the text-
conditioned synthesis procedure. GALIP [21] incorporates
the CLIP model within adversarial learning for text-to-image
synthesis purposes. ControlNet [59], which is introduced by
Zhang et al., builds upon the pre-trained Stable Diffusion [57],
incorporating a detailed scheme control to guide the image
generation process.

Recent advancements in pre-trained diffusion models [57],
[58], [60] have significantly improved their image-generation
capabilities. While studies [01]-[65] have underscored the
generative potential of these models, applying them to SR re-
mains challenging. The high fidelity required for SR demands
both speed and efficiency—qualities that diffusion models
generally lack due to their multi-step denoising process, which
results in slower generation times and complicates latent space
manipulation operations.

Compared with the use of pre-trained diffusion models, a
GAN-based model is employed in this work for several key
reasons. GANSs facilitate high-resolution image generation in
a single pass, which significantly improves upon the efficiency
of diffusion models with an iterative nature. Furthermore, they
provide a smooth latent space that enables intuitive control
over the generated features, making them particularly well-
suited for SR tasks. Additionally, GANs require less training
data and computational resources, improving their accessibility
for researchers. By leveraging GANs, we aim to achieve
high-quality image generation while ensuring the practical
applicability of super-resolution.

III. METHOD

In this section, we present an overview of our proposed
CLIP-SR method, followed by detailed descriptions of each
component contained within our multi-modal cooperative im-
age super-resolution (SR) network. Finally, we introduce the
total loss function used in our approach.

A. Overview

The traditional small-factor SR methods generate HR im-
ages from LR images by using deep SR networks. However,
large-factor downsampling operations often lead to significant
blurring in LR images, making it challenging for SR networks
to reconstruct semantically consistent and precise details solely
from pixel-space information. To address these challenges,
we introduce textual semantics as a complementary input,
enabling our network to leverage information derived from
both the pixel and textual spaces for generating more accurate
details. For clarity, we denote the input low-resolution image
as Ly r, the complementary text description as 7', and the cor-
responding high-resolution ground truth as /7. The objective
of CLIP-SR, denoted H, is to fuse L;r and T to generate a
semantically consistent and visually realistic super-resolution
image, which is denoted as Igp.

Specifically, we introduce a text-image fusion block (TIF-
Block) within a multi-modal iterative refinement model, which
integrates CLIP [22] and a TIFBlock to effectively perform
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Fig. 3.

The architecture of our proposed multi-modal cooperative semantic enhancement model for large-factor image super-resolution (see subfigure (a)).

Given an input low-resolution image I;,r and text guidance T, features F; and Fp are first extracted using an image encoder F'; and a text encoder Er,
respectively. The text feature vector F is further refined through a prompt predictor module P and then processed by the CLIP-ViT model to enhance
textual guidance. The refined text and image features are subsequently integrated using a Text-Image Fusion Block (TIFBlock), which aligns and combines
the two modalities (see subfigure (b)). Within the TIFBlock, an affine transformation is applied in its text fusion module. This transformation employs two
consecutive MLPs that generate channel-wise scaling parameters (y* = M L P (Softmax(Fr))) and shifting parameters (6" = M LP»(Softmaz(Fr))).

These parameters adaptively modulate the channel-wise features of the visual representation F'/*. Finally, the fused multi-modal features undergo iterative
refinement and semantic enhancement through a continuous Conv-TIFBlock structure, which is referred to as an iterative refinement module R. This iterative
process ensures that progressively improved super-resolution outputs with enhanced details and semantic coherence are obtained.

large-factor SR. To efficiently combine information derived
from different modalities, i.e., text and images, we design a
robust fusion strategy that preserves essential textual details
while avoiding the information losses observed in simpler
approaches [44], [51], [66] that directly merge text vectors
with image features. Our TIFBlock employs an affine trans-
formation alignment strategy to increase the accuracy of text-
to-image fusion and retain critical semantic details. Given the
inherent differences between text and image features, precise
alignment is crucial for achieving semantic coherence. To
further reduce cross-modal inconsistencies, a prompt predictor
is employed to process the text vectors prior to conducting
alignment. Additionally, the CLIP model [22] is integrated
within our framework as a supplementary alignment tool,
ensuring a contextually precise and semantically coherent text-
image fusion process for SR. To ensure coherence with the
LR content contained in the generated SR image, we design
two additional mechanisms that build on our fusion strategy.
Specifically, we incorporate residual connections to preserve
the essential LR details, particularly in cases where semantic
conflicts may arise. Additionally, text semantics are integrated
at each layer of the multi-modal iterative refinement mod-
ule, progressively guiding the SR process with fine-grained
adjustments. These refined semantic fusion strategies ensure
that the generated SR image remains both structurally and
semantically consistent with the LR input. Figure 3 provides
an overview of the overall network architecture and the details
of the TIFBlock.

B. Network Architecture

In this section, we present the key components of our pro-
posed multi-modal large-factor image super-resolution model.
The model primarily comprises five components: text and
image encoders, a prompt predictor, a text-image fusion block
(TIFBIlock), an iterative refinement module, and a CLIP-based
discriminator.

In essence, the text and image encoders extract text vec-
tors and image features, respectively, providing foundational
representations for the following steps. The TIFBlock aligns
and fuses these features, enabling the cohesive integration
of textual and visual information. CLIP-ViT and the prompt
predictor effectively enhance the textual guidance provided
throughout the generation process. The iterative refinement
module progressively restores image details and enhances
local semantics through multiple iterations, ensuring align-
ment between different modalities. Finally, the CLIP-based
discriminator comprehensively evaluates the fidelity, semantic
quality, and coherence of the generated image. By leverag-
ing the synergistic interaction among these five components,
our method generates semantically consistent and realistically
reconstructed high-resolution images, even from severely de-
graded low-resolution inputs (e.g., with 8 x or 16 downsam-
pling).

1) Text and Image Encoders: We utilize two distinct en-
coders to process the input modalities. The text encoder,
which is denoted as F7, follows the architecture of CLIP [22]
and encodes textual inputs 7" into feature vectors F7p, where
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Fr = Ep(T), to effectively capture semantic information.
For the input LR image I}, the image encoderE; employs
a series of convolutional layers to progressively transform the
input into an 8 x 8 feature map Fy, where F; = E;(ILR).
These encoders allow our model to generate compatible feature
representations for both text and image inputs, preparing them
for the subsequent fusion step within the network.

2) Prompt Predictor: Before leveraging the pre-trained
CLIP-ViT model to align image features with corresponding
text vectors, we introduce a prompt predictor inspired by
VPT [20] and GALIP [21]. The prompt predictor, which is
denoted as P, comprises a fully connected (FC) layer and a
self-attention layer; the predictor functions as a text-driven
attention mechanism. It predicts text-conditioned prompts,
F:/F = P(Fr), which are appended to the visual patch
embeddings in CLIP-ViT. This design enables the generated
images to more effectively capture the semantic content of
the input text while maintaining alignment with the visual
information encoded by the CLIP-ViT model.

The prompt predictor leverages the output of the text
encoder to selectively focus on salient textual elements, which
are then fused with the visual features. This integration process
enables the generator to more accurately interpret and translate
the given text into detailed, coherent visual representations, en-
hancing the degree of alignment between the text descriptions
and the generated images in terms of both content and quality.

3) Text-Image Fusion Block (TIFBlock): To further enhance
the influence of text information on images, we introduce a
Text-Image Fusion Block (TIFBlock) that integrates textual
semantics as a complementary feature source. As shown in
Figure 3 (b), the TIFBlock incorporates an affine transforma-
tion within its text fusion module. Following the design prin-
ciples of DF-GAN [47], we introduce a ReLU layer after each
affine layer to increase the diversity of text-fused images by
introducing nonlinear relationships. Additionally, to improve
the ability of the model to comprehend text descriptions, we
apply a Softmax function to re-weight the text features before
passing them to the affine layer. This re-weighting strategy
allows for a smoother and more reliable integration of the text
and image domains.

The process of the TIFBlock starts by feeding the LR
image I;p into the image encoder network Ej, extracting
an image feature vector F7. Moreover, the text is encoded
via the pre-trained CLIP encoder Er, producing a text vector
Fr. The text features are then re-weighted via the Softmax
function before being passed through the affine transforma-
tion layer. Within this layer, the re-weighted text vector is
processed through two consecutive Multi-Layer Perceptrons
(MLPs), which generate a channel-wise scaling parameter
4 = MLPy(Softmax(Fr)) and the channel-wise shifting
parameter 5 = MLPy(Softmaxz(Fr)). The affine transfor-
mation then adaptively adjusts the channel-wise features of
the visual feature FI”. The affine transformation is defined as
follows:

AFF(F}]' | Fr) =4"-F} + 3", (1)

where AF'F denotes the affine transformation, F}l represents
the n-th channel of the visual feature map Fy, Fp represents

the text vector, and <" and " are learnable scaling and
shifting parameters, respectively. This mechanism enables the
model to dynamically adjust the feature response to the textual
context, leading to more accurate and meaningful alignment
results.

The TIFBlock performs the initial alignment and integration
steps on the text and image features by fusing these modalities
through affine transformations, ensuring semantic consistency
and accurate feature combinations. These fused multi-modal
features are then passed to the Iterative Refinement Module,
which progressively enhances the quality of the image by re-
fining local details and reinforcing semantic coherence through
multiple iterations. The iterative process builds on the fused
features provided by the TIFBlock, enabling the model to
generate outputs with higher resolution and realistic textures.
Together, the TIFBlock establishes the foundational alignment
of the two modalities, whereas the Iterative Refinement Mod-
ule further optimizes and restores the image details in a step-
by-step manner.

4) Iterative Refinement Module: To ensure that the gener-
ated image aligns closely with the given text, we iteratively
refine the image features derived from CLIP-ViT by using a
residual structure to fuse text-image features in a process that
is guided by the text vector. Initially, the prompt predictor
leverages the output of the text encoder to bridge the semantic
gap between the text and image modalities. The low-resolution
image features F; are subsequently combined with the text
vector Frr within the TIFBlock to further align the image
and text features. CLIP-ViT is then employed to reconcile
any inconsistencies between the image and text, ensuring that
the final image features match the knowledge existing in both
modalities. Finally, the outputs acquired from the prompt pre-
dictor, TIFBlock, and CLIP-ViT model are iteratively merged
via the residual structure to generate a high-resolution image
that is semantically consistent with the provided text.

Throughout the entire pipeline, we utilize text information
at three key stages. First, we employ a simple convolutional
network to extract features from the low-resolution image,
which are integrated with the text information using the
TIFBlock. This integration scheme ensures that the combined
features encapsulate both detailed visual cues and semantic
information, enabling precise guidance for the information
flow within the CLIP-ViT network. Next, a text attention
mechanism processes the textual features to address the in-
herent differences between the text and image modalities,
facilitating an effective cross-modal alignment process. Ad-
ditionally, the textual information serves as the input of a
prompt predictor that feeds into the CLIP-ViT model, further
enhancing the fusion results obtained for visual and semantic
features. Finally, after obtaining preliminary image features
from CLIP-ViT, the iterative refinement module progressively
restores detailed image information by iteratively fusing it
with textual semantics and enlarging the image through an
additional upsampling module G. The upsampling module G
consists of multiple blocks, each of which contains a 3x3
convolutional layer (with a kernel size of 3, a stride of 1,
and a padding of 1) followed by a PixelShuffle layer (with an
upscaling factor of 2). The number of blocks is determined by
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the super-resolution scale factor.

5) CLIP-Based Discriminator: We utilize the CLIP-based
discriminator proposed in GALIP [21], which extracts more
informative visual features from complex images, enabling the
discriminator to more effectively identify unrealistic image
regions. This, in turn, prompts the generator to produce more
realistic images. The structure of the discriminator provides
a deep understanding of complex scenes by integrating addi-
tional visual information into the CLIP framework, making it
particularly well-suited for its role as a discriminator. Specifi-
cally, the CLIP-based discriminator is designed to incorporate
the language-image pre-training process of CLIP [22], with
enhancements tailored to improving its effectiveness at evalu-
ating the quality of generated images.

During training, the discriminator aims to distinguish be-
tween generated and real images. The superior performance of
the CLIP model in terms of aligning text and images derived
from different modalities allows the CLIP-based discriminator
to gain a comprehensive and nuanced understanding of the
image content, contributing to the generation of higher-quality
and semantically consistent outputs by our proposed method.

C. Optimization Objectives

Reconstruction Loss. To ensure consistency in the content
of the reconstructed images, we employ the pixel-wise £;-
norm, which is defined as follows:

Lree =E[|H(ILr,T) — Ig7]1), 2

where H(ILg,T) denotes the output generated by the full
super-resolution network 7 proposed in this work, Fr rep-
resents the text description, and Igr represents the high-
resolution ground truth that corresponds to the input low-
resolution image Iy R.

Perceptual Loss. Additionally, we use the perceptual loss
[67] to encourage visual consistency between the generated
super-resolution results and the real high-resolution images.
The perceptual loss is defined as follows:

5
Lper =E | 0illgs(H(ILr, T)) — ¢i(Ior)ll1 |, (3)
1=0

where ¢;(.) denotes the feature map derived from the i-th
layer of the pre-trained perception network ¢. We employ the
pre-trained VGG-19 network [68] as our ¢ and select five
activation layers for computing the perceptual loss. The hyper-
parameters o; modulate the contribution of the i-th layer to
the total loss term in Equation 3.

Text-Constrained Adversarial Loss. To constrain the se-
mantic information contained in the input text, we utilize the
text-constrained adversarial loss [21]. Here, I;,r represents
a given low-resolution image, and F7p is the text vector
extracted from the corresponding text input. Both the low-
resolution image Iy r and the text vector Fr are fed into the
super-resolution network #, resulting in an output H(I.r,T).
Let C' and V represent the frozen CLIP-ViT model and
the image feature extractor model contained in the CLIP-
based discriminator, respectively. Sim(.,.) denotes the cosine
similarity between the generated HR image H (IR, Fr) and
the text vector Fr.

The text-constrained adversarial loss is defined as follows:
Ladw = = Eq(rppmy~p,) [D(C(H(ILR,T), Fr))]
- aE(H(ILRaT)NIPg) [SZTTL(V((H(ILR, T))’ FT)] a(4)

where « is a hyper-parameter that controls the weight of
the text-image similarity, and [P, denotes the synthetic data
distribution.

Total Loss. Considering all of the above loss functions, the
total objective function is formulated as follows:

£total = £7'ec + ‘C’per + Aad'u‘cadvv (5)

where the hyper-parameter \,q, controls the weight of the
adversarial loss L,q,.

IV. EXPERIMENT
A. Implementation Details

Dataset. We evaluate our method on the COCO [69],
Caltech-UCSD Birds 200 (CUB) [70], and CelebA [71]
datasets, each of which contains images paired with textual
descriptions. For training, all images are cropped to the
resolution of 256 x 256, with low-resolution images gener-
ated by performing bicubic downsampling on high-resolution
counterparts. The utilized CLIP-ViT backbone is the ViT-B/32
model.

Setting. We train the proposed method on an NVIDIA
RTX A5000 by using the Adam optimizer with parameters of
B1 = 0.0 and By = 0.9 over 220 epochs. The hyper-parameter
Aadv 18 set to 0.01. Moreover, following the setup in GALIP
[21], we set « to 4. Since the official code for TGSR [17] is
unavailable, we use TGSR# to represent results reproduced
on the basis of the visual examples and quantitative metrics
provided in the paper that propose TGSR for comparison with
other methods.

B. Quantitative Evaluation

To quantitatively assess the quality of the SR images gener-
ated by different methods, we utilize two primary evaluation
metrics: the Natural Image Quality Evaluator (NIQE) [72]
and the Perceptual Index (PI) [73]. The NIQE evaluates the
overall quality of SR images, with lower scores indicating
more natural and realistic results. The PI, on the other hand,
measures the perceptual quality of the images, where lower
PI values correspond to better visual quality. We specifically
choose the NIQE and PI for our experiments (except for Table
II) instead of traditional metrics such as PSNR and SSIM,
which focus more on image distortion but overlook objective
quality and perceptual experience. In the context of SR, the
NIQE and PI are more aligned with assessing the realism and
naturalness of images, making them better suited for this task.

Table I presents our experimental results obtained on the
CUB and COCO datasets. For the smaller CUB dataset,
we compare the NIQE and PI scores with those of several
state-of-the-art super-resolution methods, including EDSR [1],
ESRGAN [2], SPSR [I2], and TGSR# [17]. Our method
achieves the second-best NIQE score, closely following that
of ESRGAN, while outperforming both Bicubic interpolation
and EDSR in terms of the PI. On the larger COCO dataset, our
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E This dull colored bird |
' has brown wings, brown |
' stripes on the cheek, and |
' an otherwise dull grey |
' body. E

.\ The bird has a yellow |
. breast with a black |
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| with grey thights, tarsus |
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colored head and back
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XPSR TGESR

Fig. 4. Visual comparison among the 4x SR results obtained with three SOTA SR methods, i.e., TGSR [17], XPSR [39], and TGESR [40], and our method
on the CUB dataset. Notably, # indicates the results reported in the corresponding original paper.

TABLE I
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND THE COMPARATIVE METHODS ON THE CUB AND COCO DATASETS. THE SYMBOL |
DENOTES THAT LOWER VALUES OF THE ASSOCIATED ARE BETTER.

Dataset ‘ Metrics ‘ Bicubic EDSR[1] ESRGAN [2] SPSR[12] TGSR# [17] Ours
CUB NIQE | 12.374 10.684 5.465 5.885 6.623 5.825
PI | 9.747 8.168 2.644 3.345 2.560 4.167
CoCo NIQE | 11.110 9.683 6.816 6.378 6.484 4.706
PI | 9.373 8.515 7.135 6.060 4.922 3.610
TABLE 11
QUANTITATIVE COMPARISONS RESULTS OBTAINED ON THE CELEBA DATASET.
Metrics ‘ Bicubic SuperFAN [9] DICGAN [18] TGSR# [17] XPSR [39] TGESR [40] Ours
PSNR 1 25.81 28.91 33.61 23.48 26.76 4.24 28.974
SSIM 1 0.844 0.815 0.895 0.766 0.778 0.447 0.808
NIQE | 14.514 6.459 5.755 8.846 6.511 10.335 5.172
PI | 9.676 5.345 5.599 7.165 5.235 6.113 4.476

approach significantly outperforms all the comparison methods
in both the NIQE and the PI, demonstrating superior gener-
alizability. The observed performance degradations exhibited
by the other approaches on COCO further underscore the
robustness and versatility of our method.

Table II provides quantitative comparisons among the
PSNR, SSIM, NIQE, and PI metrics produced on the CelebA
dataset. Our method is evaluated against several baseline
approaches, including Bicubic interpolation, SuperFAN [9],
DICGAN [18], TGSR# [17], XPSR [39], and TGESR [40].
The results demonstrate that the proposed method achieves
competitive performance across all the metrics. Specifically,
compared with Bicubic interpolation, SuperFAN, and DIC-
GAN, which rely solely on single-modality input, our ap-
proach incorporates supplementary textual information to
achieve cross-modal semantic alignment, resulting in superior
super-resolution performance. Moreover, in comparison with
TGSR#, XPSR [39], and TGESR [40], which also utilize
text guidance, our multi-modal collaborative semantic en-
hancement mechanism produces high-resolution images that

are both semantically consistent and visually realistic. In
summary, our method consistently delivers competitive results
across three datasets, underscoring its effectiveness in image
super-resolution tasks.

C. Qualitative Evaluation

To further validate the effectiveness of the proposed method,
we conduct additional qualitative experiments. As illustrated
in Figure 4, the experimental results demonstrate that our
method achieves satisfactory visual outcomes even with this
modification. These findings further confirm that the proposed
multi-modal collaborative framework can consistently generate
high-quality SR images with clear details and strong semantic
coherence.

Concurrently, we conduct a 4x SR experiment, upscal-
ing low-resolution images from 64 x 64 to 256 x 256. As
shown in Figure 5, our method, along with SuperFAN [9],
DICGAN [18], XPSR [39], and TGESR [40], achieves com-
mendable visual quality. However, SuperFAN, DICGAN, and
TGESR exhibit noticeable artifacts, whereas our approach
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Fig. 5. Visual comparison among the 4x SR results obtained with four SOTA SR methods, i.e., SuperFAN [9], DICGAN [18], XPSR [39], TGESR [40], and
our method on the CelebA dataset. * denotes that 4x SR is applied on the basis of the settings of XPSR, where an input image with a 128 x 128 resolution

is upscaled to 512x512.

LR CRAFT XPSR

XPSR*

TGESR GT

Ours

Fig. 6. Visual comparison among the 16x SR results obtained with CRAFT [19], XPSR [39], TGESR [40], and our method on the CelebA dataset. *
indicates that 16 SR is applied on the basis of the settings of XPSR, where an input image with a 32x32 resolution is upscaled to 512x512.

produces smoother and more visually appealing results, high-
lighting its advantage with regard to leveraging text guidance
for performing cross-modal semantic alignment. Figure 6
further presents the qualitative results of a 16x SR task con-
ducted on the CelebA dataset. CRAFT [19] generates overly
smoothed images, failing to recover fine details. While TGESR
produces visually plausible results, it struggles to preserve
the semantic integrity of the source images. XPSR, though
effective at 4x SR, undergoes severe distortions at 16x SR,
even under its original experimental settings, demonstrating
a substantial performance drop in large-scale SR cases with
heavily degraded images. In contrast, our method successfully
super-resolves images to 256 x 256, achieving two key objec-
tives: (1) restoring the essential semantic information and (2)
maintaining high consistency with the original low-resolution
input.

To compare the complexity and efficiency of our proposed
SR model, we evaluate its number of parameters and inference
time against those of several state-of-the-art models, including
SuperFAN [9], XPSR [39], and TGESR [40]. The comparisons
are conducted under the same conditions on an NVIDIA RTX

TABLE III
COMPLEXITY AND RUNTIME EFFICIENCY COMPARISONS AMONG
DIFFERENT METHODS. THE RUNTIME REPRESENTS THE TIME CONSUMED
FOR INFERRING EACH IMAGE.

Metrics \ SuperFAN [9] XPSR [39] TGESR [40] Ours
Parameters 1.3 M 19B 55B 6322 M
Runtime 4.1ms 6.3s 39.9s 24.1ms

3090 GPU. As shown in Table III, our method significantly
outperforms the diffusion-based XPSR [39] and TGESR [40]
models in terms of model size and inference efficiency.
However, owing to the incorporation of CLIP-ViT and the
iterative refinement module, our model has a larger parameter
count than SuperFAN [9] does and has a longer inference
time. Nevertheless, given the superior SR performance of our
approach, this trade-off is acceptable.

D. Ablation Studies and Further Discussion

To evaluate the effectiveness of each component included
in our proposed method, we conducted ablation studies on
the CUB dataset. We consider four variants: (1) a baseline
U-Net for single image super-resolution, where Lo =
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i long, dark hooked bill,
3 and a blue throat.

This bird is black and
white in color with a
long black beak, and red
eye rings.

LR SD

ControlNet

XPSR TGESR Ours GT

Fig. 7. Visual comparison among the 8x SR results obtained with four diffusion model-based methods, i.e., Stable Diffusion (SD) [57], ControlNet [59],

XPSR [39], TGESR [40], and our method on the CelebA dataset.

TABLE IV
COMPARISON AMONG THE QUANTITATIVE RESULTS OBTAINED WITH
DIFFERENT COMPONENTS OF OUR METHOD ON THE CUB DATASET.

Variants | U-Net Text CLIP-ViT D|NIQE | PI| SSIM 1 PSNR 1

1 v X X X| 13.057 10.384 0.391 16.150
2 v 4 X X| 6244 5855 0.834 26987
3 v v v X| 6578 6.020 0.835 27.891
4 v 4 X v/ | 6178 6.004 0.835 27.210
Ous | v v v V| 5825 4167 0.845 28495

Lree + Lper; (2) variant 1 with additional text supervision
that incorporates our proposed multi-modal fusion architecture
(including the TIFBlock and iterative refinement module),
where Liotal Lyce + Lper; (3) variant 2 with a pre-
trained CLIP-ViT model, where Liotqi = Lyec + Lper; and
(4) variant 2 with a CLIP-based discriminator D, where
Etotal = ‘crec + ‘Cper + )\advcadv'

As shown in Table IV, when the full model removes
the text description module, CLIP-ViT, or the CLIP-based
discriminator, the corresponding variants exhibit higher NIQE
scores, indicating noticeable declines in performance. These
experimental results demonstrate the effectiveness of incor-
porating textual information for enhancing the performance
of the model. Additionally, they validate that the proposed
Text-Image Fusion Block (TIFBlock) and Iterative Refinement
Module effectively align textual and visual features, providing
crucial semantic guidance for generating semantically consis-
tent and realistic high-resolution images.

E. Analysis of the Capability of LR-to-SR

To evaluate the text-guided SR performance of our method,
we conduct a comparison with Stable Diffusion (SD) [57],
ControlNet [59], XPSR [39], and TGESR [40] on the 8x
SR task. These methods take low-resolution (32 x 32) im-
ages along with textual descriptions as inputs. As shown in
Figure 7, these models often introduce unwanted modifica-
tions, distorting the original visual information. In contrast,
our method consistently produces sharper, more detailed SR
images while effectively preserving both semantic coherence
and fine-grained textures.

Our method outperforms SD and ControlNet in SR tasks for
two main reasons. First, SD and ControlNet rely on iterative
denoising, which struggles with performing 8 x upscaling on
severely degraded low-resolution images. While ControlNet
introduces LR images as conditions, it lacks a mechanism for

conducting semantic enhancement at extreme scaling factors.
In contrast, our TIFBlocks iteratively refine both local textures
and global semantics, producing more realistic and coherent
SR results. Second, SD and ControlNet process image and text
inputs separately, which can lead to misalignment between the
textual descriptions and the generated images. Our approach
employs a prompt predictor and iterative refinement module
that leverage CLIP-based multi-modal alignment, ensuring se-
mantic consistency and generating text-guided high-resolution
outputs.

To further assess the effectiveness of text-guided SR meth-
ods, we conduct extensive experiments on multiple datasets,
evaluating the tested methods, including XPSR and TGESR,
across 4x, 8x, and 16x SR tasks. As shown in Figure 5,
XPSR achieves satisfactory results at 4x SR for facial images
but results in significant artifacts and structural distortions
when it is applied to 8x and 16x SR tasks (see Figure 6
and Figure 7, respectively), indicating its limitations in terms
of handling extreme upscaling. Conversely, TGESR performs
well at higher scaling factors (8 x and 16x SR) but struggles
to maintain fine-grained details at 4x SR, suggesting an
inconsistency in its ability across different upscaling levels.
In comparison, our proposed CLIP-SR approach consistently
generates high-quality super-resolved images across all scales,
preserving both their semantic integrity and visual fidelity. As
summarized in Table III, CLIP-SR not only outperforms XPSR
and TGESR in terms of reconstruction quality but also has su-
perior computational efficiency and reduced model complexity.
These results highlight the robustness and scalability of our ap-
proach, making it well-suited for high-fidelity SR applications
implemented under varying degradation conditions.

F. Analysis of the Editability of LR-to-SR Transformation

To evaluate the editability of our model in low-to-high-
resolution transformations, we manipulate a subset of the CUB
test images, as shown in Figure 8. Figure 8(b) presents color
modifications in the nape, crown, and abdomen regions. Owing
to low-resolution constraints, the network prioritizes pixel-
level accuracy over high-level semantics, leading to slight blur-
ring in the black region around the bird’s head. Nevertheless,
our method successfully adjusts the wing color in the abdomen
area. When prompted with “yellow” (Figure 8(c)), the model
effectively alters the wing hue, exhibiting variations across
the outputs. This diversity underscores its ability to perform
semantically consistent, controllable edits.
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(b) (c)
Fig. 8. Visualization of the results generated by our method under different
text prompts. Our method demonstrates the ability to generate diverse and
semantically consistent results.

The bird has big
beak when compared
to its body, it has
black crown nape,
and red tarsus and

(b)
Fig. 9. Visualization of the heatmaps produced for low-resolution images
during the super-resolution process. Subfigures (a), (b), (c), and (d) correspond
to the results of performing text fusion at the first, second, third, and fourth
layers, respectively, within the iterative refinement module

G. Analysis of the Effectiveness of Multi-modal Fusion and
the Number of Iteration Layers

To evaluate the effectiveness of our multi-modal fusion
module and the impact of different numbers of iterative fusion
layers, we analyze the heatmap outputs produced across dif-
ferent layers within the multi-modal fusion module. As shown
in Figure 9, each text input is paired with a corresponding
low-resolution image. Figure 9 (a) shows the output derived
from the initial text fusion layer, where the network begins by
generating an image that is loosely aligned with the bird. In the
subsequent layers, the attention of the model is progressively
refined: in Figure 9 (b), the focus shifts to the bird’s neck
and body, whereas the further iterations shown in Figures 9
(c) and (d) progressively enhance finer details, including the
bird’s feet and tarsus. These findings empirically confirm the
effectiveness of our iterative refinement module, demonstrating
that four iterations are sufficient for achieving high-quality,
semantically consistent text-to-image super-resolution results.

H. Limitations

Despite the superiority of the proposed method in the
text-to-image super-resolution task, certain limitations warrant
consideration in future research. The CLIP-ViT-B/32 model
effectively leverages textual information to achieve enhanced
image quality, particularly in the realm of semantic-guided
super-resolution. It effectively bridges the gap between textual
and visual data, enabling precise control over the process

10

| Abird has white | '
\ and blue wings | |

A bird has white
and blue wings.

and crowi.

LR

Fig. 10. Visualization of the results generated by our method under different
text prompts. Given a low-resolution input image (a), our method produces
super-resolution images guided by two distinct text descriptions: (b) and (c).
While our method yields impressive results, certain details in the generated
images may exhibit deviations due to the inherent ambiguity of natural
language semantics.

(b)

of generating high-resolution images. However, despite these
strengths, the model can occasionally misinterpret ambiguous
descriptions. For example, as illustrated in Figure 10 (a), when
instructed to generate an image featuring a "crown" on a
bird, the model may incorrectly interpret the "crown" as a
royal crown rather than the bird’s crest. This misinterpretation
underscores the necessity of including precise language in
prompts. As demonstrated in Figure 10 (b), removing the term
"crown" and providing a more specific context often yields the
desired image. Future research could focus on enhancing the
ability of the model to disambiguate homonyms and develop
a deeper understanding of context-specific semantics.

V. CONCLUSION

We introduce a multi-modal semantic consistency frame-
work for large-scale image super-resolution (SR) that leverages
text-image fusion to enhance both the visual fidelity and
semantic coherence of images. Our approach integrates a
pre-trained cross-modal model within an iterative refinement
process, enabling progressive detail recovery and text-guided
enhancements. Extensive experiments demonstrate that our
model achieves superior performance to that of the exist-
ing methods, particularly in terms of preserving fine-grained
textures and maintaining semantic alignment. Despite these
advancements, our method struggles with ambiguous textual
inputs, which can lead to inconsistencies in the SR results. Fu-
ture work will focus on refining text preprocessing techniques
to attain improved instruction clarity, further enhancing the
controllability and reliability of text-guided SR.
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