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DMRNet++: Learning Discriminative Features
with Decoupled Networks and Enriched Pairs

for One-Step Person Search
Chuchu Han, Zhedong Zheng, Kai Su, Dongdong Yu, Zehuan Yuan, Changxin Gao, Nong Sang, Yi Yang

Abstract—Person search aims at localizing and recognizing query persons from raw video frames, which is a combination of two
sub-tasks, i.e., pedestrian detection and person re-identification. The dominant fashion is termed as the one-step person search that
jointly optimizes detection and identification in a unified network, exhibiting higher efficiency. However, there remain major challenges:
(i) conflicting objectives of multiple sub-tasks under the shared feature space, (ii) inconsistent memory bank caused by the limited
batch size, (iii) underutilized unlabeled identities during the identification learning. To address these issues, we develop an enhanced
decoupled and memory-reinforced network (DMRNet++). First, we simplify the standard tightly coupled pipelines and establish a
task-decoupled framework (TDF). Second, we build a memory-reinforced mechanism (MRM), with a slow-moving average of the
network to better encode the consistency of the memorized features. Third, considering the potential of unlabeled samples, we model
the recognition process as semi-supervised learning. An unlabeled-aided contrastive loss (UCL) is developed to boost the identification
feature learning by exploiting the aggregation of unlabeled identities. Experimentally, the proposed DMRNet++ obtains the mAP of
94.5% and 52.1% on CUHK-SYSU and PRW datasets, which exceeds most existing methods.

Index Terms—Person Search, Person Re-identification, Object Detection, Semi-Supervised Learning
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1 INTRODUCTION

PERSON search [1], [2], [3], [4], [5] aims to retrieve a query
person from a gallery of uncropped scene images captured

by different cameras. This task consists of two sub-tasks, i.e.,
pedestrian detection [6], [7] and person re-identification (re-
ID) [8], [9]. It requires locating the persons within images first,
and then matching the query with other persons for identifying
the correct ones across different cameras. Compared with the
pure person re-ID task, person search acts on the whole scene
images, showing more potentials in real-world applications such as
video analysis, video retrieval, and human-computer interaction.
Despite tremendous progress achieved by recent works [2], [4],
this task still suffers from the issues inherited from both detection
and person re-ID, i.e., viewpoint and pose variance, occlusion,
complex background, false alarms in detection, misalignment, etc.

According to the structure designation of the two sub-tasks,
i.e., pedestrian detection and person re-ID, the existing works
can be divided into two-step and one-step manners. Two-step
methods [4], [10], [11], [12], [13], [14] sequentially process the
sub-tasks with two separate networks. A detector is applied on
raw images to predict the bounding boxes and a followed re-ID
network extracts identification features from the detected person
images. In contrast, one-step methods [1], [2], [3], [5], [15], [16],
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[17], [18] learn person localization and identification in parallel
with the underlying network shared, exhibiting higher efficiency.
Given an uncropped input image, the model predicts the bounding
boxes and the corresponding identification features of all the
detected persons within a single network.

Despite significant progress that has been made in the one-
step person search [1], [2], [3], [5], three crucial issues still have
not been fully solved by previous works. 1) Coupling the two
sub-tasks in a shared network may be detrimental to the learning
of each task. Specifically, popular one-step methods based on the
Faster R-CNN [7] supervise the shared Region-of-Interest (RoI)
features with multi-task losses, i.e., regression loss, foreground-
background classification loss, and identification loss. As Fig. 1(a)
shows, pedestrian detection focuses on learning the commonness
of all persons while recognition aims to distinguish the differ-
ences among multiple identities [12]. The competing objectives
of these sub-tasks make the RoI features difficult to optimize.
2) Limited by the GPU memory, the small batch size induces
the inconsistent memory bank under the end-to-end fashion, as
shown in Fig. 1(b). Previous works [15] maintain an exponential
moving average feature proxy for every identity, i.e., a look-
up table. However, when an identity is infrequently visited, its
feature proxy could be outdated as the weights of the model
evolve. It is unclear that this strategy could be scaled to larger
datasets with numerous identities. Since metric learning requires
vast informative similarity pairs, the features with less consistency
lead to sub-optimal identification feature learning. 3) The inherent
relationships among unlabeled persons are underutilized as they
are only taken as negative samples. As Fig. 1(c) shows, in the
person search dataset, it is intractable to recognize and annotate
all the person identities. Thus, there are some instances with
only bounding box labels, termed as unlabeled identities. In the
CUHK-SYSU dataset [15], 72.7% of pedestrians have no identity
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Fig. 1. Typical issues for one-step person search task. (a) Conflicting
objectives: the detection aims at finding commonness of all persons
while recognition focus on the difference of multiple identities. (b) In-
consistent memory bank: the outdated features are less consistent
with newest ones caused by the limited batch size. (c) Underutilized
unlabeled persons: the inherent relationships among unlabeled persons
are unexplored since they are only taken as the negative sample pairs.

samples in a circular queue which are considered as the negative
samples of the labeled ones. However, this manner discards the
great potential of unlabeled persons. To tackle these challenges,
we propose the DMRNet++ containing three aspects as follows:

First, we rethink the decoupling and integration of pedestrian
detection and identification in the one-step person search frame-
work, establishing a task-decoupled framework (TDF). Different
from previous works that apply conflicting objectives on RoI
features, our motivation is that RoI features should be specific
to the re-ID task as they contain the detailed recognition patterns
of detected persons. Besides, pedestrian detection can be learned
well based on the coarse convolutional features according to
the success of one-stage detectors. Therefore, we take the one-
stage detector as our base network. Detection and re-ID modules
are branched from the layers of the feature pyramid network
(FPN) [19], which contain rich visual information and could
burden multiple types of task-specific feature encoding. The fine-
grained RoI features sampled from FPN are only fed into the re-ID
module for recognition. Based on the RoI align, interference may
be involved due to the large receptive fields of network [1]. Here
we introduce a point-based spatial sampling strategy to extract
the RoI features, providing a more flexible approach to draw
the details of pedestrians. We demonstrate that this new design
makes the two sub-tasks substantially decoupled and facilitates
the learning for both tasks. Specifically, the decoupled network
with RetinaNet backbone [20] achieves 7.0% improvements on
mAP compared to the popular baseline with Faster R-CNN.

Second, to further boost the identification feature learning,
we build a memory-reinforced mechanism (MRM). Inspired by
the recent unsupervised contrastive learning method [21], we
memorize the feature embeddings of the recently visited instances
in a queue-style memory bank for augmenting pairwise metric

learning. The memorized features are consistently encoded by a
slow-moving average of the network. The dual networks reinforce
each other and converge to robust solution states. Experimental
evidence proves that the developed mechanism is more effective
than the look-up table.

Third, we introduce an unlabeled-aided contrastive loss (UCL)
to exploit the potentials of the unlabeled identities. Different from
previous works that only take the unlabeled persons as nega-
tive pairs, we model the recognition process as semi-supervised
learning. Apart from the labeled persons, contrastive learning is
also applied to unlabeled identities, enhancing the generalization
of models. Without the identity labels, it is natural to construct
the positive pairs through augmentations for unlabeled persons.
To further exploit the aggregations, more informative positive
pairs can be established by selecting the k-reciprocal nearest
neighbors [22] of the unlabeled samples. With the inevitable noisy
positives, different forms of contrastive loss are applied according
to the similarities. Experimental evidence proves the necessity and
effectiveness. Further, with this semi-supervised modeling, our
proposed UCL can be generalized to other unlabeled scenarios,
alleviating the burden of costly labeling.

Our main contributions can be summarized as follows:

• We propose a simplified one-step framework that decou-
ples the optimization of detection and identification. In
particular, a point-based spatial sampling is employed to
generate RoI features, which are only specific to the re-ID
task, promoting the performance of both sub-tasks.

• We introduce a memory-reinforced mechanism for effec-
tive identification learning. A slow-moving average of the
network is incorporated for consistently encoding features
in a queue-style memory bank.

• We innovatively model the recognition process as semi-
supervised learning, and introduce an unlabeled-aided con-
trastive loss to further explore the potentials of unlabeled
identities.

• Our model is easy to train and efficient to use. Adequate
experiments show the competence of our DMRNet++, and
the performance surpasses all the one-step methods.

A preliminary version of this work was published in [23]. We
have extended our conference version as follows. (1) Owing to the
inadequate exploration of the unlabeled identities, we model the
re-ID module learning as a semi-supervised task. By developing
an unlabeled-aided contrastive loss, more positive pairs of the
unlabeled samples are constructed. To ease the effect of noisy
positives, a loose constraint is applied on the positive samples
with lower similarities. Enriched pairs ensure contrastive learning
on unlabeled identities, thus improving the generalization of the
learned model. (2) We enhance the original decoupled framework
to generate more discriminative RoI features. With the proposed
point-based spatial sampling strategy, a more flexible manner is
provided to draw the details of pedestrians. This reduces the
involved interference of RoI features caused by the large receptive
fields of networks. (3) We validate the competence of DMR-
Net++ by exploring various data augmentations, incorporating
with different detectors, and evaluating it under cross-dataset
scenarios. Both quantitative and qualitative analyses are presented.
(4) The experiments exhibit the effectiveness and efficiency of
our DMRNet++, which reaches comparable performance with the
state-of-the-art two-step method.
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objectives: the detection task aims at finding commonness of all per-
sons while the recognition task focuses on the difference of multiple
instances. (b) Inconsistent memory bank: the outdated features are
less consistent with newest ones caused by the limited batch size.
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features, our motivation is that RoI features should be specific
to the re-ID task as they contain the detailed recognition patterns
of detected persons. Besides, pedestrian detection can be learned
well based on the coarse convolutional features according to
the success of one-stage detectors. Therefore, we take the one-
stage detector as our base network. Detection and re-ID modules
are branched from the layers of the feature pyramid network
(FPN) [19], which contain rich visual information and could
burden multiple types of task-specific feature encoding. The fine-
grained RoI features sampled from FPN are only fed into the re-ID
module for recognition. Based on the RoI align, interference may
be involved due to the large receptive fields of network [1]. Here
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the RoI features, providing a more flexible approach to draw
the details of pedestrians. We demonstrate that this new design
makes the two sub-tasks substantially decoupled and facilitates
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with RetinaNet backbone [20] achieves 7.0% improvements on
mAP compared to the popular baseline with Faster R-CNN.
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the recent unsupervised contrastive learning method [21], we
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neighbors [22] of the unlabeled samples. With the inevitable noisy
positives, different forms of contrastive loss are applied according
to the similarities. Experimental evidence proves the necessity and
effectiveness. Further, with this semi-supervised modeling, our
proposed UCL can be generalized to other unlabeled scenarios,
alleviating the burden of costly labeling.

Our main contributions can be summarized as follows:

• We propose a simplified one-step framework that decou-
ples the optimization of detection and identification. In
particular, a point-based spatial sampling is employed to
generate RoI features, which are only specific to the re-ID
task, promoting the performance of both sub-tasks.

• We introduce a memory-reinforced mechanism for effec-
tive identification learning. A slow-moving average of the
network is incorporated for consistently encoding features
in a queue-style memory bank.

• We model the recognition process as semi-supervised
learning, and introduce a unlabeled-aided contrastive loss
to further explore the potentials of unlabeled identities.

• Our model is easy to train and efficient to use. Adequate
experiments show the competence of our DMRNet++, and
the performance surpasses all the one-step methods.

A preliminary version of this work was published in [23]. We
have extended our conference version as follows. (1) Owing to the
inadequate exploration of the unlabeled identities, we model the
re-ID module learning as a semi-supervised task. By developing
an unlabeled-aided contrastive loss, more positive pairs of the
unlabeled samples are constructed. To ease the effect of noisy
positives, a loose constraint is applied on the positive samples
with lower similarities. Enriched pairs ensure contrastive learning
on unlabeled identities, thus improving the generalization of the
learned model. (2) We enhance the original decoupled framework
to generate more discriminative RoI features. With the proposed
point-based spatial sampling strategy, a more flexible manner is
provided to draw the details of pedestrians. This reduces the
involved interference of RoI features caused by the large receptive
fields of networks. (3) We validate the competence of DMR-
Net++ by exploring various data augmentations, incorporating
with different detectors, and evaluating it under cross-dataset
scenarios. Both quantitative and qualitative analyses are presented.
(4) The experiments exhibit the effectiveness and efficiency of
our DMRNet++, which reaches comparable performance with the
state-of-the-art two-step method.
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2 RELATED WORK

2.1 Person search

Person search has raised a lot of interest in the computer vision
community recently [10], [11], [12], [14], [15]. In the existing
literature, existing approaches can be generally categorized into
two families of work according to the training steps.

Two-step methods [4], [10], [11], [12], [13], [14] separate the
person search task into two sub-tasks, i.e., the pedestrian de-
tection and person re-ID, trained with two independent models.
Zheng et al. [10] first make a thorough evaluation on various
combinations of different detectors and re-ID networks. They also
propose a Confidence Weighted Similarity (CWS), incorporating
the detection confidence into similarity matching. Lan et al. [11]
observe the resolution diversity problem and propose a Cross-
Level Semantic Alignment (CLSA) network to solve the multi-
scale matching problem. Chen et al. [12] consider the contradic-
tory objective problem and extract more representative features
by a two-steam model. Han et al. [13] develop an RoI transform
layer that enables gradient backpropagated from the re-ID network
to the detector, obtaining more reliable bounding boxes with the
localization refinement. Chan et al. [14] introduce reinforcement
learning to the detection network by constantly trying to adjust
the bounding box in various ways to find the perfect match.
Wang et al. [4] point out the consistency problem that the re-
ID model trained with hand-drawn images is not available. They
alleviate this issue by producing query-like bounding boxes as
well as training with detected bounding boxes.

One-step methods [1], [2], [3], [5], [15], [16], [17], [18] develop
a unified model to train the pedestrian detection and person re-ID
end-to-end. Generally, this manner is more efficient with fewer
parameters. Meanwhile, it meets more challenges, such as the
contradictory objective problem and the redundant context infor-
mation of instances. Xiao et al. [15] employ the Faster R-CNN as
the detector, and share base layers with the person re-ID network.
Meanwhile, an Online Instance Matching (OIM) loss is proposed
to enable a better convergence with large but sparse identities in
the classification task. With the usage of more unlabeled instances,
a better feature space is learned. Xiao et al. [16] apply the
center loss to this task, enhancing the discrimination of feature
embeddings. Several methods consider leveraging the query image
extensively. Munjal et al. [17] first introduce a query-guided end-
to-end person search network. With the global context from both
query and gallery images, the well-designed framework generates
query-relevant proposals and learns query-guided re-ID scores.
Yan et al. [18] explore the contextual information and build a
graph learning framework to employ context pairs to update target
similarity. To incorporate the query information into the detection
network, Dong et al. [1] propose a Siamese network that takes
both scene images and cropped person patches as input. With the
guidance of the cropped patches, the learned model can focus more
on persons. Yan et al. [24] first employ the anchor-free framework
to tackle this task and address three misalignment issues in scale,
region, and task levels.

As pointed out by [12], pedestrian detection focuses on learn-
ing the commonness of all persons while person re-ID aims to
distinguish the differences among multiple identities. Chen [2]
solves this problem by disintegrating the embeddings into norm
and angle, which are used to measure the detection confidence and
identity similarity, respectively. However, this method ignores the

effect of the regression loss, and excessive contexts still hamper
feature learning. Different from [2], we identify that the inherently
defective module design is the core cause of the conflict and
hinders effective feature learning.

2.2 Pedestrian detection
Pedestrian detection plays a crucial role in the person search
framework. There are several commonly used detectors in
traditional object detection, including Deformable Part Model
(DPM) [25], Aggregated Channel Features (ACF) [26], Locally
Decorrelated Channel Features (LDCF) [27] and Integrate Chan-
nel Features (ICF) [28]. In recent years, with the advent of
Convolutional Neural Network (CNN), the object detection task is
soon dominated by CNN-based detectors. According to whether
there is a regional proposal network to generate proposals, the
methods can be broadly divided into two categories: one-stage
manner [20], [29], [30] and two-stage manner [7], [31], [32], [33].

The two-stage manner is composed of a proposal generator
and a region-wise prediction subnetwork ordinarily. As a repre-
sentative two-stage detector, Faster R-CNN [7] has been extended
into numerous variants [33], [34], [35], [36], [37]. Faster R-CNN
proposes a region proposal network (RPN) to generate proposals
in the first stage, and then refine the object localization in the
second stage. It greatly reduces the amount of computation while
shares the characteristics of the backbone network. Lin et al. [19]
design a top-down architecture with lateral connections for build-
ing multi-level semantic feature maps at multiple scales, called the
Feature Pyramid Network (FPN). Using FPN in a basic detection
network can assist in detecting objects at different scales.

Due to the high efficiency, the one-stage manner has attracted
much more attention recently. YOLO [29], [38] directly detects
objects through a single feed-forward network with fast detection
speed. SSD [30] spreads out default boxes on multi-scale layers
within a ConvNet, predicting the object category and box offsets.
RetinaNet [20] solves the problem of class imbalance by focal
loss, which attends to the learning on hard examples and down-
weight the contribution of numerous easy negatives.

Recently, anchor-free detectors have raised more interest
due to their simple structures and efficient implementations.
FCOS [39] employs the center point of the objects to define
positives, then predicts the four distances from positives to ob-
ject boundary. RepPoints [40] first locates several self-learned
keypoints and then predicts the bound of the spatial extent of
objects. Without excessive hyper-parameters caused by anchors,
these methods are more potential in terms of generalization ability.

2.3 Person Re-Identification
Person Re-Identification [8], [41], [42], [43], [44] aims at search-
ing a query person from the cropped gallery images containing
the same person in a cross-camera mode. Recently, deep learning
dominates the re-ID research community with significant advan-
tages in retrieval accuracy. Most methods focus on producing
identity-discriminative representations, including representative
feature mining [8], [45], [46], [47], [48], [49], [50] and deep
metric learning [51], [51], [52], [53]. Sun et al. [8] propose a
generalized Part-based Convolutional Baseline (PCB) to extract
several body parts features, allowing various partition strategies
for part extraction, e.g., pose estimation, human parsing, and
uniform partitions. Wang et al. [54] introduce a multi-branch
deep network for learning discriminative representations, termed
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as the Multiple Granularity Network (MGN). MGN learns global
and local representation with a certain granularity of body parti-
tion. Meanwhile, some deep metric learning methods [10], [51],
[52] are also widely used in person re-ID. Cross-entropy loss
is widely used in the existing methods [10], [46], [55], which
treats the training process as an image classification problem. The
contrastive loss [56], [57] optimize the pairwise relationship by
pulling positive sample pairs closer while pushing negative pairs
farther than distance threshold. Zheng et al. [53] show that the
contrastive loss can work well with cross-entropy loss to further
boost the performance. Hermans et al. [51] develop a triplet hard
loss, which applies an online triplet hard negative mining method
in a mini-batch, promoting the result increasingly. Moreover,
Chen et al. [52] propose a quadruplet loss, which aims to further
reduce the intra-class and enlarge the inter-class variations.

3 BACKGROUND

Xiao et al. [15] firstly propose the one-step person search work.
As the most representative framework, it is widely adopted in the
following methods [1], [2], [3], [5], [16], [17], [18]. Specifically,
the pipeline is based on the Faster R-CNN [7], as illustrated in
Fig. 2(a). With the shared backbone, detection and re-ID head are
branched from the RoI features. For the re-ID head, the features
are supervised by the developed Online Instance Matching (OIM)
loss. Together with the detection losses in the RPN head and RoI
head, the whole network is trained in an end-to-end fashion.

With a memory bank mechanism, the OIM loss is designed
to enable a better convergence with large but sparse identities in
the classification task. Specifically, suppose there are C labeled
identities in the training set, a look-up table W 2 RC⇥d is
constructed to memorize the class centroid embeddings, where
d denotes the feature dimension. For unlabeled persons, a circular
queue V 2 RM⇥d is built to store the diverse embeddings, which
are used as the negative samples of labeled ones. Different from
the parameters of classifiers, the look-up table and circular queue
are considered as external buffers.

In a mini-batch, we denote the feature of a labeled person
x 2 Rd. We then compute the cosine similarities with all the
labeled and unlabeled identities by Wx and V x, respectively. The
probability of x being recognized as the identity with class-id i is
defined by a softmax function:

pi =
exp (wix/⌧)

PC
j=1 exp (wjx/⌧) +

PM
k=1 exp (vkx/⌧)

, (1)

where wi is i-th class centroid embedding in the look-up table,
and wix measures how well x matches the i-th class centroid. ⌧
is a temperature parameter that controls the concentration level of
the distribution. The final objective is to minimize the negative
log-likelihood, which is formulated as:

Loim = �Ex [log pgt] , (2)

where pgt is the predicted probability of the ground-truth class.
During backward, the out-of-date features in V are dequeued and
the new unlabeled features in the current batch are enqueued. The
component in the look-up table W is updated with momentum ⌘:

wgt  ⌘wgt + (1� ⌘)x. (3)
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log-likelihood, which is formulated as:

Loim = �Ex[log pi], i = 1, 2, ..., C. (2)

During backward, the out-of-date features in V are dequeued
and the unlabeled features in the current batch are enqueued. The
look-up table W is updated with momentum ⌘:

wi  ⌘wi + (1� ⌘)x. (3)
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4 PROPOSED METHOD

Although the one-step person search exhibits higher efficiency,
several challenges still exist in previous works. To address the
mentioned three issues, we develop an enhanced decoupled and
memory-reinforced network (DMRNet++) outlined in Fig. 3. It
contains a task-decoupled framework (TDF) to disentangle the
tightly coupled pipelines (Sec. 4.1). A memory-reinforced mech-
anism (MRM) is introduced to ensure a more consistent memory
bank (Sec. 4.2). To further exploit the underutilized unlabeled
persons, an unlabeled-aided contrastive loss (UCL) is proposed
for recognition (Sec. 4.3).

4.1 Task-Decoupled Framework

As exhibited in Fig. 2(a), the general person search pipeline is
widely adopted in the existing one-step algorithms [1], [2], [3], [5],
[16], [17], [18]. To disentangle this tightly coupled pipeline, we
propose a task-decoupled framework shown in Fig. 2(b). We take
the following aspects into account when designing our framework:

Spatial-decoupled: There exist contradictory objectives when su-
pervising the shared RoI features with multi-task losses. Evidently,
foreground-background classification pursues to learn the univer-
sality of all the persons while person re-ID aims at distinguishing
different persons. Moreover, the regression loss requires more
information around the box boundary, while excessive contexts
harm the fine-grained features for identification. Thus, we target
to spatially decouple the imposed feature spaces of two sub-tasks.

Representative: It is crucial to generate representative features for
pedestrians during retrieval. Relying on the RoI align layer with
the proposals is suboptimal, especially in the beginning there are
several incorrect results for detection. Even if the proposals are
accurate enough, the features extracted by RoI align may involve
interferential cues outside the boxes due to the large receptive
field [1]. Since the human body exhibits irregular shapes, a point-
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partitions. Wang et al. [53] introduce a multi-branch deep network
for learning discriminative representations, termed as the Multiple
Granularity Network (MGN). MGN learns global and local repre-
sentation with a certain granularity of body partition. Meanwhile,
some deep metric learning methods [10], [51], [52] are also widely
used in person re-ID. Cross-entropy loss is widely used in the
existing methods [10], [46], [54], which treats the training process
as an image classification problem. The contrastive loss [55],
[56] optimize the pairwise relationship by pulling positive sample
pairs closer while pushing negative pairs farther than the distance
threshold. Hermans et al. [51] develop a triplet hard loss, which
applies an online triplet hard negative mining method in a mini-
batch, promoting the result increasingly. Chen et al. [52] propose
a quadruplet loss, which aims at further reducing the intra-class
variations and enlarging the inter-class variations.

3 BACKGROUND

Xiao et al. [15] firstly propose the one-step person search work.
As the most representative framework, it is widely adopted in the
following methods [1], [2], [3], [5], [16], [17], [18]. Specifically,
the pipeline is based on the Faster R-CNN [7], as illustrated in
Fig. 2(a). With the shared backbone, detection and re-ID head are
branched from the RoI features. For the re-ID head, the features
are supervised by the developed Online Instance Matching (OIM)
loss. Together with the detection losses in the RPN head and RoI
head, the whole network is trained in an end-to-end fashion.

With a memory bank mechanism, the OIM loss is designed to
enable a better convergence with large but sparse identities in the
classification task. Specifically, suppose there are C labeled iden-
tities in the training set, a look-up table W 2 RC⇥d is constructed
to memorize the class centroid embeddings, where d denotes the
feature dimension. For the unlabeled persons, a circular queue
V 2 RM⇥d is built to store the diverse embeddings, which are
used as the negative samples of labeled ones. Different from the
parameters of classifiers, the look-up table and circular queue are
considered as external buffers.

In a mini-batch, denote the feature of a labeled person as x 2
Rd. We compute the cosine similarities with all the labeled and
unlabeled identities by Wx and V x, respectively. The probability
of x being recognized as the identity with class-id i is defined by
a softmax function:

pi =
exp (wix/⌧)

PC
j=1 exp (wjx/⌧) +

PM
k=1 exp (vkx/⌧)

, (1)

where wi is i-th class centroid embedding in the look-up table,
and wix measures how well x matches the i-th class centroid. ⌧
is a temperature parameter that controls the concentration level of
the distribution. The final objective is to minimize the negative
log-likelihood, which is formulated as:

Loim = �Ex[log pi], i = 1, 2, ..., C. (2)

During backward, the out-of-date features in V are dequeued
and the unlabeled features in the current batch are enqueued. The
look-up table W is updated with momentum ⌘:

wi  ⌘wi + (1� ⌘)x. (3)

RPN

RoI AlignResNet-50
(Part 1)

Proposals

GAP

FC

ResNet-50
(Part 2)

FC

FC

Reg loss

Cls loss

Cls loss

Reg loss

Re-ID loss

FC

FC

CONV

(a) General one-step person search pipeline

Spatial
sampling

GT boxes

For each spatial location

Feature Maps

Flatten
ResNet-50

Class subnet

Box subnet

Reg loss

Cls loss

FC
Re-ID loss

(b) Our decoupled one-step person search pipeline

Fig. 2. Comparisons of different training pipelines. (a) General one-step
person search pipeline. Multi-task losses are applied on the shared RoI
features. (b) Our decoupled one-step person search pipeline. The RoI
features are specific to the re-ID task.

4 PROPOSED METHOD

Although the one-step person search exhibits higher efficiency,
several challenges still exist in previous works. To address the
mentioned three issues, we develop an enhanced decoupled and
memory-reinforced network (DMRNet++) outlined in Fig. 3. It
contains a task-decoupled framework (TDF) to disentangle the
tightly coupled pipelines (Sec. 4.1). A memory-reinforced mech-
anism (MRM) is introduced to ensure a more consistent memory
bank (Sec. 4.2). To further exploit the underutilized unlabeled
persons, an unlabeled-aided contrastive loss (UCL) is proposed
for recognition (Sec. 4.3).

4.1 Task-Decoupled Framework

As exhibited in Fig. 2(a), the general person search pipeline is
widely adopted in the existing one-step algorithms [1], [2], [3], [5],
[16], [17], [18]. To disentangle this tightly coupled pipeline, we
propose a task-decoupled framework shown in Fig. 2(b). We take
the following aspects into account when designing our framework:

Spatial-decoupled: There exist contradictory objectives when su-
pervising the shared RoI features with multi-task losses. Evidently,
foreground-background classification pursues to learn the univer-
sality of all the persons while person re-ID aims at distinguishing
different persons. Moreover, the regression loss requires more
information around the box boundary, while excessive contexts
harm the fine-grained features for identification. Thus, we target
to spatially decouple the imposed feature spaces of two sub-tasks.

Representative: It is crucial to generate representative features for
pedestrians during retrieval. Relying on the RoI align layer with
the proposals is suboptimal, especially in the beginning there are
several incorrect results for detection. Even if the proposals are
accurate enough, the features extracted by RoI align may involve
interferential cues outside the boxes due to the large receptive
field [1]. Since the human body exhibits irregular shapes, a point-
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Fig. 2. Comparisons of different training pipelines. (a) General one-step
person search pipeline. Multi-task losses are applied on the shared RoI
features. (b) Our decoupled one-step person search pipeline. The RoI
features are specific to the re-ID task.

4 PROPOSED METHOD

Although the one-step person search exhibits higher efficiency,
several challenges still exist in this line of works. To address
the three issues mentioned in Fig. 1, we develop an enhanced
decoupled and memory-reinforced network (DMRNet++) outlined
in Fig. 3. It contains a task-decoupled framework (TDF) to
disentangle the tightly coupled pipelines (Sec. 4.1). A memory-
reinforced mechanism (MRM) is introduced to ensure a more
consistent memory bank (Sec. 4.2). To further exploit the underuti-
lized unlabeled persons, an unlabeled-aided contrastive loss (UCL)
is proposed for recognition (Sec. 4.3).

4.1 Task-Decoupled Framework
As exhibited in Fig. 2(a), the general person search pipeline is
widely adopted in the existing one-step algorithms [1], [2], [3], [5],
[16], [17], [18]. To disentangle this tightly coupled pipeline, we
propose a task-decoupled framework shown in Fig. 2(b). We take
the following aspects into account when designing our framework:

Spatial-decoupled: There exist contradictory objectives when su-
pervising the shared RoI features with multi-task losses. Evidently,
foreground-background classification pursues to learn the univer-
sality of all the persons while person re-ID aims at distinguishing
different persons. Moreover, the regression loss requires more
information around the box boundary, while excessive contexts
harm the fine-grained features for identification. Thus, we target
to spatially decouple the imposed feature spaces of two sub-tasks.

Representative: It is crucial to generate representative features
for pedestrians during retrieval. Relying on the RoI align layer
with the proposals is suboptimal, especially in the beginning there
are several incorrect results for detection. Even if the proposals
are accurate enough, the features extracted by RoI align may
involve interferential cues outside the boxes due to the large
receptive field [1]. To alleviate the effect of excess context, a point-
based strategy is proposed to provide a more flexible approach to
drawing the details of pedestrians.
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Fig. 3. An overview of the enhanced Decoupled and Memory-Reinforced Networks (DMRNet++) for one-step person search. (a) f is our task-
decoupled framework. The images are input to a shared backbone, then detection and re-ID modules are branched from the layers of FPN. With a
point-based spatial sampling, the RoI features are specific to the re-ID task. The generated ID features are termed labeled or unlabeled anchors.
(b) f̄id is a slowly-updating network counterpart, which is utilized to consistently encode the re-ID features, maintaining consistent memory banks,
i.e., Ql and Qu. Thus, multiple positive and negative similarity pairs can be built between anchors and queued embeddings. (c) Diagram of the
proposed UCL. For the labeled anchor (blue box), its positive pairs (blue solid line) are selected from Ql that with the same identities. The rest ones
in Ql and Qu are considered as negative pairs (blue dotted line). For the unlabeled anchor (green box), the assigned positive pairs (green solid
line) are obtained by k-reciprocal nearest neighbors. Other samples within the same image and those in Ql are negative pairs (green dotted line).

based strategy is proposed to provide a more flexible approach to
drawing the details of pedestrians.

Simplicity: For the person search task, the detector only re-
quires to distinguish person or background, rather than the multi-
classification task in object detection [7]. It is unnecessary to
apply foreground-background classification loss in both the RPN
head and the RoI head. Besides the redundant loss function, the
split of the backbone also makes the re-ID module awkward. To
tackle this, we take simplicity into account when designing the
framework.

The above criteria motivate a sample framework to generate
representative RoI features for identification, which is spatial-
decoupled for the sub-tasks. As illustrated in Fig. 2(b), instead
of the multi-task losses under a shared feature space, our design
contains three core aspects:

First, since the RoI features contain the detailed recognition
patterns of detected persons, they can be specific to the re-ID task.
Meanwhile, bounding box regression and foreground-background
classification do not have to rely on the fine-grained RoI features
in light of the success of one-stage detectors, e.g., RetinaNet [20],
FCOS [39] and RepPoints [40]. Specifically, we adopt the ResNet-
50 [57] with FPN [19] as the shared backbone. For the detection
head, a class subnet and a box subnet based on FPN are employed
to perform foreground-background classification and bounding
box regression on each location. To extract the RoI features for
identification, we conduct spatial sampling on the FPN layers
to produce fine-grained embeddings. Since FPN include rich
semantic information while RoI features contain specific content,
this design makes the two sub-tasks substantially decoupled.

Second, to produce more discriminative RoI features, we
employ the ground truth bounding boxes for the correctness and
introduce a spatial sampling strategy to ensure representativeness.
On one hand, we extract RoI features only based on the ground
truth bounding boxes during training, without the usage of the
predicted proposals from the regression subnet. This simplification

further reduces dependencies between regression and identifica-
tion. We experimentally show that using the largely reduced but
accurate training bounding boxes could result in slightly better
performance. On the other hand, we improve the box-based spatial
sampling methods with a point-based strategy to extract RoI
features. As mentioned above, the RoI align relies on rectangular
bounding boxes, i.e., the ground truth boxes in training and the
final predictions in testing. The bounding box is convenient to use
but provides coarse localization and results in the corresponding
rough extraction of persons. In this paper, considering the irregular
shapes of the human body, we aim at learning a set of points
instead of the boxes to extract RoI features. Specifically, given the
input feature map F and a ground truth box of size w ⇥ h, we
first sample g ⇥ g initial points inside the box uniformly, denoted
as {pij}(0 <= i, j < g). Inspired by [35], additional point-wise
offsets �p 2 Rg⇥g⇥2 are learned based on the initial points to
augment the spatial sampling locations, which is formulated as:

�p = ↵ · FC(F 0, ✓p) � (w, h), (4)

where F 0 and ✓p denote the extracted RoI features based on
the initial points and the learnable parameters, respectively. FC

represents a three-layer fully connected subnet, which learns the
normalized point-wise offsets. Following [35], the offsets are
transformed by element-wise product with the width and height of
the box, with a pre-defined scalar ↵. For (i, j)-th point, the new
augmented point is obtained by adding the learned offset �pij .
To generate the RoI features F̂ by these irregular points, Eq. (5)
is implemented by the bilinear interpolation operation [58] on F .

F̂ (i, j) = F (pij + �pij). (5)

Third, by removing the detection loss from the RoI head, the
re-ID module is solely preserved with high simplicity. Without
the separated ResNet-50 and global average pooling, the extracted
RoI feature is flattened and transformed by a fully connected layer.
This new design is both efficient and simple compared with the
general one-step pipeline.

!"!"

!

Fig. 3. An overview of the enhanced Decoupled and Memory-Reinforced Networks (DMRNet++) for one-step person search. (a)F is our task-
decoupled framework. The images are input to a shared backbone, then detection and re-ID modules are branched from the layers of FPN. With a
point-based spatial sampling, the RoI features are specific to the re-ID task. The generated ID features are termed labeled or unlabeled anchors.
(b)F̄id is a slowly-updating network counterpart, which is utilized to consistently encode the re-ID features, maintaining consistent memory banks,
i.e., Ql and Qu. Thus, multiple positive and negative similarity pairs can be built between anchors and queued embeddings. (c) Diagram of the
proposed UCL. For the labeled anchor (blue box), its positive pairs (blue solid line) are selected from Ql that with the same identities. The rest ones
in Ql and Qu are considered as negative pairs (blue dotted line). For the unlabeled anchor (green box), the assigned positive pairs (green solid
line) are obtained by k-reciprocal nearest neighbors. Other samples within the same image and those in Ql are negative pairs (green dotted line).

Simplicity: For the person search task, the detector only re-
quires to distinguish person or background, rather than the multi-
classification task in object detection [7]. It is unnecessary to
apply foreground-background classification loss in both the RPN
head and the RoI head. Besides the redundant loss function, the
split of the backbone also makes the re-ID module awkward. To
tackle this, we take simplicity into account when designing the
framework.

The above criteria motivate a sample framework to generate
representative RoI features for identification, which is spatial-
decoupled for the sub-tasks. As illustrated in Fig. 2(b), instead
of the multi-task losses under a shared feature space, our design
contains three core aspects:

First, since the RoI features contain the detailed recognition
patterns of detected persons, they can be specific to the re-ID task.
Meanwhile, bounding box regression and foreground-background
classification do not have to rely on the fine-grained RoI features
in light of the success of one-stage detectors, e.g., RetinaNet [20],
FCOS [39] and RepPoints [40]. Specifically, we adopt the ResNet-
50 [58] with FPN [19] as the shared backbone. For the detection
head, a class subnet and a box subnet based on FPN are employed
to perform foreground-background classification and bounding
box regression on each location. To extract the RoI features for
identification, we conduct spatial sampling on the FPN layers
to produce fine-grained embeddings. Since FPN include rich
semantic information while RoI features contain specific content,
this design makes the two sub-tasks substantially decoupled.

Second, to produce more discriminative RoI features, we
employ the ground truth bounding boxes for the correctness and
introduce a spatial sampling strategy to ensure representativeness.
On one hand, we extract RoI features only based on the ground
truth bounding boxes during training, without the usage of the
predicted proposals from the regression subnet. This simplification
further reduces dependencies between regression and identifi-
cation. We experimentally show that using the largely reduced
but accurate training bounding boxes could result in slightly

better performance. On the other hand, we improve the box-
based spatial sampling methods with a point-based strategy to
extract RoI features. As mentioned above, the RoI align relies
on rectangular bounding boxes, i.e., the ground truth boxes in
training and the final predictions in testing. The bounding box is
convenient to use but provides coarse localization and results in the
corresponding rough extraction of persons. In this paper, to focus
on the discriminative part of pedestrians, we aim at learning a set
of points instead of the boxes to extract RoI features. Specifically,
given the input feature map f and a ground truth box of size
bw ⇥ bh, we first sample g ⇥ g initial points inside the box area
uniformly, denoted as {aij}(0 <= i, j < g). Inspired by [35],
additional point-wise offsets �a 2 Rg⇥g⇥2 are learned based on
the initial points to augment the spatial sampling locations, which
is formulated as:

�a = ↵ · MLP (f 0, ✓a) � (bw, bh), (4)

where f 0 and ✓a denote the extracted RoI features based on the
initial points and the learnable parameters, respectively. MLP
represents a three-layer fully connected subnet, which learns the
normalized point-wise offsets. � denotes element-wise product.
Following [35], the offsets are transformed by element-wise prod-
uct with the width and height of the box, with a pre-defined scalar
↵. For (i, j)-th point, the new augmented point is obtained by
adding the learned offset �aij . To generate the RoI features f̂
by these irregular points, Eq. (5) is implemented by the bilinear
interpolation operation [59] on f .

f̂(i, j) = f (aij + �aij) . (5)

Third, by removing the detection loss from the RoI head, the
re-ID module is solely preserved with high simplicity. Without
the separated ResNet-50 and global average pooling, the extracted
RoI feature is flattened and transformed by a fully connected layer.
This new design is both efficient and simple compared with the
general one-step pipeline.
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Discussion: Previous works [2], [12] also study the contradic-
tory goals of the two sub-tasks. [12] adopts the two-step approach
to avoid conflict. For the one-step manner, [2] reconciles the con-
flict by factorizing embeddings into magnitude and direction for
foreground scoring and re-ID, respectively. From another perspec-
tive, we identify that the inherently defective module design is the
main cause of this issue and hinders the effective feature learning
of the one-step models. By decoupling the two sub-tasks spatially,
the contradictory goals are conducted on different feature spaces.
In the experiments, we make comparisons on different network
designs. It shows that the negative effect of the inferior module can
be alleviated clearly with a simple head disentanglement. Further,
almost 7.0% improvements can be achieved with our decoupled
design, more details are exhibited in Sec. 5.4.

4.2 Memory-Reinforced Mechanism
Effective feature learning is challenging for the one-step person
search. Although the OIM loss solves the gradient issue by intro-
ducing the memory bank mechanism, the memorized embeddings
are not consistently encoded. Specifically, limited by the GPU
memory constraints in the end-to-end fashion, the batch size
is relatively small in the one-step person search. In the OIM
loss, samples in each mini-batch select their proxy embeddings
as positive pairs from the memory bank. However, the proxy
is updated when it meets the sample with the same category.
This induces that the encoders of the comparing features come
from different iterations with a long time apart. The memorized
embeddings could be outdated as the weights of the model evolve
and are less consistent. It is unclear that this strategy could be
scaled to larger datasets with numerous identities.

To keep the consistency of the comparing feature embeddings,
we propose a memory-reinforced method for effective feature
learning. Inspired by [21], [60], a slowly-updating network coun-
terpart is incorporated for yielding a consistent queue-style feature
memory bank.

Queue-style memory bank. Instead of keeping the class proxy
embeddings within the look-up table, we maintain a queue-style
memory bank for the labeled instances. It only keeps the features
of recently visited instances, avoiding features being outdated.
Moreover, it decouples the memory bank size from the number of
identities. This is more flexible to set the size as a hyper-parameter.

In this paper, we maintain a labeled queue Ql 2 RL⇥d

containing the features of L labeled persons, and an unlabeled
queue Qu 2 RU⇥d containing the features of U unlabeled
persons, where d is the feature dimension.

A slow-moving average of the network. To make the stored
features encoded consistently, we introduce a slow-moving aver-
age of the network for generating features in the memory bank.
We denote our decoupled network as F , where its parameters ✓
are updated by the back-propagation. The slow-moving average of
the network is denoted by F̄id. Its parameters ✓̄ are updated by
exponential moving average (EMA) [60] at each iteration:

✓̄  m✓̄ + (1�m)✓, (6)

where m is the momentum factor. With a large momentum,
the parameters ✓̄ are updated slowly towards ✓, making little
difference among encoders from different iterations. This ensures
the consistency of the encoded features in the memory bank.
Note that ✓̄ is only used for extracting identification embeddings,

without the detection modules. F̄id requires no gradient and brings
little overhead at each iteration.

4.3 Unlabeled-aided Contrastive Loss

In previous OIM-based methods [1], [2], [5], [15], the unlabeled
persons are only considered as negative classes for all the labeled
identities, enlarging the underlying high-dimensional visual space.
However, the inherent relationships among unlabeled persons are
lacking exploration. To exploit the potential of the unlabeled
samples, we develop an unlabeled-aided contrastive loss with both
labeled and unlabeled samples as anchors.

Inspired by recent contrastive learning frameworks [21], [61],
[62], two correlated views of the same example are processed by
F and F̄id to maximize the agreement via the proposed contrastive
loss. Different augmented inputs are beneficial to the samples
in yielding effective embeddings, especially for the unlabeled
ones. Besides, by exploring the k-reciprocal neighbors [22], our
method can better leverage the unlabeled identities and harness
the inherent semantics to enrich the original supervised represen-
tations. The whole recognition process can be modeled as semi-
supervised learning. Further, our framework can be generalized to
more scenarios with under-labeled data. The loss calculation can
be divided into four steps as follows:

First, given a batch of input images, two separate data augmen-
tation operators are sampled from the same set of augmentations
with stochasticity, denoted as (t ⇠ T ) and (t0 ⇠ T ). F̄id and F
are trained to promote the consistency of the sample with different
data augmentations by contrastive learning. For one augmented
image set, the features insistently encoded by F̄id are employed to
update the Ql and Qu. As Fig. 3 shows, these newest embeddings
are enqueued while the outdated ones are dequeued, preserving
consistent queues with fixed lengths. The other augmented image
set is processed by F , producing the embeddings considered as the
anchors. Suppose there is a labeled anchor xl with the identity of
i and an unlabeled anchor xu.

Second, for the labeled anchor xl, assuming that there are
K positive samples in Ql sharing the same identity with xl,
and the rest J ones in Ql and Qu are viewed as negative
samples. The positive and negative cosine similarities are denoted
as {si

p}(i = 1, 2, ..., K) and {sj
n}(j = 1, 2, ..., J), respectively.

Different from the look-up table [15] that provides a single positive
sample, i.e., the centroid embedding, our method fits well the
multi-positive scene. Since the memory bank is decoupled from
the number of identities, we obtain multiple positive and negative
samples for the labeled anchor xl. To achieve balanced gradient
learning, we use a simplified loss function from [63] as multi-
positive contrastive learning:

Ll = log[1 +
KX

i=1

JX

j=1

exp(�(sj
n � si

p))], (7)

where � is a scale factor. We note that this loss formulation is
the natural extension of OIM loss in the case of multiple positive
similarity pairs. With this supervision, F and F̄id reinforce each
other and their parameter spaces converge to robust solution states.

Third, the labeled queue Ql with a large size has ensured
adequate negative samples, substituting the effect of unlabeled
identities. To exploit the inherent relationship among these unla-
beled identities, we apply contrastive learning to construct positive
and negative pairs. Discriminative embeddings can be learned by
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enriching sample pairs. Without the identity annotations, it is nat-
ural to construct the positive pairs through different augmentations
for unlabeled persons. For further aggregating the similar samples,
we select the k-reciprocal nearest neighbors of unlabeled features
to establish more informative positive pairs. Specifically, for a
specific unlabeled anchor xu, we calculate the cosine similarities
between xu and the features in unlabeled queue Qu. The similarity
list is arranged in descending order, where we select the top-k
similarities, and their corresponding samples are defined as the k-
nearest neighbors of xu, i.e., N(xu, k). It means the top-k samples
in Qu with the highest similarities to xu.

N(xu, k) = {qu
1 , qu

2 , ..., qu
k}. (8)

Our hypothesis is that if two persons belong to the k-nearest
neighbors of each other, they are more likely to be the same
identity [22]. Under this criterion, the satisfied samples are called
the k-reciprocal nearest neighbors. Specifically, for the unlabeled
anchor xu, its k-nearest neighbors are N(xu, k) = {qu

i }. Among
{qu

i }, whose k-nearest neighbors containing the unlabeled anchor
in reverse are called the k-reciprocal nearest neighbors of xu,
defined as R(xu, k). The formulation is as follows:

R(xu, k) = {qu
i |(qu

i 2 N(xu, k)) \ (xu 2 N(qu
i , k))}. (9)

The obtained samples in R(xu, k) are taken as the candidate
positive pairs of xu. Considering that the pedestrians in a scene
image belong to different categories, we remove the samples
within the same image of xu in R(xu, k), and the rest are
considered as positive samples. With this strategy, more potential
positive pairs can be exploited, as illustrated in Fig. 3. To construct
the negative pairs of xu, we can also employ the prior, thus taking
the instance within the same image of xu as the negative samples.
Together with the memorized features in Ql, plenty of negative
pairs can be built.

Fourth, supposing there are K 0 positive pairs and J0 negative
ones for xu totally. The corresponding cosine similarities are
represented as {ŝi

p}(i = 1, 2, ..., K 0) and {ŝj
n}(j = 1, 2, ..., J 0),

respectively. Considering some noisy positive samples may be in-
volved, we adopt two forms of contrastive losses for the unlabeled
samples. With a defined threshold µ, the positive samples with
similarities greater than µ are considered as reliable positives.
They are supervised by the upper formula of Eq. (10), which is
the same as Eq. (7). For the positive pairs with lower similarities,
we employ a loose variation of contrastive loss:

Lu =

8
>>>>><

>>>>>:

log[1 +
K0X

i=1

J 0X

j=1

exp(�(sj
n � si

p))] if si
p > µ

� log

PK0

i=1 exp(�ŝi
p)PK0

i=1 exp(�ŝi
p) +

PJ 0

j=1 exp(�ŝj
n)

if si
p < µ

(10)
Consequently, the unlabeled-aided contrastive loss consists of

the ones on both labeled and unlabeled anchors.

LUCL = Ll + Lu. (11)

In UCL, we employ two kinds of contrastive losses for differ-
ent samples based on the following considerations. For the labeled
anchors, since we have the identity information, it is intuitive to
make every sp greater than every sn. The Eq. (7) ensures this
property and keeps the balance of gradient. Similarly, for the
unlabeled anchors, their k-reciprocal nearest neighbors with higher

Algorithm 1 Training process of DMRNet++
Require: Training datasets with bounding box and identity annotation;
Require: Initialize the backbone F and F̄id with pretrained ResNet-50;
Require: Initialize the Ql and Qu with zeros;
Require: Scale factor � for Eq. (7)(10), momentum m for Eq. (6),

k for Eq. (9), similarity threshold µ for Eq. (10)
for each epoch do

for each mini-batch do
1: Apply two data augmentations on the input images.
2: Encode labeled and unlabeled anchors {xi

l}, {xj
u} by F .

3: Encode labeled and unlabeled features {x̄i
l}, {x̄j

u} by F̄id.
4: Update Ql and Qu with {x̄i

l}, {x̄j
u}, respectively.

5: For the labeled anchors {xi
l}, the samples with the same identity

in Ql are positive pairs, while the rest in Ql and those in Qu are
considered as negative pairs. Compute the pairwise loss by Eq. (7).

6: For the unlabeled anchors {xj
u}, the positive pairs are selected by

Eq. (9). The samples within the same image and those in Ql are
taken as negative pairs. Compute the pairwise loss by Eq. (10)

7: Compute the overall loss by Eq. (13).
8: Update the encoder F by back-propagation.
9: Update the encoder F̄id with momentum m by Eq. (6).

end for
end for

similarity are considered more reliable ones. Thus, the Eq. (7) is
also suitable, which can be rewritten as:

Ll = log[1 +
KX

i=1

JX

j=1

exp(�(sj
n � si

p))]

= log[1 +
JX

j=1

exp(�sj
n)

KX

i=1

exp(��si
p)]

= � log
(
PK

i=1 exp(��si
p))

�1

(
PK

i=1 exp(��si
p))

�1 +
PJ

j=1 exp(�sj
n)

.

(12)

The target of this equation is to make the (
P

i exp(��si
p))

�1

greater, which means decreasing the
P

i exp(��si
p). It requires

each si
p to be greater enough, and can be regarded as the hard

mining of positive sample pairs.
However, for the positive pairs with lower similarities of

unlabeled anchors, it is more likely to involve some noise, e.g., the
wrong identities. The hard mining on positive pairs may overem-
phasize the false positives, and damage the learned embeddings.
To make it robust to noise, we use a loose variation of contrastive
loss for the unlabeled anchor and its positive pairs with lower
similarities. Different from the upper formula in Eq. (10) that
each si

p requires to be greater enough, the lower one exhibits loose
constraints which tries to increase

P
i exp(�ŝi

p). It means that if
a relatively large similarity is reached by other positive pairs, the
false positive can be ignored under this easy mining.

The training process is summarized in Algorithm 1. We opti-
mize the joint model with both the UCL loss in the re-ID module,
and the classification loss Lcls and regression loss Lreg in the
detection module. The overall objective function is formulated as:

Ltotal = LUCL + Lcls + Lreg. (13)

5 EXPERIMENTS
In this section, we first describe the datasets and evaluation
protocols in Sec. 5.1, after which the implementation details are
elaborated in Sec. 5.2. Then we compare with state-of-the-art
methods in Sec. 5.3. Next, we conduct comprehensive ablation
studies to explore the effects of different components for DMR-
Net++ in Sec. 5.4. More parameter analysis are shown in Sec. 5.5
and adequate visualization results are exhibited in Sec. 5.6.
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5.1 Datasets and Settings

CUHK-SYSU. CUHK-SYSU [15] is a large-scale person search
dataset consisting of street/urban scenes shot by a hand-held
camera and snapshots chosen from movies. There are 18, 184
images and 96, 143 annotated bounding boxes, containing 8, 432
labeled identities, and the unlabeled ones are marked as unknown
instances. The training set contains 11, 206 images and 5, 532
identities, while the testing set includes 6, 978 gallery images and
2, 900 probe images.

PRW. PRW [10] is extracted from the video frames which
are captured by six spatially disjoint cameras. There are totally
11, 816 frames with the 43, 110 annotated bounding boxes. PRW
also contains unlabeled identities and labeled identities which is
ranged from 1 to 932. In the training set, there are 5, 704 frames
and 482 identities, while the testing set includes 6, 112 gallery
images and 2, 057 query images from 450 different identities.

Evaluation protocols. Our experiments adopt the same evaluation
metrics as previous work [15], [17]. One is widely used in person
re-ID, namely the cumulative matching cure (CMC). A matching
is considered correct only if the IoU between the ground truth
bounding box and the matching box is larger than 0.5. The other
is the mean Average Precision (mAP) inspired by the object
detection task. For each query, we calculate an averaged precision
(AP) by computing the area under the precision-recall curve. Then,
the mAP is obtained by averaging the APs across all the queries.

5.2 Implementation Details
The backbone in our network adopts the ResNet-50 [58] pretrained
on the ImageNet dataset, together with the FPN [19]. For the
detection network, we use the latest PyTorch implementation
of RetinaNet [20], FCOS [39], ATSS [64], Foveabox [65] and
RepPoints [40] released by OpenMMLab [66]. Actually, our
framework is compatible with most detectors. The input images
are resized to 1333⇥ 800 by default. We also evaluate with larger
resolutions and multi-scale training strategy, detailed in Sec. 5.4.
The batch size is set to 3 due to the limitation of GPU memory. We
use the batched Stochastic Gradient Descent (SGD) optimizer with
a momentum of 0.9. The weight decay factor for L2 regularization
is set to 5⇥ 10�4. We employ a step decay learning rate schedule
with a warm-up strategy, where the learning rate is gradually
increased to 1⇥10�3 in the first epoch, then decreased to 1⇥10�4

and 1⇥10�5 at epoch 8 and epoch 11. Our model is trained for 12
epochs totally. The queue sizes L and U are set to 8196 and 8196
for CUHK-SYSU while 1024 and 1024 for PRW. The momentum
factor m is set to 0.999, and the scale factor � is set to 16. The
k is set to 5 in Eq. (8) and 2 in Eq. (9). The similarity threshold
in Eq. (10) is set to 0.7. These hyper-parameters are tuned on
a validation set of the CUHK-SYSU dataset. 100 identities are
randomly split from the original training set as the query for
validation, and the rest are considered as the new training set.
For the gallery set, it is the same as the original training set. All
experiments are implemented on the PyTorch framework, and the
network is trained on an NVIDIA GeForce GTX 1080 Ti.

5.3 Comparisons with the State-of-the-Art Methods
5.3.1 Evaluation On the CUHK-SYSU dataset

Compared methods. In this section, we compare our proposed
methods with the state-of-the-arts, including both one-step and

TABLE 1
Experimental comparisons with state-of-the-art methods on the

CUHK-SYSU dataset. ‘MS’ denotes the multi-scale training
strategy.‘DCN’ means the deformable conv layers are used in ResNet.

Method mAP(%) Rank-1(%)

Two-Step Methods

ACF [26]+DSIFT [67]+Euclidean 21.7 25.9
ACF [26]+DSIFT [67]+KISSME [68] 32.3 38.1
ACF [26]+LOMO+XQDA [69] 55.5 63.1

CCF [70]+DSIFT [67]+Euclidean 11.3 11.7
CCF [70]+DSIFT [67]+KISSME [68] 13.4 13.9
CCF [70]+LOMO+XQDA [69] 41.2 46.4
CCF [70]+IDNet 50.9 57.1

CNN [7]+DSIFT [67]+Euclidean 34.5 39.4
CNN [7]+DSIFT [67]+KISSME [68] 47.8 53.6
CNN [7]+Bow [71]+Cosine 56.9 62.3
CNN [7]+LOMO+XQDA [69] 68.9 74.1
CNN [7]+IDNet 68.6 74.8

RCAA [14] 79.3 81.3
MGTS [12] 83.0 83.7
CLSA [11] 87.2 88.5
RDLR [13] 93.0 94.2
TCTS [4] 93.9 95.1

One-Step Methods

OIM [15] 75.5 78.7
IAN [16] 76.3 80.1
NPSM [72] 77.9 81.2
CTXGraph [18] 84.1 86.5
DC-I-Net [73] 86.2 86.5
QEEPS [17] 88.9 89.1
BINet [1] 90.0 90.7
PGA [74] 90.2 91.8
NAE [2] 91.5 92.4
NAE+ [2] 92.1 92.9
AlignPS [24] (MS) 93.1 93.4
AlignPS+ [24] (MS+DCN) 94.0 94.5

DMRNet 93.2 94.2
DMRNet++ 94.4 95.5
DMRNet++ (MS) 94.5 95.7

two-step manners. For the two-step approach, there are 12 base-
lines by combining different pedestrian detectors and person re-
ID works. Specifically, three baseline detection networks are used
to detect persons, including ACF [26], CCF [70], and Faster R-
CNN based on ResNet-50 (CNN) [75]. For the re-ID networks,
representative person descriptors are used to extract features,
such as DenseSIFT-ColorHist (DSIFT) [67], Local Maximal Oc-
currence (LOMO) [69], Bag of Words (BoW) [71], and ID-
Net (the re-ID part of OIM [15]). The distance metric methods
(i.e., KISSME [68], XQDA [69]) are combined with person
descriptors for re-ID. Besides, some two-step methods exhibit
excellent performance are also compared, including RCAA [14],
MGTS [12], CLSA [11], RDLR [13], TCTS [4]. We also com-
pare our methods with one-step methods, including OIM [15],
NPSM [72], RCAA [14], MGTS [12], CLSA [11], NAE [2],
BINet [1], PGA [74] and AlignPS [24].

Experimental results. Tab. 1 shows the performance comparisons
on the CUHK-SYSU dataset. Both the mAP and rank-1 accuracy
are reported for evaluation. The results of two-step methods are
shown in the upper block while the one-step methods are exhibited
in the lower block. When the gallery size is set to 100, our
proposed DMRNet++ reaches 94.4% on mAP and 95.5% on
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(a) One-step methods (b) Two-step methods

Fig. 4. Comparisons with different methods at varying gallery sizes on
the CUHK-SYSU dataset. (a) and (b) shows the comparisons with one-
step methods and two-step methods, respectively.

rank-1. It can be seen that our method outperforms all other one-
step methods. In the existing literature, although one-step methods
exhibit high efficiency, the performance is always inferior to two-
step ones. It is significant that our DMRNet++ exceeds the state-
of-the-art two-step method TCTS [4]. Compared with TCTS, our
method obtains the performance gain of 0.5% and 0.4% in terms
of mAP and rank-1 metric. We also exhibit the results when
applying the multi-scale training strategy, referring to Sec. 5.4
for detailed settings, and the performance is slightly promoted.
The results show the effectiveness of our decoupled network and
memory-reinforced mechanism. The decoupled design alleviates
the conflict of optimization. The consistently encoded memory
bank ensures sufficient positive and negative pairs, providing ef-
fective identification embeddings. The result also demonstrates the
potential of the one-step method on both efficiency and accuracy.

To evaluate the performance consistency, we also compare
with other competitive methods under varying gallery sizes of
[50, 100, 500, 1000, 2000, 4000]. Fig. 4(a) shows the compar-
isons with one-step methods while Fig. 4(b) with two-step ones. It
can be seen that the performance of all methods decreases as the
gallery size increases. This indicates it is challenging when more
distracting people are involved in the identity matching process,
which is close to real-world applications. Our method outperforms
all the one-step methods while achieving comparable performance
to the two-step methods under different gallery sizes.

5.3.2 Evaluation On the PRW dataset

Compared methods. Similarly, we compare with the state-of-
the-art methods on the PRW dataset [10]. There are 9 traditional
two-step person search methods, which combine the separated
detection network (i.e., ACF [26], DPM-Alex [25], LDCF [27])
and re-ID methods (i.e., LOMO [69]+XQDA [69], IDEdet [10]).
Confidence Weighted Similarity (CWS) [10] is proposed to incor-
porate the detection confidence when similarity matching. Other
two-step methods include MGTS [12], CLSA [11], RDLR [13],
TCTS [4]. For the one-step methods, we compare our methods
with OIM [15], NPSM [72], RCAA [14], MGTS [12], CLSA [11],
NAE [2], BINet [1], PGA [74] and AlignPS [24].

Experimental results. The comparisons on the PRW dataset [10]
are shown in Tab. 2. Following the benchmarking setting [10],
the gallery contains all 6112 testing images. It can be seen that
our proposed DMRNet++ reaches 51.0% on mAP and 86.8%
on rank-1. For the combinations of detection methods and re-
ID models, DPM-Alex [25]+IDEdet [10] +CWS [10] achieves
the best performance, while we surpass it by a large margin.

TABLE 2
Experimental comparisons with state-of-the-art methods on the PRW

dataset. ‘MS’ denotes the multi-scale training strategy.‘DCN’ means the
deformable conv layers are used in ResNet.

Method mAP(%) Rank-1(%)

Two-Step Methods

ACF-Alex [26]+LOMO+XQDA [69] 10.3 30.6
ACF-Alex [26]+IDEdet [10] 17.5 43.6
ACF-Alex [26]+IDEdet [10]+CWS [10] 17.8 45.2

DPM-Alex [25]+LOMO+XQDA [69] 13.0 34.1
DPM-Alex [25]+IDEdet [10] 20.3 47.4
DPM-Alex [25]+IDEdet [10]+CWS [10] 20.5 48.3

LDCF [27]+LOMO+XQDA [69] 11.0 31.1
LDCF [27]+IDEdet [10] 18.3 44.6
LDCF [27]+IDEdet [10]+CWS [10] 18.3 45.5

MGTS [12] 32.6 72.1
CLSA [11] 38.7 65.0
RDLR [13] 42.9 70.2
TCTS [4] 46.8 87.5

One-Step Methods

OIM [15] 21.3 49.9
IAN [16] 23.0 61.9
NPSM [72] 24.2 53.1
CTXGraph [18] 33.4 73.6
DC-I-Net [73] 31.8 55.1
QEEPS [17] 37.1 76.7
PGA [74] 42.5 83.5
NAE [2] 43.3 80.9
NAE+ [2] 44.0 81.1
BINet [1] 45.3 81.7
AlignPS [24] (MS) 45.9 81.9
AlignPS+ [24] (MS+DCN) 46.1 82.1

DMRNet 46.9 83.3
DMRNet++ 51.0 86.8
DMRNet++ (MS) 52.1 87.0

Compare with the state-of-the-art one-step work AlignPS+ [24],
our method outperforms it by 4.9% on mAP even without the
multi-scale training strategy and deformable convolution layers. It
is observed that the multi-scale training strategy further improves
the performance on mAP clearly. More discussions on the image
resolutions are shown in Sec. 5.4. Compared with the CUHK-
SYSU dataset, the PRW dataset lacks the diversity of clothing.
Many identities have similar appearances, making it challenging to
distinguish these persons. This causes poor performance of mAP
in existing methods. Surprisingly, our DMRNet++ surpasses the
best two-step work [4] by 4.2% on mAP, showing the effectiveness
of DMRNet++ under various scenarios.

5.4 Ablation Study on DMRNet++
In this section, we conduct detailed ablation studies to evaluate
the effectiveness of the DMRNet++. We first explore the effect of
different network designs, and analyze the effectiveness of the
proposed components in DMRNet++. Then we investigate the
impact of various image augmentations, and compare two memory
bank mechanisms. After that, the performance of DMRNet and
DMRNet++ under different settings, e.g., detectors, resolutions are
exhibited. Next, we validate the generalization ability of the pro-
posed methods under the cross-dataset scenario. Finally, we show
the efficiency of the proposed method by runtime comparisons.

Comparisons on different network designs. To investigate what
causes the poor performance of one-step person search, we first
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TABLE 3
Comparisons of different network designs on the CUHK-SYSU and PRW datasets. The performance of re-ID and detector trained in a single

network is represented, denoted as R and D. D-S denotes the result of the separated trained detector.

Methods CUHK-SYSU PRW

(R)mAP (R)Rank-1 (D)mAP (D-S)mAP (R)mAP (R)Rank-1 (D)mAP (D-S)mAP

Faster R-CNN + OIM [15] 75.5 78.7 - - 21.3 49.9 - -

Faster R-CNN (FPN) w/ (a) + OIM 84.3 84.6 86.9 92.2 29.0 51.5 93.1 95.1Faster R-CNN (FPN) w/ (b) + OIM 87.5 87.7 89.8 34.8 58.1 93.9

RetinaNet (FPN) w/ (c) + OIM (Proposals) 90.0 90.8 91.2
92.3

36.0 73.3 94.7
95.3RetinaNet (FPN) w/ (c) + OIM (GT) 90.3 91.0 91.4 36.1 73.6 94.8

RetinaNet (FPN) w/ (d) + OIM (Proposals) 90.8 91.7 91.3 37.0 74.8 94.7
RetinaNet (FPN) w/ (d) + OIM (GT) 90.9 91.7 91.4 37.2 74.9 94.9

RepPoints (FPN) w/ (c) + OIM (GT) 92.4 93.2 91.7 93.1 39.1 73.6 94.7 95.4RepPoints (FPN) w/ (d) + OIM 93.0 93.9 91.6 40.3 75.3 94.7
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Fig. 5. Comparisons on different network designs. (a) The general
person search pipeline based on a two-stage detector, where the RoI
head is shared by detection and re-ID. (b) Separated RoI heads are
employed to ease the coupling of sub-tasks. (c) With the discarded
detection losses in RoI head, the RoI features extracted by RoI align are
specific to identification. (d) A point-based spatial sampling is introduced
to generate the RoI features.

the performance by a large margin, e.g., about 8% promotion
on mAP. When it comes to tangled sub-tasks (detection and re-
ID) conflict in the one-step person search, it is natural to think
about decoupling different tasks from the shared backbone. For
this purpose, (b) employs separated RoI heads for detection and
re-ID training. In Tab. 5, the results perform better than a shared
RoI head manner on both re-ID and detection tasks. This indicates
the severe coupling network harms the optimization on both sub-
tasks when sharing feature space, and it can be mitigated with a
simple head disentanglement.

To further eliminate the conflict, we only focus on identifi-
cation feature learning instead of the multi-task loss under the
shared RoI features. As shown in Fig. 5(c), a one-stage detector
can be well incorporated and the RoI features are specific for
identification. This manner achieves the rank-1 of 90.8% and
73.3% on two datasets, surpassing the baseline on both re-ID and
detection by a large margin. It shows the spatial-aware decoupling
benefits the optimization on two sub-tasks. Note that the perfor-
mance of separated trained detectors for one-stage (RetinaNet)
or two-stage (Faster R-CNN) is almost the same. This denotes
the improvements originate from the decoupled design, other than

TABLE 4
Component analysis of the proposed DMRNet++ on the CUHK-SYSU

and PRW datasets. In TDF, there are two manners to generate RoI
features, i.e., box-based RoI align and point-based spatial sampling. In
UCL, Ll and Lu denote the Eq. (7) and Eq. (10). L0

u means only the
upper loss in Eq. (10) is applied on the unlabeled samples.

TDF MRM UCL More CUHK-SYSU PRW

box point Ll Lu L0
u Augs mAP R1 mAP R1

84.3 84.6 29.0 51.5

X 92.4 93.2 39.1 73.6
X X X 92.9 93.7 46.0 83.2

X X X 93.5 94.4 47.2 83.8
X X X X X 94.1 95.1 49.0 85.3
X X X X X 94.3 95.3 50.2 86.1

a superior detector. In Fig. 5(a)-(c), except for the ground truth
bounding boxes, the selected proposals (IoU>0.5) are also used to
extract features for re-ID training. We further simplify the network
by using only ground truth boxes. Although the improvement is
marginal, it saves much computational cost in training.

As shown in Fig. 5(d), our proposed task-decoupled network
additionally introduces a point-based spatial sampling strategy to
extract the RoI features. Compared with the box-based RoI align,
this manner focuses more on the pedestrians, and reduces the
contextual interference caused by the large receptive field. On
the PRW dataset, our proposed point-based strategy can boost
the rank-1 by 1.3% and 1.7% with RetinaNet and RepPoints,
respectively. This shows the superiority of extracting features with
irregular points other than rectangular boxes. Some visualizations
further support the results, which are detailed in Sec. 5.6. Finally,
based on our proposed task-decoupled framework, the perfor-
mance achieves the mAP of 93.0% and 40.3% on the CUHK-
SYSU and PRW datasets.

Effectiveness of the components. We investigate the effectiveness
of each component in DMRNet++ on the CUHK-SYSU and PRW
datasets. As shown in Tab. 4, the experiments are divided into
three groups, and the first one shows the strong baseline. The
effectiveness of our proposed TDF has been discussed above. The
promotion is obvious by comparing the first two rows.

Then, we explore the effect of our proposed MRM, as shown
in the second group of Tab. 4. With a slow-moving average net-

Fig. 5. Comparisons on different network designs. (a) The general
person search pipeline is based on a two-stage detector, where the
RoI head is shared by detection and re-ID. (b) Separated RoI heads
are employed to ease the coupling of sub-tasks. (c) With the discarded
detection losses in RoI head, the RoI features extracted by RoI align are
specific to identification. (d) A point-based spatial sampling is introduced
to generate the RoI features.

conduct several experiments to illustrate the comparisons among
different network options, as shown in Fig. 5. Detailed results with
various settings are shown in Tab. 3.

For fair comparisons, we incorporate FPN into the general
one-step framework [15] as our strong baseline (a), and this
improves the performance by a large margin, e.g., about 8%
promotion on mAP. When it comes to tangled sub-tasks (detection
and re-ID) conflict in the one-step person search, it is natural to
think about decoupling different tasks from the shared backbone.
For this purpose, (b) employs separated RoI heads for detection
and re-ID training. In Tab. 3, the results perform better than
a shared RoI head manner on both re-ID and detection tasks.
This indicates the inherently defective module design makes the
network severely coupled. It harms the optimization on both sub-
tasks when sharing feature space and can be mitigated with a
simple head disentanglement.

To further eliminate the conflict, we only focus on identifi-
cation feature learning instead of the multi-task loss under the
shared RoI features. As shown in Fig. 5(c), one-stage detectors
can be well incorporated and the RoI features are specific for
identification. This manner achieves the rank-1 of 90.8% and
73.3% on two datasets, surpassing the baseline on both re-ID and

TABLE 4
Component analysis of the proposed DMRNet++ on the CUHK-SYSU

and PRW datasets. In TDF, there are two manners to generate RoI
features, i.e., box-based RoI align and point-based spatial sampling. In
UCL, Ll and Lu denote the Eq. (7) and Eq. (10). L0

u means only the
upper loss in Eq. (10) is applied on the unlabeled samples.

TDF MRM UCL More CUHK-SYSU PRW

box point Ll Lu L0
u Augs mAP Rank-1 mAP Rank-1

84.3 84.6 29.0 51.5

X 92.4 93.2 39.1 73.6
X X X 92.9 93.7 46.0 83.2

X X X 93.5 94.4 47.2 83.8
X X X X 93.9 94.9 49.5 85.7

X X X X X 94.3 95.3 50.2 86.1
X X X X X 94.1 95.1 49.0 85.3

detection by a large margin. It shows the spatial-aware decoupling
benefits the optimization on two sub-tasks. Note that the perfor-
mance of separated trained detectors for one-stage (RetinaNet)
or two-stage (Faster R-CNN) is almost the same. This denotes
the improvements originate from the decoupled design, other than
a superior detector. In Fig. 5(a)-(c), except for the ground truth
boxes, the selected proposals (IoU>0.5) are also used to extract
features for re-ID training. We further simplify the network by
using only ground truth boxes. The comparisons are shown in
Tab. 3. The two approaches show similar performance under box-
based and point-based sampling manners. We only use the ground
truth boxes since it saves much computational cost in training.

As shown in Fig. 5(d), our proposed task-decoupled network
additionally introduces a point-based spatial sampling strategy to
extract the RoI features. Compared with the box-based RoI align,
this manner focuses more on the pedestrians, and reduces the
contextual interference caused by the large receptive field. On
the PRW dataset, our proposed point-based strategy can boost
the rank-1 by 1.3% and 1.7% with RetinaNet and RepPoints,
respectively. This shows the superiority of extracting features with
irregular points other than rectangular boxes. Some visualizations
further support the results, which are detailed in Sec. 5.6. Finally,
based on our proposed task-decoupled framework, the perfor-
mance achieves the mAP of 93.0% and 40.3% on the CUHK-
SYSU and PRW datasets.
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(b) Brightness(a) Original (c) Hue (d) Gaussian blur (e) Gaussian noise

(g) Flip(f) Bounding box transform (h) Expansion (i) Cutout (j) Random crop

Fig. 6. Illustrations of the data augmentation. Given the original image (a), (b)-(e) show the appearance transformation while (f)-(j) exhibit the
spatial/geometric transformations. Each augmentation can transform data stochastically with some internal parameters.

TABLE 5
Comparisons of different image augmentations in DMRNet++ on the CUHK-SYSU and PRW datasets.

Brightness Hue Blur Noise Bbox-Trans Flip Expand Cutout Crop CUHK-SYSU PRW

mAP Rank-1 mAP Rank-1

93.3 94.1 48.8 84.6

X 92.8 93.7 47.9 83.9
X 92.0 93.2 45.8 83.4

X 93.4 94.1 49.0 85.5
X 92.9 93.9 48.8 84.6

X 93.6 94.7 49.1 85.4
X 93.9 94.9 49.5 85.7

X 93.5 94.6 49.6 85.7
X 93.2 94.3 49.4 85.5

X 92.9 93.9 48.5 85.2

X X X 94.3 95.3 49.9 85.9
X X X X X 94.0 95.1 50.2 86.1

Effectiveness of the components. We investigate the effectiveness
of each component in DMRNet++ on the CUHK-SYSU and PRW
datasets. As shown in Tab. 4, the experiments are divided into
four groups, and the first one shows the strong baseline. The
effectiveness of our proposed TDF has been discussed above. The
promotion is obvious by comparing the first two rows.

Then, we explore the effect of our proposed MRM, as shown
in the second group of Tab. 4. With a slow-moving average net-
work counterpart, the queue-style memory banks are consistently
encoded. Without the look-up table preserving the centroids, the
original OIM loss is extended to a multi-positive pairwise loss Ll

in Eq. (7). It shows that when applying the MRM with Ll, the
performance is improved clearly, especially for the PRW datasets.
This is caused by the hundreds of samples under some categories
in PRW. In the baseline, the samples within a batch are pulled to
their memorized centroids. With the proposed MRM, the labeled
queue maintains sufficient positive samples with high consistency,
providing stronger intra-class compactness.

In our proposed UCL, apart from the labeled anchors, we also
take the unlabeled samples as anchors. Different from previous
works that only view the unlabeled samples as negative pairs for

the labeled samples, we firstly take the recognition process as
semi-supervised learning. The results are shown in the third and
fourth groups of Tab. 4. Lu and L0

u mean the different contrastive
loss are applied on unlabeled samples, i.e., Eq. (10) and the upper
loss in Eq. (10), respectively. From the results, we can draw two
observations. First, both Lu and L0

u can promote the performance
clearly. It shows the underlying potentials of unlabeled samples.
Second, Lu performs better than L0

u. It exhibits the benefit of
applying loose form contrastive loss on positive pairs with lower
similarities, which is robustness to some false positive samples.
The improvement is more obvious on the PRW dataset in which
vast similar dresses may lead to more noise in positive pairs, and
Lu can well suppress this issue. Third, besides the basic horizontal
flipping, more augmentations enrich the sample pairs and promote
the feature learning.

Comparisons with different augmentations. In our framework,
the input images are applied with different augmentations, then
processed by F and F̄id .To analyze the impact of data aug-
mentations, we apply several augmentations on DMRNet++. As
Fig. 6 shows, (a) is the original image and the augmentations
in the first row involve appearance transformation, such as color
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distortion (color brightness (b), color hue(c)) [76], Gaussian blur
(d) and Gaussian noise (e). The second row shows the spatial and
geometric transformations, including our proposed bounding box
transformation (f), image horizontal flipping (g), expansion [30]
(h), cutout [77] (i), and random cropping (j).

The performance with different augmentations is shown in
Tab. 5, the first row shows the baseline result that without aug-
mentations. We conduct the experiments with individual image
transformation firstly. It is observed that few appearance transfor-
mations suffice to learn good representations. We speculate that
person re-ID relies heavily on color, so changing the appearance
may lead to inferior performance. For the geometric transfor-
mations, image horizontal flipping is widely used in the person
search task [5], [17], which also shows a positive effect in our
experiments. The random crop can be seen as a zoom-in operation
that produces larger training instances. In contrast, the image
expansion is implemented as a zoom-out operation that creates
more small training examples. In Tab. 5, the result is inferior to the
baseline when applying random crop. One possibility is that some
persons may be removed by this operation since there are several
instances in a scene image. The image expansion is beneficial
to small objects, thus it improves the performance clearly in
PRW dataset that contains plentiful small persons. To preserve
the robustness of the identification features with variable bounding
boxes, we develop an augmentation called the bounding box trans-
formation. It shifts the cropping area in a fixed range randomly,
ensuring the completeness of the image and the randomness of
the instance. Bounding box transformation is a kind of random
crop for the person search task. Further, cutout could enhance
the robustness of the model against occlusion, thus promoting the
accuracy slightly. When composing augmentations, the quality of
representation gains more improvements. For the CUHK-SYSU
dataset, the augmentation set contains bounding box transform,
image horizontal flipping and expansion. For the PRW dataset,
the augmentations consist of bounding box transform, image
horizontal flipping, gaussian blur, expansion and cutout.

Comparisons of memory bank mechanisms with varying sizes.
We analyze the effect of different memory bank mechanisms
with varying sizes, i.e., the look-up table with OIM loss, and
our memory-reinforced mechanism with pairwise loss. They are
implemented on the same network, as described in Fig. 5(c). Here
we remove the point-based strategy and Lu for fair comparisons.
The results are shown in Fig. 7, L is the length of the look-up
table or the queue with labeled samples, and U is the length
of the queue with unlabeled ones. The comparisons provide the
following observations.

• To explore the effect of taking unlabeled samples as
negative pairs, we compare OIM (L = 5532) with our
method (L = 2048/5532/8192) under different sizes of U .
As shown in Fig. 7 (a), the performance of our method is
constantly promoted as U increases when L = 2048/5532.
This shows that exploring more negative samples is better
for optimization. The relatively large size of the labeled
queue (L = 8192) cannot benefit from U . This is reason-
able as a larger L has provided sufficient negative samples.
For OIM loss, there is no significant improvement when
U increases. Due to the lack of feature consistency, more
sample pairs contribute little to the result.

• As shown in Fig. 7(b), when U is set to zero, our method
benefits from a larger L without the unlabeled queue. This
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Fig. 7. Comparison between two memory bank mechanisms with vary-
ing sizes. The numbers of labeled and unlabeled samples are denoted
as L and U , respectively.

TABLE 6
The results of DMRNet and DMRNet++ with different detectors on the
CUHK-SYSU and PRW datasets. D denotes the result of detection.

Methods Detector CUHK-SYSU PRW

mAP Rank-1 mAP(D) mAP Rank-1 mAP(D)

DMRNet FCOS [39] 87.6 90.4 91.0 40.1 80.8 95.0
DMRNet++ 90.4 92.9 90.7 45.3 83.4 95.1

DMRNet ATSS [64] 91.1 92.7 91.9 43.6 82.4 95.4
DMRNet++ 92.5 94.0 91.6 46.2 84.6 95.3

DMRNet RetinaNet [20] 91.2 92.5 91.3 44.6 82.0 94.7
DMRNet++ 93.2 94.3 91.3 50.5 86.2 94.8

DMRNet Foveabox [65] 90.7 92.3 91.5 45.8 82.8 95.4
DMRNet++ 92.9 94.2 91.6 50.1 86.5 95.1

DMRNet RepPoints [40] 92.9 93.7 91.7 46.0 83.2 94.6
DMRNet++ 94.3 95.3 91.8 50.2 86.1 94.8

is intuitive since more positive/negative sample pairs can
be exploited.

• As shown in Fig. 7(a)(b), when two methods reach similar
results, our method only uses a small size of labeled queue
(L = 1024, U = 0), which is more efficient than OIM.

Effectiveness on different detectors. As illustrated in Tab. 6,
to verify the expandability of DMRNet++, different detection
networks are incorporated into our framework, including Reti-
naNet [20], RepPoints [40], FCOS [39], ATSS [64] and Fove-
abox [65]. We not only consider the anchor-based detection net-
works (e.g., RetinaNet), but also evaluate the anchor-free detectors
(e.g., RepPoints, FCOS). Tab. 6 exhibits the mAP and rank-1 of
person search, and the mAP of jointly trained detector denoted
as ‘mAP (D)’. DMRNet++ consistently improves the DMRNet
by significant margins on various detectors. Especially, when
incorporated with RetinaNet, the mAP is promoted by 5.9% on
the PRW dataset. This confirms the effectiveness and robustness
of our method when extended to different detectors.

Effectiveness on different image resolutions. As shown in
Tab. 7, we compare the proposed DMRNet++ with DMRNet
under different image resolutions. The first two rows show the
results under a single-scale training setting with 1333 ⇥ 800 and
1500 ⇥ 900 input sizes. A large image size generally benefits
the learned feature embeddings, and the mAPs are improved on
both datasets. The last two rows exhibit the performance with a
multi-scale training strategy. Similar to [24], the longer side of
the input image is randomly resized from 667 to 2000 during
training, while the test image is re-scaled to a fixed size of
1500 ⇥ 900. From Tab. 7, it is observed that the results are
significantly improved on the PRW dataset, while the performance
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TABLE 7
The results of DMRNet and DMRNet++ with different input resolutions
on the CUHK-SYSU and PRW datasets. The first two rows show the
single-scale training while the last two rows are multi-scale training.

Methods Resolution CUHK-SYSU PRW

train test mAP Rank-1 mAP Rank-1

DMRNet 1333 ⇥ 800 1333⇥800 92.9 93.7 46.0 83.2
DMRNet++ 94.3 95.3 50.2 86.1

DMRNet 1500 ⇥ 900 1500⇥900 93.2 94.2 46.9 83.4
DMRNet++ 94.4 95.5 51.0 86.8

DMRNet [667, 2000] 1500⇥900 92.5 93.7 48.1 84.6
DMRNet++ 93.7 94.6 50.5 86.3

DMRNet [1333, 2666] 2000⇥1200 93.1 94.2 50.5 84.5
DMRNet++ 94.5 95.7 52.1 87.0

TABLE 8
Evaluations of the proposed methods under the cross-dataset setting.

PRW!CUHK-SYSU: the model is trained on PRW dataset while
tested on CUHK-SYSU, and vice versa.

Methods PRW!CUHK-SYSU CUHK-SYSU!PRW

mAP Rank-1 mAP(D) mAP Rank-1 mAP(D)

OIM-base 49.4 54.9 65.1 20.5 42.5 87.6
DMRNet 50.8 55.7 64.8 25.3 71.9 88.2
DMRNet++ 52.1 57.5 64.4 27.5 76.6 87.2

on the CUHK-SYSU dataset is decreased slightly. This implies the
fragileness of CUHK-SYSU with small input sizes. We further
increase the resolution under the multi-scale training, as shown in
the last row. The longer side of the input image is randomly resized
from 1333 to 2666 during training, and the test image is fixed to
2000⇥1200. The results are increased on both datasets. Especially
on the PRW dataset, we achieve 52.1% on mAP and 87.0% on
rank-1 accuracy. Moreover, It is seen that DMRNet++ consistently
improves the DMRNet by significant margins under different
resolution settings. The results further show the effectiveness of
our proposed DMRNet++.

Effectiveness on cross-dataset scenario. To validate the gen-
eralization ability of our framework, we conduct cross datasets
comparison between datasets. Specifically, we directly utilize the
model trained on a source dataset (e.g., CUHK-SYSU) to evaluate
on a different target dataset (e.g., PRW). We compare our proposed
DMRNet and DMRNet++ with the re-implemented OIM baseline.
The results are presented in Tab. 8, from which we draw two
observations.

First, three methods exhibit similar detection performance
while different search results. This implies the DMRNet++ mani-
fests a strong discriminative ability under the cross-dataset setting.
When trained on the CUHK-SYSU and tested on the PRW dataset,
DMRNet++ outperforms OIM [15] by a large margin on mAP and
rank-1 accuracy.

Second, although the accuracy drops for both cross-dataset
scenarios, the model trained with CUHK-SYSU is slightly bet-
ter than PRW. Since the CUHK-SYSU dataset contains diverse
scenes, it shows better capability when transferring, especially on
the mAP of detection.

Runtime comparisons. Efficiency is one advantage of our frame-

TABLE 9
Runtime comparisons of different methods.

Methods GPU TFLOPs Time

MGTS [12] K80 8.7 1296
QEEPS [17] P6000 12.0 300

NAE [2] V100 14.1 83
NAE+ [2] V100 14.1 98
DMRNet V100 14.1 66

DMRNet++ V100 14.1 67
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TABLE 7
The results of DMRNet and DMRNet++ with different input resolutions
on the CUHK-SYSU and PRW datasets. The first two rows show the
single-scale training while the last two rows are multi-scale training.

Methods Resolution CUHK-SYSU PRW

train test mAP Rank-1 mAP Rank-1

DMRNet 1333*800 1333*800 92.9 93.7 46.0 83.2
DMRNet++ 94.3 95.3 50.2 86.1

DMRNet 1500*900 1500*900 93.2 94.2 46.9 83.4
DMRNet++ 94.4 95.5 51.0 86.8

DMRNet [667,2000] 1500*900 92.5 93.7 48.1 84.6
DMRNet++ 93.7 94.6 50.5 86.3

DMRNet [1333,2666] 2000*1200 93.1 94.2 50.5 84.5
DMRNet++ 94.5 95.7 52.1 87.0

TABLE 8
Evaluations of the proposed methods under the cross-dataset setting.

PRW!CUHK-SYSU: the model is trained on PRW dataset while
tested on CUHK-SYSU, and vice versa.

Methods PRW!CUHK-SYSU CUHK-SYSU!PRW

mAP Rank-1 mAP(D) mAP Rank-1 mAP(D)

OIM-base 49.4 54.9 65.1 20.5 42.5 87.6
DMRNet 50.8 55.7 64.8 25.3 71.9 88.2
DMRNet+ 52.1 57.5 64.4 27.5 76.6 87.2

2000⇥1200. The results are increased on both datasets. Especially
on the PRW dataset, we achieve 52.1% on mAP and 87.0% on
rank-1 accuracy. Moreover, It is seen that DMRNet++ consistently
improves the DMRNet by significant margins under different
resolution settings. The results further show the effectiveness of
our proposed DMRNet++.

Effectiveness on cross-dataset scenario. To validate the gen-
eralization ability of our framework, we conduct cross datasets
comparison between datasets. Specifically, we directly utilize the
model trained on a source dataset (e.g., CUHK-SYSU) to evaluate
on a different target dataset (e.g., PRW). We compare our proposed
DMRNet and DMRNet++ with the re-implemented OIM baseline.
The results are presented in Tab. 8, from which we draw two
observations.

First, three methods exhibit similar detection performance
while different search results. This implies that DMRNet++ mani-
fests a strong discriminative ability under the cross-dataset setting.
When trained on the CUHK-SYSU and tested on the PRW dataset,
DMRNet++ outperforms OIM [15] by a large margin on mAP and
rank-1 accuracy.

Second, although the accuracy drops for both cross-dataset
scenarios, the model trained with CUHK-SYSU is slightly bet-
ter than PRW. Since the CUHK-SYSU dataset contains diverse
scenes, it shows better capability when transferring, especially on
the mAP of detection.

Runtime Comparisons. Efficiency is one advantage of our frame-
work. To show the efficiency of our method, we compare the
runtime with other methods in the inference stage. The average
runtime of the detection and re-ID for a panorama image is
reported. For a fair comparison, we test the models with an

TABLE 9
Runtime comparisons of different methods.

Methods GPU TFLOPs Time (ms)

MGTS [12] K80 8.7 1296
QEEPS [17] P6000 12.0 300

NAE [2] V100 14.1 83
NAE+ [2] V100 14.1 98
DMRNet V100 14.1 66

DMRNet++ V100 14.1 67

Fig. 8. Performance of our framework with different values of scale factor
�, momentum m, k-reciprocal neighbors and similarity threshold µ. The
mAP (%) on the CUHK-SYSU dataset is shown.

input image size of 900 ⇥ 1500, which is the same as other
works [2], [12], [17]. Since the methods are implemented with
different GPUs, we also report the TFLOPs. As shown in Tab. 9,
upon normalization with TFLOPs, our framework is much faster
than the two-step method MGTS [12]. Moreover, our method is
more efficient than NAE+ [2], which is the current state-of-the-art
one-step method. Compared with DMRNet, DMRNet++ exhibits
higher performance with similar efficiency.

5.5 Parameter Analysis
We analyze the important parameters in our proposed DMRNet++.
All the parameters are tuned on the CUHK-SYSU dataset, and the
same values are directly employed on other datasets. Experimental
results are presented in Fig. 8.

Scale factor �. Scale factor determines the largest scale of each
similarity score. As shown in Fig. 8(a), we study the effects of
the scale factor on DMRNet++ by vary � from 4 to 512. We
observe that the performance is robust in the interval of [8, 32]
and our framework achieves the optimal result when setting the
scale factor � as 16.

Momentum factor m. The performance of our method with
different momentum factors is shown in Fig. 8(b). We obtain the
optimal result when m is set to 0.999. This indicates a relatively
large momentum facilitates learning discriminative identification
features. When m is zero, it means the parameters of f and f̄id
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Fig. 8. Performance of our framework with different values of scale factor
�, momentum m, k-reciprocal neighbors and similarity threshold µ. The
mAP (%) on the CUHK-SYSU dataset is shown.

work. To show the efficiency of our method, we compare the
runtime with other methods in the inference stage. The average
runtime of the detection and re-ID for a panorama image is
reported. For a fair comparison, we test the models with an
input image size of 900 ⇥ 1500, which is the same as other
works [2], [12], [17]. Since the methods are implemented with
different GPUs, we also report the TFLOPs. As shown in Tab. 9,
upon normalization with TFLOPs, our framework is much faster
than the two-step method MGTS [12]. Moreover, our method is
more efficient than NAE+ [2], which is the current state-of-the-art
one-step method. Compared with DMRNet, DMRNet++ exhibits
higher performance with similar efficiency.

5.5 Parameter Analysis
We analyze the important parameters in our proposed DMRNet++.
All the parameters are tuned on the CUHK-SYSU dataset, and the
same values are directly employed on other datasets. Experimental
results are presented in Fig. 8.

Scale factor �. Scale factor determines the largest scale of each
similarity score. As shown in Fig. 8(a), we study the effects of
the scale factor on DMRNet++ by vary � from 4 to 512. We
observe that the performance is robust in the interval of [8, 32]
and our framework achieves the optimal result when setting the
scale factor � as 16.

Momentum factor m. The performance of our method with
different momentum factors is shown in Fig. 8(b). We obtain the
optimal result when m is set to 0.999. This indicates a relatively
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Fig. 9. Illustration of the point-based sampling positions (7 ⇥ 7) on the
backbone network. Different colors denote different identities, and the
images are from the PRW dataset.

large momentum facilitates learning discriminative identification
features. When m is zero, it means the parameters of f and F̄id

are identical. Surprisingly, with the least consistent encoding, our
mechanism still slightly outperforms the look-up table, showing
the effectiveness of the queues.

K-reciprocal neighbors. Fig. 8(c) shows the effect on different
k-reciprocal neighbors. Here we utilize two sizes in Eq. (9), where
N(xu, k1) and N(qu

i , k2). When k1 is equal to 1, it means only
the two augmented views of the same instance are considered
as a positive pair. The solid curve and dashed curve show the
results with different values of k1 when k2 = 2 and k2 = 3,
respectively. Obviously, the performance grows as k1 increases in
a reasonable range, and achieves the optimal result when k1 = 5
and k2 = 2. As the value of k1 continues growing, more false
positive samples are included in the k-reciprocal set. Taking these
samples as positive pairs causes a decline of performance.

Similarity threshold µ. In Eq. (10), the similarity threshold µ
is adopted to assign different forms of contrastive loss. For the
reliable positive pairs with similarities larger than µ, the upper
loss in Eq. (10) with hard positive mining is applied. The positive
samples with similarities less than µ are applied with a loose
constraint, the lower one in Eq. (10). Fig. 8(d) shows the effect of
different thresholds. When µ approaches 0, all the positive pairs
of unlabeled anchors are supervised by the upper loss in Eq. (10).
The inevitable noise makes sub-optimal results. When µ is set to 1,
the supervision is only the lower loss in Eq. (10). The loose form
cannot provide strong constraints. The optimal result is achieved
when setting µ as 0.7.

5.6 More Qualitative Analysis.

Illustration of the point-based sampling positions. To analyze
the effect of the point-based spatial sampling, we visualize the
sampling positions on the backbone network on the PRW dataset.
As illustrated in Fig. 9, different from the initial points that
sampled uniformly in the bounding boxes, the augmented points
focus more on the human body with the additional offsets. Note
that different colors represent different identities. Compared to
the box-based sampling approach with fixed rectangles, our point-
based spatial sampling provides a more flexible way with the
irregular points.

Illustration of the k-reciprocal set. To evaluate the quality of
assigned positive pairs for unlabeled anchors, we visualize the k-
reciprocal set in the training process. As illustrated in Fig. 10,
given an unlabeled anchor xu (green bounding box), its 5-nearest
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assigned positive pairs for unlabeled anchors, we visualize the k-
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Fig. 10. Visualizations of k-reciprocal nearest neighbors of unlabeled
anchors xu. Given xu (green bounding box), its k-nearest neighbors
N(xu, k) (blue bounding boxes) are shown on the right. Below each
neighbor qu

i , its k-nearest neighbors N(qu
i , k) are exhibited. If xu and

qu
i are the k-nearest neighbors reciprocally, qu

i is selected to the k-
reciprocal set (red dotted rectangle) as positive pairs.

exhibited. In Fig. 10(a), it can be seen that the unlabeled anchor
xu is included in the 2-nearest neighbors of each qu

i , thus the five
samples are selected to the k-reciprocal set (red dotted rectangle)
as the positive pairs of xu. As Fig. 10(b) exhibit, the 2-nearest
neighbors of qu

5 do not contain the unlabeled anchor, while xu

is only included in the 2-nearest neighbors of qu
1 , qu

2 , qu
3 , qu

4 .
Therefore, the k-reciprocal neighbors of xu are composed of these
four samples. As shown in Fig. 10(c), the positive sample contains
only the one with a different augment of xu. This is the extreme
case and at least one positive sample pair is guaranteed.

Since this positive pair assignment is conducted on the un-
labeled queue, we have no identity annotation for each person.
Therefore, except for the unlabeled anchors are denoted as green
bounding boxes, other selected neighbors are all shown with the
blue boxes, including the right or wrong matches. Combined with
the context, we can judge that most selected k-reciprocal neighbors
have the same identity as the unlabeled anchor. This verifies the
importance of exploring the positive pairs for unlabeled anchors
and shows the effectiveness quantificationally.

Visualization results on the CUHK-SYSU dataset. As shown in
Fig. 11, we present the visualization results of both DMRNet and
DMRNet++ for comparison, in which the rank-3 search results on
the CUHK-SYSU dataset are exhibited. Given each query person
in the green bounding box, the search results of DMRNet and
DMRNet++ are shown at the left and right parts, respectively.
Red and blue bounding boxes represent the wrong and correct
results, respectively. As Fig. 11 shows, the task of person search
is challenging due to the severe occlusion, low resolution, and
changing illumination. From the search result of DMRNet, we
observe that the most wrong matches are caused by similar
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bounding boxes, other selected neighbors are all shown with the
blue boxes, including the right or wrong matches. Combined with
the context, we can judge that most selected k-reciprocal neighbors
have the same identity as the unlabeled anchor. This verifies the
importance of exploring the positive pairs for unlabeled anchors
and shows the effectiveness quantificationally.

Visualization results on the CUHK-SYSU dataset. As shown in
Fig. 11, we present the visualization results of both DMRNet and
DMRNet++ for comparison, in which the rank-3 search results on
the CUHK-SYSU dataset are exhibited. Given each query person
in the green bounding box, the search results of DMRNet and
DMRNet++ are shown on the left and right parts, respectively.
Red and blue bounding boxes represent the wrong and correct
results, respectively. As Fig. 11 shows, the task of person search
is challenging due to the severe occlusion, low resolution, and
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Fig. 11. Qualitative search results on the CUHK-SYSU dataset. Given the query persons (green boxes), we show the rank-3 search results of
DMRNet and DMRNet++. Red/blue boxes represent the wrong/correct results, respectively.

appearances, especially under the same scene with the ground truth
person. This indicates that excessive contextual information may
be involved with the box-based spatial sampling method. Based
on the point-based spatial sampling in DMRNet++, irregular
points are learned to locate the positions containing discriminative
features. More informative sample pairs are explored by applying
contrastive learning on unlabeled identities. This further promotes
the generalization of our model. When evaluating DMRNet++, the
results show that our enhanced network can locate and match all
the target persons correctly.

Visualization results on the PRW dataset. The visualization of
search results on the PRW dataset is shown in Fig. 12. We present
the rank-5 results of three methods for comparison, including
re-implemented OIM [15], DMRNet [23] and DMRNet++. It is
obvious that the main difficulties lie in resolution variations and
similar appearance when evaluating on PRW. The query person
in Fig. 12(a) exhibits a small size, leading to the failure of
rank-4 for the OIM. DMRNet can match most targets and the
DMRNet++ exhibits the optimal results. This shows the robustness
of DMRNet++ on small targets. In Fig. 12(b), the query person
wears a white shirt and black trousers. For the OIM method,
it is easy to confuse the persons having similar appearances.
Although the search results of OIM have the same clothing, its
rank-5 are all failed to discover the target person. DMRNet shows
a better result, and the wrong match only occurs at the small
targets. DMRNet++ can locate and match each target, exhibiting
higher performance. It indicates more discriminative embeddings
are ensured based on our point-based sampling and UCL loss.
However, our DMRNet++ also encounters incorrect matches in
some conditions. As shown in Fig. 12(c), the small target with

similar clothes causes the wrong match. In real-world applications,
due to the occlusion, pose variation, illumination, and viewpoint,
the task of person search is still challenging.

6 CONCLUSION

In this work, we propose an enhanced decoupled and memory-
reinforced network (DMRNet++) for one-step person search. Our
main purpose is to address the challenges in one-step pipelines,
i.e., conflicting objectives, inconsistent memory bank and un-
derutilized unlabeled identities. First, extended from the one-
stage detector, our proposed task-decoupled framework (TDF)
substantially decouples the two sub-tasks, i.e., pedestrian detection
and person re-identification. In particular, a point-based spatial
sampling manner is utilized to generate the RoI features, which
are specific to identification, rather than supervised by multi-task
losses. Second, we introduce a memory-reinforced mechanism
(MRM) to ensure the consistency of memory bank. By incorporat-
ing a slow-moving average of the network, the memorized features
can be consistently encoded. The dual networks reinforce each
other and converge to robust solution states. Third, we develop an
unlabeled-aided contrastive loss (UCL) to exploit the potentials
of the unlabeled identities. By applying contrastive learning on
the unlabeled identities, more informative positive and negative
sample pairs are explored, promoting highly discriminative iden-
tification feature embeddings.

Due to the massive simplification of the pipeline design, our
model is easy to train and efficient to use. It sets a new state-of-
the-art among one-step methods and outperforms a lot of existing
two-step methods. We believe that our findings can encourage a

Fig. 11. Qualitative search results on the CUHK-SYSU dataset. Given the query persons (green boxes), we show the rank-3 search results of
DMRNet and DMRNet++. Red/blue boxes represent the wrong/correct results, respectively.

changing illumination. From the search result of DMRNet, we
observe that the most wrong matches are caused by similar
appearances, especially under the same scene with the ground truth
person. This indicates that excessive contextual information may
be involved with the box-based spatial sampling method. Based
on the point-based spatial sampling in DMRNet++, irregular
points are learned to locate the positions containing discriminative
features. More informative sample pairs are explored by applying
contrastive learning on unlabeled identities. This further promotes
the generalization of our model. When evaluating DMRNet++, the
results show that our enhanced network can locate and match all
the target persons correctly.

Visualization results on the PRW dataset. The visualization of
search results on the PRW dataset is shown in Fig. 12. We present
the rank-5 results of three methods for comparison, including
re-implemented OIM [15], DMRNet [23] and DMRNet++. It is
obvious that the main difficulties lie in resolution variations and
similar appearance when evaluating on PRW. The query person
in Fig. 12(a) exhibits a small size, leading to the failure of
rank-4 for the OIM. DMRNet can match most targets and the
DMRNet++ shows the optimal results. This shows the robustness
of DMRNet++ on small targets. In Fig. 12(b), the query person
wears a white shirt and black trousers. For the OIM method,
it is easy to confuse the persons having similar appearances.
Although the search results of OIM have the same clothing, its
rank-5 all failed to discover the target person. DMRNet shows
a better result, and the wrong match only occurs at the small
targets. DMRNet++ can locate and match each target, exhibiting
higher performance. It indicates more discriminative embeddings
are ensured based on our point-based sampling and UCL loss.
However, our DMRNet++ also encounters incorrect matches in
some conditions. As shown in Fig. 12(c), the small target with
similar clothes causes the wrong match. In real-world applications,

due to the occlusion, pose variation, illumination, and viewpoint,
the task of person search is still challenging.

6 CONCLUSION

In this work, we propose an enhanced decoupled and memory-
reinforced network (DMRNet++) for one-step person search.
Our main purpose is to address the challenges in one-step
pipelines, i.e., conflicting objectives, inconsistent memory bank
and underutilized unlabeled identities. To tackle these issues,
we improve the network design, memory bank mechanism and
loss function respectively. All these designs aim at producing
more discriminative features for retrieval. First, we propose a
task-decoupled framework (TDF) that substantially decouples the
two sub-tasks. This design alleviates optimization conflicts on
the RoI head, facilitating the features learning for recognition.
Second, we introduce a memory-reinforced mechanism (MRM) to
ensure the consistency of memory bank. By incorporating a slow-
moving average of the network, the memorized features can be
consistently encoded, promoting effective identification learning.
Third, we develop an unlabeled-aided contrastive loss (UCL) to
exploit the potentials of the unlabeled identities. By applying
contrastive learning on the unlabeled identities, more informative
positive and negative sample pairs are explored, promoting highly
discriminative identification feature embeddings.

Due to the massive simplification of the pipeline design, our
model is easy to train and efficient to deployment. It sets a
new state-of-the-art among one-step methods and outperforms
a lot of existing two-step methods. We hope that our findings
can encourage a shift in the framework of the one-step person
search and drive more research in this field. In the future, we will
continue to explore the person search task with the help of 3D
prior knowledge [78], [79].
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Fig. 12. Qualitative search results on the PRW dataset. Given the query persons (green boxes), we show the top rank-5 search results of three
methods, including OIM [15], our proposed DMRNet and DMRNet++. Red/blue boxes represent the wrong/correct results, respectively.
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