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Abstract

This paper introduces VimoRAG, a novel video-based retrieval-augmented motion
generation framework for motion large language models (LLMs). As motion LLMs
face severe out-of-domain/out-of-vocabulary issues due to limited annotated data,
VimoRAG leverages large-scale in-the-wild video databases to enhance 3D motion
generation by retrieving relevant 2D human motion signals. While video-based
motion RAG is nontrivial, we address two key bottlenecks: (1) developing an
effective motion-centered video retrieval model that distinguishes human poses
and actions, and (2) mitigating the issue of error propagation caused by suboptimal
retrieval results. We design the Gemini Motion Video Retriever mechanism and
the Motion-centric Dual-alignment DPO Trainer, enabling effective retrieval and
generation processes. Experimental results show that VimoRAG significantly boosts
the performance of motion LLMs constrained to text-only input. All the resources
(https://walkermitty.github.io/VimoRAG/) are available.

1 Introduction

Generating diverse and realistic human motions from free-form text prompts has significant practical
applications, including video gaming, robotic assistance, and virtual reality. Previous advancements,
ranging from transformer-based VAEs [1] to recent diffusion-based generative models [2]], have
led to an increasingly promising generative performance. With the emergence of LLMs, motion-
language models (aka. motion LLMs) have been proposed [3| 4]. These unified architectures
not only understand various motions but also support motion generation. To achieve competitive
capabilities, motion LLMs require training on extremely large-scale datasets to ensure sufficient
capacity. Particularly for motion generation, a substantial amount of labeled data (i.e., text-motion
pairs) is essential, without which, models face severe out-of-domain (OOD) and out-of-vocabulary
(OOV) issues, making it difficult to generalize to the vast variety of dynamic human motions.

However, existing datasets of text-motion pairs are severely limited in scale, comprising only approxi-
mately 14k samples [S]], while the cost of large-scale annotation is prohibitively high. To address this
issue, Zhang et al. introduce ReMoDiffuse [6], a retrieval-augmented generation (RAG) method that
retrieves relevant supplementary supervision signals from 3D motion databases. While this method
provides a promising direction to address the scarcity of labeled data, their effectiveness might still
remain constrained by the size of existing 3D motion databases, i.e., totaling only 14k samples from
datasets such as HumanML3D [J5]].

To address this, this paper explores an innovative RAG paradigm: retrieving information from larger-
scale in-the-wild videos to supplement abundant motion signals that can enhance motion generation.
Although videos represent a 2D visual modality, intuitively, the 2D human motions depicted in videos
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inherently share similar characteristics with 3D human motions [[7], which can be utilized to guide
the learning process of motion LLMs. Most importantly, existing video data is highly accessible and
virtually unlimited in scale, and in-the-wild videos capture diverse and unconstrained human motions,
offering strong potential to address OOD/V challenges. To this end, we introduce a simple but
effective framework, named VimoRAG (cf. Fig. |Z[) VimoRAG first retrieves a video from an unlabeled
video database based on the input text, then inputs both the text and the retrieved videos into an LLM
to generate motion tokens, which are finally decoded into a motion sequence using VQ-VAE [8].

Yet this framework is nontrivial, facing at
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To address the first challenge, we design a Gem-

ini Motion Video Retriever (termed Gemini- gjgyre 1: ReMoDiffuse is a RAG-based motion
MVR). Gemini-MVR incorporates dual fine- generation method, which is limited by the small
grained retrieval channels, at the action level  ¢qale of motion data and its reliance on annotated
and object level respectively, where a keypoints-  captions. We propose VimoRAG, which advances in
aware router assigns weights to'these tWo re- (1) enabling retrieval from large-scale, in-the-wild
trievers, allowing the system to simultaneously  yigeo databases without text captions. ) Iden-
focus on human pose features and object infor- (ifying and overcoming key challenges in human-
mation in complex videos, thereby improving  cenric text-to-video retrieval. 3) Ensuring align-
the accuracy of human-centric video retrieval. | ant between retrieved videos and generated mo-

To address the second challenge, we propose tions while mitigating error propagation.

a Motion-centric Dual-alignment DPO training

strategy (named McDPO). McDPO is to guide the LLM on how to utilize the prior information from
the retrieval video (i.e., when to use it, when not to use it, and how much to rely on it) by performing
self-correction.

We leverage a lightweight LLM Phi3-3.8B [9] following Maaz et al. [10] to evaluate the performance
of this framework. To evaluate its effectiveness, we conduct both cross-domain and in-domain experi-
ments. To explore its potential, we conduct scaling experiments with varying retrieval corpus sizes.
Specifically, in OOD scenarios, we conduct zero-shot experiments on the challenging IDEA400 [1T]]
test set, where we verify that VimoRAG exhibits strong generalization capabilities. We evaluate
in-domain performance on the representative HumanML3D benchmark and observe that VimoRAG
consistently improves most of the metrics compared to existing motion LLMs that operate with
text-only input, and further exhibit sustained performance gains as the retrieval corpus expands. In
summary, our contributions are as follows:

* To our knowledge, this paper is the first to propose a novel paradigm of video-based 3D motion

RAG, which significantly alleviates the motion data scarcity bottleneck in existing methods.

* We present the VimoRAG framework, which integrates two plug-and-play modules—Gemini-MVR
retriever and McDPO trainer—to address two key bottlenecks: human-centric video retrieval and
error propagation in cross-modal motion RAG pipelines.

* Experimental results demonstrate that VimoRAG achieves substantial performance improve-
ments in OOD settings and consistently enhances vanilla motion LLMs in in-domain scenarios.
Furthermore, it exhibits clear potential for further gains as the retrieval corpus expands.
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Figure 2: Overview of the VimoRAG pipeline: (1) text-to-video retrieval via Gemini-MVR, and (2)
video-augmented motion generation guided by text and retrieved video. Gemini-MVR (Sec. [3.2) is
designed to improve cross-modal human-centric video retrieval, while the McDPO training strategy
(Sec. [3.3) mitigates error propagation caused by noisy retrievals.

2 Related Work

Motion generation [12] has long been a hot research topic in the related community, aiming to
generate human-like 3D motion based on a given prompt, such as text, action, or incomplete motion.
Text-to-motion is among the most significant task settings and has attracted substantial research
attention [[13 16, [14-18]]. For instance, T2M-GPT [1] explores a generative framework utilizing VQ-
VAE [8]] and Transformer [19] for motion generation. MDM [20] introduces a diffusion-based [21]]
generative model trained across multiple motion tasks. MLD [22] enhances the latent diffusion model
to produce motions conditioned on various inputs. These motion generation specialists, following
in-house training, deliver high performance in motion generation.

In recent years, the emergence of LLMs [23] has demonstrated unprecedented levels of intelligence,
driving the evolution from specialists to generalists. In the motion domain, motion language models
(314} 24} 25] have been proposed, where motion-aware encoders are connected to a central LLM,
leading to motion generalists (also named motion LLMs) capable of perceiving various motions.
Further, motion generators (e.g., diffusion or VQ-VAE models) are integrated to achieve unified
motion LLMs for both comprehension and generation [3]]. To achieve robust motion manipulation
capabilities, these motion LLMs require fine-tuning on large annotated datasets. However, compared
to comprehension tasks, motion generation is more reliant on data, but motion annotation datasets are
often quite limited due to the high cost of annotation.

In a recent study, Remodiffuse [6] introduces a motion generation method based on the retrieval-
augmented generation (RAG) paradigm. It performs text-to-text retrieval from a labeled 3D motion
database to fetch related motion signals and enhance generation quality. However, as previously
mentioned, existing motion databases are typically limited in scale. In contrast, large-scale video
databases are more accessible and diverse. Motivated by this, we explore a human motion-centric
video retrieval framework to support 3D motion generation, where motion-consistent 2D features
extracted from videos are effectively transferred to guide the 3D motion synthesis. Compared to
Remodiffuse, our approach introduces two key innovations. First, we leverage cross-modal text-to-
video retrieval to eliminate the reliance on motion databases that require manually written textual
descriptions. Second, we are the first to identify the issue of error propagation in motion-RAG
frameworks, and propose a novel algorithm, McDPO, to address it.

Notably, several motion LLM studies [26} 27} 24] have also explored human-related video tasks.
Inspired by MotionBank, we construct our video corpus from multiple action-centric datasets. Unlike
previous works that focus on building high-quality video collections, this work instead centers on
validating the potential and robustness of VimoRAG framework when retrieving from a wild video
corpus, and on addressing the potential inconsistency between video input and the generated motion.

3  Our Approach: VimoRAG

VimoRAG is a Video-based Retrieval-augmented Motion Generation framework. We first introduce
the overall architecture and our collected video database in Section[3.1} Then we describe the details
of two key components (Gimi-MVR and McDPO) in Section [3.2]and Section [3.3|respectively.



3.1 Preliminaries

Overall Architecture. As depicted in Figure[2] VimoRAG is a pipeline composed of two essential
steps. The initial step involves text-to-video retrieval, in which a motion description text is used to
retrieve semantically relevant videos (the rank-1 video is used in this paper) from an unlabeled wild
video database with our Gimi-M VR model. The subsequent step involves video-augmented motion
generation, where both the text and retrieved videos are fed into the generation model to produce the
motion sequence. Leveraging our novel McDPO trainer, we facilitate the contextually aligned motion
generation process.

Human-centric Video Database. In theory, it is possible to retrieve the most semantically relevant
videos from all available short videos on the internet to overcome the challenges of open-vocabulary
text descriptions in the industry. However, in academia, in order to efficiently verify the feasibility of
our method and to advance this research direction, we gather and filter a vast human-centric video
database (HcVD) consisting of 425,988 videos, sourced from [2833]).

To train a better retrieval model on human-centric videos, we leverage the widely used Qwen2-
VL model to synthesize textual descriptions following Zhao et al [35)]. We clarify that the
synthetic captions are used solely to train the retriever, and are not involved in the motion RAG
pipeline. VimoRAG is a ready-to-use framework that requires neither large-scale annotated videos
nor text-to-text retrieval. Additionally, we enhance the dataset quality by employing AlphaPose [36]
to filter out videos without human detection. More details are presented in the Appendix [C}

3.2 Gemini Motion Video Retriever
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encode each frame of keypoints to the feature space separately. After this, we add learnable position
embeddings frame by frame and feed them into a temporal encoder. In order to avoid information
loss in the sequential encoding process, the residual operation is adopted here. To obtain a good
initial weight, we adopt the pretrained AlphaPose [36]] and the pretrained MotionBERT [38]] as the
keypoints detector and encoder accordingly. The temporal encoder is implemented by a transformer
block [19] and is initialized randomly. 6 is initialized from the text encoder in InternVideo [39].

We train the action-level retriever using the contrastive learning loss [40] Laction = Lp2a + Lazp
(Lazp is provided in the Appendix [D]due to space limitations):

eXP (pi’ai))
- : (D
Lpa=-—5% Z B exp(s(p;,a;))

where p and a are embedding vectors encoded by 6p and 6 4 for the input value ¢ and v, respectively.
B denotes the number of text-video pairs in a training batch. s(, ) denotes the cosine similarity. For
the object-level retriever, we directly adopt InternVideo [39]], one of the most widely used VFMs,
owing to its extensive common knowledge. The argument semantic extractor #g and object encoder
O are initialized using the text encoder and video encoder of InternVideo. During the fine-tuning
stage, we utilize a loss function Lopject similar to Lqction. Let g and o denote the embedding vectors
encoded by g and 0 for the input value ¢ and v, respectively. We just replace p with g and
replace a with 0 in L,cti0n, and then we can get the symmetric loss function Lopjece. It is worth
emphasizing that the two semantic extractors do not explicitly extract the semantics of predicates
and arguments. We hypothesize that, through contrastive learning with different video features, each
semantic extractor implicitly captures its respective focus—predicates and arguments.

Following the independent training of the two retrievers in stage 1, the subsequent step involves
determining an effective approach to integrate the two retrievers. A key consideration is that the
allocation of weights should adapt to the characteristics of different motion videos. Building on this
foundation, we propose an action-aware similarity integrator model, denoted as Z. Considering the
two-level retrieval models can be significantly large, the optimal Z should be sufficiently lightweight
to minimize retrieval delay. To achieve this, we employ a simple linear method. The cosine similarity

s(t,v) is calculated as follows:
T T
o)~ Dol@)s(p.a) | Ti(a)s(g,0) o
Io(a) +I1(a)  Io(a) +Ii(a)
where Z, and Z; denote two output channels of Z. In stage 2, the training loss function is Lipteq =
Loy + Lyo:, Where Lyo, is calculated as folloWS'

ex ti, V;
Liny = - Zl SCICHID 3)
> j—1exp(s(ti, v;))
Notably, £,2; and L;s,, exhibit a symmetrlc structure.

Training and Inference. Since the action-level retriever is trained from scratch, while the object-
level retriever has already been pretrained on a large corpus of text-video pairs, we first pretrain the
action-level retriever using a subset of the HcVD In Stage 1, we fine-tune both pretrained retrieval
models in parallel, allowing for the optimization of all modules. In Stage 2, we freeze the two
pretrained models and optimize only the similarity integrator. During the retrieval stage, we compute
the similarity between the query text in the benchmark datasets for motion generation and each video
in the HcVD using Equation 2} More implementation details can be found in the Appendix

3.3 Motion-centric Dual-alignment DPO Trainer

As illustrated in Figure [d to fully leverage the descriptive information in the text and the rich 2D
visual prior in the retrieved videos, we utilize LLM to project all the information from different
modalities into the language space in Stage 1. However, as mentioned in the introduction, there is an
inherent gap between the 2D visual prior and the target 3D motion, as the motion prior in the retrieved
videos represents only a sample of the full target motion space. Additionally, the 2D visual priors do
not always align semantically with the text. To guide the LLM to learn the appropriate direction for
generation when such gaps arise, we construct the McDPO training set using a dual-alignment reward
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Figure 4: The McDPO training strategy. Given a text ¢ and a retrieved video v, we first perform
visual demonstration-enhanced instruction tuning to establish a base reference model 7,.s. Then,
based on the motion-centric dual-alignment reward model, we construct a preference dataset and
apply DPO training. The reward model jointly measures motion similarity in the feature space
and semantic consistency with the text, guiding the model to learn informative motion priors and
maximize preference rewards through self-improvement.

Table 1: Zero-shot results on IDEA400 test set. All motions are generated by the models trained on
HumanML3D training set. All results are reproduced using the officially released models (codes).
VimoRAG achieves the best FID score, with other metrics closely matching SoTA.

Model FID | R-Precision 1 MM Dist | Diversity 1
Top 1 Top 2 Top 3

o Motion Specialists

MoMask [13] 5.982%-089 (0 110%-003  (,195%.006 0 266+-006 5 6p5+.023 7 558+.119
T2M-GPT [T] 5359078 (108+-006  (0.186+:005 (0 255+.006  5773+.037 7 g4qg+.100
MDM [20] 5.907%-107  0,113%+-:004  200+:004  (278+-004 ¢ (13+-020 g 131+.080
MotionDiffuse [2]  5.485%:038  (.110£:002  (,194%£-002  (266+.003  (38+-005 ¢ ggq+-095
MLD [22] 54101085 0,114%-:003  0200%:005  0270+-004 6 05+-029 7 558+.086
MotionGPT [4] 6.202%-186  (087+-005  (0.151£:007 (9 209+.008 g 640+-025 7 gq+-111
ReMoDiffuse [6]  9.639%:069  (.110+-004  (,188%+-006  (256+.005  5465+-015  7.540%-120
o Motion LLMs

MotionGPT [3] 5.544F174 (0 096E-005  (171£.008  (236+.008 g 300E.-032 7 509+.096

VimoRAG (Ours) ~ 2.388+:056 (. 113%:005 (0 193+.008  (270+.011  5ggg+.061 7 6gg+.197

model, allowing LLM to learn the most informative priors to maximize preference rewards by
distinguishing its own struggle cases. We describe the details in the following parts.

Visual Demonstration-Enhanced Instruction Tuning. Given an input text x = {21, z2,...2p, }
of n, tokens, a system prompt S of the LLM, an instruction template 7, and a retrieved
video v = {wy,va,...,v,, } Of n, frames, we first embed v into k segment-wise embeddings
Ev = {EY},ES, ..., E}} following Maaz et al. [10] We then concatenate these elements to obtain
the final input embeddings £ = [emb(P), T (emb(z), EV)] where emb(-) denotes the embedding
layers of the LLM. For the target motion, we leverage the widely used VQ-VAE [_8] to encode the con-
tinuous motion sequence into discrete motion tokens y = {1, ¥z, ..., Yn, } following MotionGPT [3].
Inspired by them, we fine-tune the LLM using the following instruction-tuning format in Stage 1:

System Prompt P: You are a helpful Al assistant.

Instruction Template 7: Generate a sequence of motion tokens matching the following human
motion description. You can use the video as a reference. Video information: { Retrieved Video
v} Motion description: {Input Text z }

Answer y: {Sequence of Motion Tokens }

The loss function Ly, in Stage 1 is as followed: Lo = —> . 10g Do (yn|Y<ns EX).

Motion-centric Dual-alignment DPO. To empower the motion LLM with the ability to au-
tonomously adapt to video priors of differing quality during the generation process, we introduce



Table 2: Results on HumanML3D test set. “*” denotes results from original papers; others are
reproduced using official code. VimoRAG achieves the best FID and competitive performance
across metrics among existing motion LL.Ms. This framework significantly improves five metrics
(highlighted in red) over MotionGPT [3] (Phi3-3.8B), demonstrating the substantial advantage of
incorporating video priors. The complete results with confidence intervals are shown in Table

Model Backbone FID | R-Precision { MM Dist] Diversity'
Top 1 Top 2 Top 3
Motion Specialists
MoMask [13]] - 0.048 0.519 0.715 0.809 2.955 9.632
T2M-GPT [1] - 0.112 0.489 0.679 0.774 3.125 9.691
MDM [20] - 0.454 0.419 0.606 0.712 3.636 9.449
MotionDiffuse [2] - 0.672 0.492 0.685 0.784 3.085 9.499
MLD [22] - 0.425 0.468 0.656 0.759 3.266 9.698
ReMoDiffuse [6] - 0.125 0.493 0.676 0.775 3.047 9.211
LMM* [27] - 0.040 0.525 0.719 0.811 2.943 9.814
MotionLab* [46] - 0.167 - - 0.810 2912 9.593
MotionLCM* [47] - 0.304 0.502 0.698 0.798 3.012 9.607
MotionCLR* [48] - 0.269 0.544 0.732 0.831 2.806 -
MotionGPT* [4] - 0.232 0.492 0.681 0.778 3.096 9.528
BiPO* [49] - 0.030 0.523 0.714 0.809 2.880 9.556
StableMoFusion* [50] — 0.098 0.553 0.748 0.841 - 9.748
MoGenTS* [51]) - 0.033 0.529 0.719 0.812 2.867 9.570
LAMP* [52] - 0.032 0.557 0.751 0.843 2.759 9.571
Motion LLMs
MotionGPT-2* [25]  Llama3-8B 0.191 0.496 0.691 0.782 3.080 9.860
MotionLLM* [53]] GPT4+Gemma-2B 0.230 0.515 - 0.801 2.967 9.908
Wang et al.* [54] Llama2-13B 0.166 0.519 - 0.803 2.964 -
ScaMo* [33] codesize 512-3B  0.617 0.443 0.627 0.734 3.340 9.217
AvatarGPT* [50] Llama-13B 0.567 0.389 0.539 0.623 - 9.489
MotionGPT* [3] Llama-13B 0.567 - - - 3.775 9.006
MotionGPT [3]] Phi3-3.8B 0.501 0.396 0.575 0.673 3.724 9.475
VimoRAG (Ours) Phi3-3.8B 0.131 739, 0.452 149, 0.655 149, 0.764 139, 3.146 |59, 9.424 ¢,

motion-centric dual-alignment DPO training strategy. As illustrated in Figure[d] after the completion
of Stage 1 training, we obtain a base reference model 7,.y. The videos used in Stage 1 are the
retrieval results of the retrieval model, not ground truth, meaning that 7. has been learning to
handle the potential gap between text and video during training. However, 7.y struggles to learn
this aspect. In fact, we discover early in our experimens that 7, s’s performance on the training set is
not stable, particularly when the gap is large. The experimental results shown in Figure [6] support this
observation (NMC-R1 is worse than MC-R1).

To construct such a training set, we first use 7,y to randomly sample x times to generate a motions’
candidate set. In contrast to recent works [41}, 42], which rely on human or Al-based proxies as
reward models, we devise a more efficient dual-alignment reward model. This model outputs a reward
score for a sampled motion sequence ¥; as follows:
g(yA’Hy) d(yum)

~ + wq - )
jE}gg(yj7y) Z]‘eﬁ d(yjax)
where ¢(-) and d(-) denote the distribution distance and Euclidean distance computed based on the
features of the two inputs, respectively. wy and wy are hyper-parameters to respectively control the
degree of alignment within the motion modality and between the text-motion modalities. The reward
model encourages the preferred motions to be closer to the reference motions in the feature space and
more semantically aligned with the paired text in the semantic space. By leveraging the reward model,
we collect the chosen motions y,, and the rejected motions y; from the existing motions’ candidate
set, thereby constructing a DPO dataset Dy, = {(x,v,y",y')}. Finally, we adopt the following
DPO training objective [43]44]. Here 7y and o denote the policy model and the logistic function,
respectively. v here denotes the weighting coefficient.

“

r(z,v,y;) = —(wgz

To(y" |, v) 7oy, v)

Lapo = —E(zwyw yi)~D logo(’ylogi —710g7>

vyt P Trer (5[, 0) Trer (4], )

Training Strategy. We employ phi-3-mini [9]] as the backbone LLM and utilize the LoRA [45]

tuning method in both training stages. In Stage 1, we additionally tune the visual adapter while

freezing the remaining modules. In Stage 2, all modules except for the LLM are kept frozen. Due to
space constraints, further training configurations are detailed in the Appendix D]

&)



Text VimoRAG ReMoDiffuse MotionGPT MoMask MotionDiffuse

The person appears to be *
o

mimicking the action /-
of riding a bicycle while ‘& o 3
standing up; alternating y

raising knees as if pedaling )
The person is preparing to Sl & = w

throw a frisbee. bringing

the arm with the frisbee
back for momentum.

Figure 5: Zero-shot qualitative results on IDEA400 test set. All motions are directly generated by the
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motion due to space constraints. The full text and more results are available in Figure[12]and[13]
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4 Experiment

4.1 Datasets, Metrics and Baselines

We conduct extensive experiments on two widely used large-scale datasets following the existing
works [16]]. The first is the IDEA400 dataset, a high-quality whole-body motion dataset composed
of 12.5K clips and 2.6M frames in MotionX [11]], which is utilized to assess OOD performance.
The other dataset, HumanML3D [3], comprising 14,616 motion clips and 44,970 text descriptions,
is utilized to evaluate in-domain performance. For evaluation metrics, we adopt several widely
recognized measures: Frechet Inception Distance (FID), R-recall, MultiModal Distance (MM Dist),
Diversity. More details can be found in Appendix [A]due to the space limit.

4.2 Implementation Details

We implement VimoRAG with PyTorch. We use the same Gemini-M VR for all the text-to-motion
experiments because the retrieval model is decoupled with the generation phrase in our framework.
In Stage 1 of McDPO, we train 2 epochs with a learning rate 2e-4 for LORA parameters (rank =
128, o = 256), with a learning rate 2e-5 for the visual adapter’s parameters. In Stage 2 of McDPO,
we train 1 epoch with a learning rate 2e-4. Inference is conducted using a single NVIDIA A800 GPU,
while training is accelerated using 8 GPUs to enhance efficiency. Further details regarding the model
configurations, training settings, and pose representation are provided in the Appendix [A]

4.3 Main Results

Quantitative Results. Tables[I]and [2] present a quantitative comparison between VimoRAG and
SoTA techniques. For a fair comparison, each experiment is conducted ten times, and we report
the results with a 95% confidence interval. As illustrated in Table [T, VimoRAG achieves the best
FID score, indicating its strong generalization capability in generating high-fidelity motions in OOD
scenarios. According to Table 2] VimoRAG outperforms MotionGPT [3]] by a large margin
across all metrics when using the same backbone. It achieves the best FID score and competitive
performance on other metrics among motion LLMs based on the Phi-3 3.8B backbone. As shown
in Figure[7} performance improves steadily with larger retrieval sets, highlighting VimoRAG’s
potential to enhance motion LLMs.

Qualitative Comparison. Figure[5|demonstrates the qualitative comparison results on the IDEA400
test set. Among the results, those from VimoRAG appear to align more closely with the intended
meaning of the given text. The text descriptions in IDEA400 are quite intricate and differ significantly
from those in the HumanML3D dataset. In the fourth demonstration, the text entails multiple changes
in action, such as “seated, rotate, grabbing, lifting”. Among all the motions showcased, the results
from VimoRAG encompass more action types related to the text. Similar phenomena can be observed
in other cases as well. More results are shown in Appendix (Section [B) and our anonymous GitHub.
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Table 3: Ab.lati(.)n study on Hu- Table 4: Text-to-video retrieval performance
manML3D validation set. Gem de- on HcVD test sets. Compared to the object-

notes Gemini-M VR retriever, Mc denotes level VEM, Gemini-MVR achieves a signifi-
McDPO, Ran denotes random retriever, cant improvement in the Recall@1 metric.

Int denotes InternVideo retriever. The

FID .drol') Of'Gem+M'C relative to each set- Retriever R@ IT R@ST R@ IOT MHR\L
ting is highlighted in blue.

Human-centric Video
R-Precision? InternVideo  53.6 84.5 92.3 4.2
Top 1 Top2 Top 3 Gemini-MVR  58.3 155 87.3 93.7 3.6

Settings FID|

Gem+Mc 0.148 0.429 0.625 0.756 Single Human-centric Video
Ran+Mc 0.544 |75 3% 0.420 0.644 0.750 InternVideo 52.3 84.0 91.5 4.5

Int+Mc 0.205 127.8% 0.433 0.638 0.736 Gemini-MVR 61.0 Tl(}.h‘% 89.2 94.1 3.5
Gem 0.260 1431 0.403 0.582 0.682 :

4.4 Ablation Study

Impact of Motion Video Retriever. To study

the the influence of the video retriever, we re- |
place the Gemini-MVR with two other retriev- - - - - - ________________
ers: one being the fine-tuned InternVideo [39] 06 | ol 06

model, and the other being random retrieval osl
from the HcVD. The results in Table 3] show o3

that random retrieval leads to a notable increase 02} 0.156
in the FID score, indicating the importance of D18
accurate video priors in generating high-fidelity 01}
results. Moreover, replacing the retriever with
InternVideo also leads to a rise in FID score, Figure 6: In-depth exploration of McDPO. Mc
further confirming the effectiveness of Gemini- stands for McDPO setting, and NMc stands for No
MVR. It is important to note that the perfor- McDPO Setting. R1 indicates the use of rank-1
mance of the retrieval model in RAG is influ- Video during inference, while Roo indicates the use
enced by the generation module, hence we also  of random video during inference.

conduct text-to-video retrieval experiments. As

shown in Table ] Gemini-MVR achieves an 8.8% increase in R@1 for the human-centric video
set (pool size is 1990), and a 16.6% increase in R@1 for the single human-centric video set. These
results further validate the effectiveness of Gemini-MVR.

0.68

Impact of McDPO. Table [3|demonstrates that removing McDPO leads to a substantial overall
performance drop, as evidenced by the comparison between the Gem+Mc and Gem settings. These
findings indicate that the McDPO trainer effectively mitigates the error propagation issue, a point we
further analyze in detail in the discussion section[4.5]

4.5 In-depth Discussion

The Effect of Retrieval Database Size. Figure[/|illustrates the changes in the FID and MM-Dist
metrics as the size of the database increases. It can be observed that as the database size increases,
both metrics show a decreasing trend, demonstrating VimoRAG’s scalability potential with larger
retrieval corpora — a promising property given that wild video datasets can be easily scaled in
real-world applications.

The Role of McDPOQO. To further analyze the role of McDPO in VimoRAG, we conduct a crossover
experiment involving different video priors. As illustrated in Figure[6} the FID score in the Mc-Roo
setting is lower than that in the NMc-Roo setting, indicating that McDPO achieves a significantly
lower FID score, even when random video priors are utilized. This further suggests that McDPO
effectively enables the model to disregard non-informative video priors. Moreover, we observe
that McDPO also achieves a significantly lower FID score and higher R-Precision score when
provided with a rank-1 video. In essence, the model appears to possess the ability to distinguish
between informative and non-informative video priors, effectively utilizing relevant information
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Figure 7: As the video retrieval database grows, VimoRAG shows steadily improving performance,
demonstrating strong potential for real-world applications.

while disregarding noise. We hypothesize that this ability arises from the model’s implicit alignment
with these two perspectives.

5 Discussion

Limitations. A limitation of our work is that VimoRAG is designed for LLMs, which results in
longer processing times than those of existing smaller models (motion specialists). We evaluate the
latency of our framework, with detailed results shown in Table[6] We acknowledge this constraint
and intend to explore methods for reducing latency in future works.

Impact Statement. While the capabilities of our framework present significant opportunities for
motion generation, they also raise ethical concerns regarding its potential misuse. Malicious users
could exploit the system to create content that promotes violence or other harmful behaviors, posing
risks to societal well-being. To mitigate these potential impacts, we will implement a strict licensing
mechanism upon the release of our method. This licensing will govern the academic research
and applications of our model, ensuring that its deployment is aligned with ethical standards and
responsible use.

6 Conclusion and Future Work

In this paper, we propose VimoRAG, a novel framework that integrates large-scale in-the-wild video
databases to enhance motion generation for motion LLMs. We tackle two key challenges—human-
centric video retrieval and error propagation—through the proposed Gemini-M VR model and the
McDPO training strategy. Our experiments show that VimoRAG further boosts motion LLMs with
substantial performance gains in both OOD and in-domain settings, and its performance steadily
improves with larger retrieval corpora, showing strong scalability potential.

In future work, we aim to advance along two directions. First, we will explore which types of
LLMs are most suitable as the backbone of VimoRAG, and how to define appropriate metrics for
automatically selecting them. While numerous LLMs are available today, our focus in this paper
is not on identifying the best-performing LL.M, but rather on addressing the core challenges within
the RAG system. Second, building upon the success of video-based RAG, we plan to incorporate
video, 3D data, and potentially even image data as priors to develop a unified RAG framework and
investigating whether this multimodal integration can lead to further performance gains.
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In the appendix, we present more experimental settings and results (Section [A), more qualitative
results (Section , details of human-centric video database (Section @), more implementation details
of VimoRAG (Section D).

A More Experimental Settings and Results

A.1 Experimental Settings

In the training configurations for Gemini-M VR, we set the maximum number of video frames to 16.
We employ the Adam optimizer with parameters b1=0.9, b2=0.98, epsilon=1e-6, and a weight decay
of 0.2 throughout all training stages. For the action-level retriever, we conduct training for 10 epochs
with a batch size of 2048 and a learning rate of le-4. In the case of the object-level retriever, we train
for 5 epochs using a batch size of 128, the learning rate is set to 4e-6 for the CLIP-related modules
and le-3 for the remaining modules. Regarding the similarity integrator model, we also train for 5
epochs with a batch size of 128 and a learning rate of le-3. Additional details are available in our
code.

For the training configurations of McDPO, during Stage 1, we set the batch size to 64, weight decay
to 0.0, and the maximum context length to 4096, employing a bf16 precision format. We conduct
training for 2 epochs on the HumanML3D training set. In Stage 2, we train for 1 epoch with a
learning rate of 2e-4, weight decay of 0.0, batch size of 8, and v = 0.1 as defined in Equation 3]
We set the temperature of the LLM to 0.9 across all experiments. The maximum number of video
frames is set to 16 during the generation stage. Most hyper-parameters are selected through grid
search techniques applied to the validation sets.
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Figure 8: Variation of R-Precision (TOP1) and Diversity metrics as a function of video database size.
A larger database, exceeding 100,000 entries, enhances R-precision. There appears to be no evident
correlation between the diversity metric and the size of the database.

Table 5: Performance of various LORA parameters in McDPO on the HumanML3D validation set.
The best results are highlighted in bold for each setting.

Rank o | FID|  MultiModal Dist | R-Precision 1

Diversity 1
| Top-1 Top-2 Top-3
e af/rank = 2
8 16 0.417 3.216 0.437 0.625 0.745 9.636
16 32 0.249 3.146 0.426 0.642 0.764 9.936
32 64 0.221 3.109 0.449 0.670 0.759 9.718
64 128 0.192 3.089 0.454 0.664 0.767 9.560
128 256 0.179 3.046 0.447 0.667 0.772 9.567
e rank = 128
128 64 0.235 3.110 0.452 0.656 0.770 9.591
128 128 0.156 3.114 0.445 0.637 0.754 9.728
128 256 0.179 3.046 0.447 0.667 0.772 9.567
o o = 256
32 256 0.270 3.184 0.437 0.638 0.742 9.294
64 256 0.152 3.168 0.443 0.654 0.761 9.486
128 256 0.179 3.046 0.447 0.667 0.772 9.567
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Table 6: Analysis of average latency per instance during the inference phase (in seconds). Retrieval
refers to the process of transforming text into video, Generation indicates the phase of generating
motion tokens, and Decoding pertains to the conversion of tokens into features using VQ-VAE. It is
evident that the retrieval phase does not represent a bottleneck within the entire pipeline, rather, the
generation process of LLM constitutes the limiting factor. Notably, the parameter size of the LLM
utilized in VimoRAG is 3.8 billion.

Retrieval Time (s)  Generation Time (s) Decoding Time (s) Total Time (s) Tokens/s

MotionGPT-13B 0 14.89 0.12 15.01 13.44
VimoRAG 0.48 7.02 0.12 7.62 27.92

Table 7: Complete results with confidence intervals on the HumanML3D test set.

R-Precision 1

Model Backbone FID | MM Dist | Diversity T
Top 1 Top 2 Top 3
e Motion Specialists
MoMask [13] - 0.048%-004 (. 519+.005 (9 715+.005 () gp9=-004 2 955=+.011 g 32+.094
T2M-GPT [T] - 0.112%:006 () 489+-006 () 679+.006 () 774%.004 3 175+.015 g gg1+.062
MDM [20] - 0.454%-012 (. 419+.004 (g 6pe+-004 (0.712£-004 3 636+-015 9 449+-136
MotionDiffuse [2] - 0.672%:025 (. 492%-004 (9 6g5+.003 () 784%-003 3 og5+.134 g 499+.184
MLD [22] _ 0.425E-145 () 468%-005 () g56%-003 0_759i.004 3.266%-019 9.698i‘094
ReMoDiffuse [[6] - 0.125%-142 (0 493%.004 (9 676+.003 (775003 3 047+.007 g p17+.129
LMM* [27] - 0.040%-002 (0 525+.002 (9 719+-002 () g11£-002 3 gq3+.012 ¢ g14+.076
MotionLab* [46)] - 0167t~ - - 0.810f— 2912F— 9.593%—
MotionLCM* [47] - 0.304%-012 (. 502+-003 (9 g9g+-002 () 798+-002 3 12+.007 g g(7+-006
MotionCLR* [43] - 0.269%-:001 () 544%.001 (9 733+.001 (g31+.002 5 gpg+-014 _
MotionGPT* [4] - 0.232%-008 (9 492+.003 (g 681 +-003 () 778+-002 3 g9g+-008 g 578+.071
BiPO* [49] - 0.030%-002 (0 523%.003 (9714+.002 ( g9+-002 7 gg+-009 g 556+.076
StableMoFusion* [50] — 0.098%-003 (0.553%.003 (9 748+-002 () g41+-002 _ 9.748%-092
MoGenTS* [51]] - 0.033%:001 () 529+.003 (9719+.002 () g12+.002 7 g7+.006 g 570+.077
LAMP* [52] - 0.032%-002 ( 557+.003 (751002 () 843+-001 2 759+.007 g 571+.069
o Motion LLMs
MotionGPT-2* [25]  Llama3-8B 0.191%£:004 (. 496%-002 (9 691+-003 () 782%-004 3 0gp+-013 g ge0+-026
MotionLLM* [53]] GPT4+Gemma-2B 0.230%-009 (.515+.004 _ 0.801%-004 2 967+.020 9 g9g+-102
Wang et al.* [54] Llama2-13B 0.166*~ 0519~ - 0.803t~  2964*— —
ScaMo* [33] codesize 512-3B  0.617F— 0443~ 0627~ 0734~ 3340F— 9217~
AvatarGPT* [36] Llama-13B 0.567F— 0389t~ 0539t 0623~ - 9.489+—
MotionGPT* [3] Llama-13B 0567t - - - 3775 9.006T—
MotionGPT [3]] Phi3-3.8B 0.501%-:005 ( 396%-002 (9 575+.005 () 673+.004 3 794+.012 g 475+.110
VimoRAG (Ours) Phi3-3.8B 0.131£:007 (0 452%-002 () 655+:006 () 764%-005 3 146+-011 g 4p4+.149

A.2 Maetrics

For motion generation evaluation metrics, we adopt several widely recognized measures: Frechet
Inception Distance (FID), which quantifies generation fidelity by measuring the distributional distance
between the generated motions and reference motions in feature space. R-recall, MultiModal Distance
(MM Dist), which evaluate the semantic consistency between text and motions. Diversity. which
assesses the diversity of the generated motions corresponding to a given textual input. For text-to-
video retrieval metrics, we adopt the widely used metrics retrieval recall (R@1, R@5, R@10 are
adopted in this paper), Median Rank (MdR) and Mean Rank (MnR). Recall measures the proportion
of relevant results returned by the retrieval model within the top-k results. Median Rank represents
the middle value of the ranks at which the correct results appear in the retrieval list. Mean Rank
calculates the average position of the correct results in the retrieval lists.

A.3 More Details of Datasets
IDEA400 represents a high-quality subset of Motion-X [[L1], consisting of a large-scale whole-body

motion dataset composed of 12.5K clips and 2.6M frames. This dataset encompasses a diverse array
of gestures and detailed pose descriptions. Unlike existing works [[16], which meticulously select a
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Figure 9: The impact of varying temperature values on the distribution of generated motion tokens.
Notably, when the temperature is set to 0.9, the distribution of the generated motion tokens closely
resembles the ground truth (GT) distribution.
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Figure 10: The influence of different retrieval conditions on the distribution of generated motion
tokens is depicted.

test set with text descriptions similar to those found in HumanML3D, we adopt a different approach
by randomly sampling 10% of the clips without any specific selection criteria. We argue that this
methodology more closely resembles an out-of-distribution (OOD) scenario, wherein the test set
features a distribution distinctly different from that of the HumanML3D training set.

HumanML3D [5] constitutes the largest dataset available, providing text descriptions alongside
body-only motions. It includes a total of 14,616 motion clips and 44,970 text descriptions, with 5,371
unique words present across these descriptions. The dataset is partitioned into a training set (80%), a
validation set (5%), and a test set (15%).

Regarding pose representation, we adhere to the same specifications as outlined in HumanML3D [3].
It is important to note that the number of joints (J) is set at 22 for both HumanML3D and IDEA400.
We process the motion features for IDEA400 using the same settings as HumanML3D, resulting in
a total dimension of 263. These features include root angular velocity, root linear velocities, root
height, local joint positions (velocities), and 6D rotations.

A.4 More Experimental Results

The Effect of Video Database Size. To investigate the impact of video database size on perfor-
mance, we conduct experiments at six different scales using the validation set from the HumanML3D
dataset. Figure[/|illustrates the changes in the Frechet Inception Distance (FID) and Multi-Modal
Distance (MM-Dist) metrics as the size of the database increases, as discussed in Section .3}

We also report the changes in R-Precision and diversity metrics under the same experimental settings.
As illustrated in Figure [§] we observe that a larger database contributes to an improvement in R-
Precision, particularly when the database size exceeds 100,000 entries, highlighting the advantages
of utilizing large-scale video retrieval repositories. Interestingly, we find that the diversity metric
does not increase in tandem with the growth of the video database size. We hypothesize that when
the retrieved videos lack informativeness, the noise introduced enhances the diversity of the model’s
outputs. Consequently, smaller video databases can still yield substantial diversity.

Through this experiment, we demonstrate the significant potential of retrieval-enhanced methods
based on large-scale video databases. However, resource constraints limit us to conduct further
experiments. We hope to explore the effects of even larger databases on performance in future work.

The Analysis of Latency. We analyze the latency of the VimoRAG framework, as depicted in
Table[6] where we report the average time taken per instance during the inference phase. The entire
pipeline is divided into three stages: the retrieval phase (conducted by the text-to-video model), the
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Figure 11: Words and phrases that frequently appear in text descriptions in HcVD database.

generation phase (performed by the LLM), and the decoding phase (executed by the VQ-VAE). The
results indicate that the generation phase exhibits the highest latency, accounting for 92% of the
total processing time. This is primarily due to the need for the LLM to load a substantial number of
parameters (3.8 billion in VimoRAG). In comparison, the retrieval and decoding phases account for
only 6% and 2% of the total time, respectively. This finding highlights that, despite the generation of
high-fidelity motion leveraging the world knowledge of the LLM, it remains the latency bottleneck in
the overall generation framework. Consequently, this drives us to explore more efficient generative
models in our future work. To illustrate the impact of different LLM sizes on latency, we also test the
latency of the MotionGPT-13B model [3]] on the same computational hardware. As shown in Table [6]
the total time for the MotionGPT-13B is nearly twice that of VimoRAG.

Hyper-parameters of LoRA in McDPO. In order to investigate the impact of key hyper-parameters
on the performance of McDPO training, we conduct comparative experiments focusing on the LoRA
fine-tuning parameters rank and «. As illustrated in Table 1, varying rank and « significantly
influence the outcomes, a phenomenon that aligns with previous findings in the works [3, 25].
We also observe that when maintaining a constant ratio between rank and «, both the FID and
MultiModal Dist metrics gradually decrease as rank and « increase. The increase in rank and «
corresponds to a greater number of parameters available for optimization within the model, thereby
enhancing its capability to fit the dataset more effectively. However, we note a corresponding decline
in diversity, indicating that a larger parameter scale adversely affects the model’s ability to generate
diverse outputs.

The Impact of the Temperature of LLM. As shown in the Figure[9] we visualize the impact of
different temperatures on the distribution of generated motion tokens. We examine the effects of
three commonly used temperatures (0.7, 0.8, and 0.9) on the results. Firstly, it is evident that the
output distributions generated by different temperatures exhibit differences, indicating that the model
is sensitive to this hyperparameter. Additionally, we observe that the distribution at a temperature
of 0.9 is closest to the ground truth distribution. Generally, as the temperature parameter increases,
the output diversity of the model also rises. We believe that a larger temperature in this study aids in
enhancing the model’s generalization capability.

Analysis of Distribution Resulting from the Retrieval Process. As shown in Figure [I0] we
visualize the distribution of generated motion tokens under two conditions: one utilizing rank-1 videos
during inference and the other using random videos. The figure demonstrates that the distributions
of motion tokens obtained from random videos and rank-1 videos are generally comparable on a
macroscopic level. This indicates that even when the retrieval system fails, the distribution of our
model’s generated results remains relatively close to the distributions obtained from rank-1 retrieval
and the ground truth distribution from a macroscopic perspective. This demonstrates the model’s
strong fault tolerance and robustness. Notably, when the motion token index is less than 200, the
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Table 8: Details of the resources utilized in the construction of the HcVD database.

Dataset Number of Videos Tasks

UCF101 [32] 13,320 Action Recognition

NTU RGB+D [33]] 114,480 Action Recognition

ASLAN [28]] 3,697 Action Similarity Labeling

HMDB51 [29]] 6,849 Human Motion Recognition

Kinetics-400 [30] 306,245 Human Action Classification

PennAction [31]] 2,326 Action Classification, Action Detection

MotionX [11]] 32,500 Human Mesh Recovery, Human Mesh Generation

generated distribution under the rank-1 condition closely aligns with the ground truth distribution,
indicating the effectiveness of this retrieval strategy in capturing motion characteristics.

B More Qualitative Results

To comprehensively evaluate the generation performance of VimoRAG in out-of-distribution (OOD)
scenarios, we present more visualization results on the IDEA400 dataset in Figures [I2]and[T3] It is
noteworthy that the model utilized for generation is trained solely on the HumanML3D training set.
We also present the retrieved videos on the right side of each case. The cases depicted in Figure[5]are
further illustrated in these two figures. In contrast, we provide full-text descriptions in these figures.
It is evident that the generated motions align with the text descriptions, aided by the retrieved videos.
Taking a complex description, “The person is simulating chopping wood while seated. They rotate
their torso, simulate grabbing and lifting an object with their hands, bring it overhead, and then
perform a striking motion downward as if impacting a log between their legs. This action is repeated,
emulating the motion of splitting wood with an axe.” in Figure [12] as an example, VImoRAG is
capable of generating such uncommon actions and seamless transitions between movements. As a
supplement, we have showcased some of the original videos in our anonymous repository.

C Details of Human-centric Video Database

To train our retrieval models, we annotate a text description for each video using the widely utilized
LMM, Qwen2-VL-7B-Instruct. In total, we synthesize 425,988 captions. It is important to note
that we use these text captions exclusively during the training phase of Gemini-MVR and do not
employ them in any retrieval processes within VimoRAG. This means that VimoRAG also performs
effectively with another large video database during the inference stage. As illustrated in Figure
the word cloud presents the diverse types of actions included in the HcVD database. This richness and
diversity also elucidate why VimoRAG achieves exceptional performance from a different perspective.
We present more details of the resources that are used for the construction of the HcVD in Table 8]
Qwen2-VL supports dynamic frame selection (set FPS as 2.0). The prompt we used for data synthesis
is “Please describe the person’s actions in the video using a single sentence that contains a series of
verbs.”.

D More Implementation Details of VimoRAG

To enhance the reproducibility of VIimoRAG, this section presents additional model details, which
are also available in our code repository.

More Details of the Gemini-MVR. The temporal encoder consists of 4 transformer layers, each
featuring 12 attention heads and a width of 768. We utilize learnable position embeddings with a
context length of 77 in the action encoder. For the keypoints encoder, a projection layer is placed
atop MotionBERT [38]], with the input and output channels of the projection layer set at 8704 and
768, respectively. To derive the final representation of the keypoints, we implement mean pooling
over all the encoded frames, in accordance with existing works [40l 39]]. The similarity integrator is
implemented as a linear transformation, with an input channel of 768 and an output channel of 2. The
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More Details of the Generation Model. In our framework, we employ the VEM InternVideo2 [57]]
as the video encoder and CLIP-large [37] as the image encoder following Maaz et al. [10].
Specifically, we adopt the InternVideo2-Stage2_1B-224p-f4 variant of InternVideo2 and the
CLIP-ViT-L/14-336 model. The visual projector is a two-layer MLP with a hidden size of 1024,
where a GELU [58]] activation function is applied after the first linear layer. For the LoRA parameters,
we configure the rank to 128 and set alpha to 256. For the model details and training configurations
of VQ-VAE, we adopt the same settings as those used in existing works [, [3]. Specifically, the
codebook size is set to 512x512. The temporal downsampling rate is set to 3 in the encoder of
VQ-VAE.

More Details of the McDPO Dataset. Firstly, we use the 7.y model obtained from Stage 1 to
sample k times (where k = 3) on a random 25% subset of the training set. The reason for extracting
this subset is to reduce inference costs (which is a similar approach used by Zhang et al. [44])).
For each input sample, we obtain k different outputs as candidate samples. To identify positive
and negative samples from these multiple outputs, we utilize Equation []to calculate the reward
scores and select the cases with the highest and lowest scores as the positive and negative samples,
respectively. We configure wy = 0.9 and wq = 0.1 in Equation[d]in our experiments.
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Text

The person is performing a side kick. They
balance on one leg while the other leg is lifted
sideways in a controlled motion to execute the
kick, then the kicking leg is lowered and returned
to the starting position.

The person appears to be mimicking the action
of riding a bicydle while standing up; alternating
raising knees as if pedaling, and swinging arms
as though holding handlebars.

The person is bending over to put food on the
floor for a pet, then straightening up and
stepping back to standing position.

The person is preparing to throw a frisbee.
Starting with a stance where the weight is on the
back foot, they shift the weight forward, bringing
the arm with the frisbee back for momentum.
Then, they step forward with the opposite leg,
rotating the torso and extending the arm to
release the frisbee.

The person in the images appears to be
performing a series of boxing punches or martial
arts strikes, rotating from a neutral stance
through a sequence of punching motions with
either hand while mainly remaining in place.

The person is simulating chopping wood while
seated. They rotate their torso, simulate grabbing
and lifting an object with their hands, bring it
overhead, and then perform a striking motion
downward as if impacting a log between their
legs. This action is repeated, emulating the
motion of splitting wood with an axe.

In the sequence of images, the person appears to
be standing upright while performing a
squeezing motion with their fingers and hands.
The movements are concentrated in their upper
extremities. The individual keeps their elbows
close to the torso, with forearms parallel to each
other as they bring their fingertips from both
hands together and press them in succession,
producing a rhythmic finger squeezing action.

Retrieved video

Generated motion
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Figure 12: Additional visualization results on the IDEA400 dataset (Part I).
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Text

The person is standing and making a phone call
gesture. They lift their right hand to their ear as if
holding a phone. Their body remains relatively
static while performing the gesture.

The person is squatting down and lifting a potted
plant while then sitting on the floor with the plant.

The person is standing upright with a rapid
sequence of raising both fists from waist level to
above the head and then lowering them back
down in a cheering motion.

The person is performing a punching motion
while standing stationary. He is transitioning
from a relaxed stance to a boxing stance,
throwing a series of punches, and then returning
to the relaxed stance.

The person is running in place, lifting alternating
knees vertically while the opposite foot touches
the ground. The arms are moving in sync with
the legs, reciprocally swinging to maintain
balance.

The person is performing a stationary basketball
shooting motion. Starting from a standing
position, they bend their knees to generate power,
raise the ball with both hands in front of them,
extend their arms upwards while jumping
slightly, and then follow through with one hand to
release the ball, mimicking a basketball shot.

The person is walking back and forth in a room,

turning slightly at each end, and appears to be
fanning themselves continuously with one hand as

they go.

Retrieved video Generated motion
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Figure 13: Additional visualization results on the IDEA400 dataset (Part II).
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