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a b s t r a c t 

This paper considers the task of thorax disease diagnosis on chest X-ray (CXR) images. Most existing 

methods generally learn a network with global images as input. However, thorax diseases usually happen 

in (small) localized areas which are disease specific. Thus training CNNs using global images may be af- 

fected by the (excessive) irrelevant noisy areas. Besides, due to the poor alignment of some CXR images, 

the existence of irregular borders hinders the network performance. For addressing the above problems, 

we propose to integrate the global and local cues into a three-branch attention guided convolution neu- 

ral network (AG-CNN) to identify thorax diseases. An attention guided mask inference based cropping 

strategy is proposed to avoid noise and improve alignment in the global branch. AG-CNN also integrates 

the global cues to compensate the lost discriminative cues by the local branch. Specifically, we first learn 

a global CNN branch using global images. Then, guided by the attention heatmap generated from the 

global branch, we infer a mask to crop a discriminative region from the global image. The local region is 

used for training a local CNN branch. Lastly, we concatenate the last pooling layers of both the global and 

local branches for fine-tuning the fusion branch. Experiments on the ChestX-ray14 dataset demonstrate 

that after integrating the local cues with the global information, the average AUC scores are improved by 

AG-CNN. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

The chest X-ray (CXR) has been one of the most common radio-

logical examinations in lung and heart disease diagnosis. Currently,

reading CXRs mainly relies on professional knowledge and care-

ful manual observation. Due to the complex pathologies and subtle

texture changes of different lung lesion in images, radiologists may

make mistakes even when they have experienced long-term clin-

ical training and professional guidance. Therefore, it is of impor-

tance to develop the CXR image classification methods to support

clinical practitioners. The noticeable progress in deep learning has

benefited many trials in medical image analysis. In this paper, we

investigate the CXR classification task using deep learning. 

Several existing works on CXR classification typically employ

the global image for training. For example, Wang et al. [25] evaluate

four classic CNN architectures [6,10,22,23] to tell the presence of

multiple pathologies using a global CXR image. Viewing CXR clas-

sification as a multi-label recognition problem, Yao et al. [29] ex-
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lore the correlation among the 14 pathologic labels with global

mages in ChestX-ray14 [25] . Using a variant of DenseNet [8] as an

mage encoder, they adopt the Long-short Term Memory Networks

LSTM) [7] to capture the dependencies. Kumar et al. [12] inves-

igate that which loss function is more suitable for training CNNs

rom scratch and present a boosted cascaded CNN for global im-

ge classification. The recent effective method consists in CheXNet

19] , which fine-tunes a modified 121-layer DenseNet on the global

hest X-ray images. 

However, the global learning strategy can be compromised by

wo problems. On the one hand, using the global image for clas-

ification may include a considerable level of noise outside the le-

ion area. As shown in Fig. 1 (the first row), the lesion area can

e very small (red bounding box) compared with the global image.

hese large numbers of healthy regions make the deep networks

ard to focus on the local lesion area, and the positions of dis-

ase regions are also unpredictable. This problem is rather different

rom generic image classification [2] , where the object of interest

s usually positioned in the image center. Besides, due to the large

nter-class similarity of chest X-ray images, it is hard for the deep

etworks to capture the subtle discrepancies of different classes in

https://doi.org/10.1016/j.patrec.2019.11.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.11.040&domain=pdf
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Fig. 1. Two images from the ChestX-ray14 dataset. (a) The global images. (b) 

heatmaps extracted from a specific convolutional layer. (c) The cropped images from 

(a) guided by (b). 
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he whole images, especially when the critical lesion areas are very

mall. Considering this fact, it is beneficial to induce the network

o focus on the lesion regions when making predictions. On the

ther hand, due to the variations of capturing condition, e.g. , the

osture of the patient, or the small size of the child body, the CXR

mages may undergo distortion or misalignment. Fig. 1 (the sec-

nd row) presents a misalignment example. This human body is

elatively small, and a large number of regions are all black in the

mage. The irregular image borders may exist a non-negligible ef-

ect on classification accuracy. In real scenarios, some chest X-ray

mages could not be re-captured. Thus, the computer-aided diag-

osis system is expected to make accurate predictions on the ex-

sting images. That is, the diagnosis algorithm should be robust to

he quality of the chest X-ray images. Therefore, it is desirable to

iscover the salient lesion regions and thus alleviate the impact

f such misalignment. In this paper, we consider both the origi-

al global image and the cropped local image for classification, so

hat (1) the noise contained in non-lesion area is less influencing,

nd (2) the misalignment can be reduced. Though there is a high

ctivation region in the top-left corner of heatmap (second row),

he proposed maximum connected region cropping strategy could

nsure to avoid selecting such obvious noisy region. 

To address the problems caused by merely relying on the

lobal CXR image, this paper introduces a three-branch attention

uided convolutional neural network (AG-CNN) which integrates

he global and local cues to classify the lung or heart diseases. AG-

NN is featured in two aspects. First, it has a focus on the local

esion regions which are disease specific. Generally, such a strat-

gy is particularly effective for diseases such as “Nodule”, which

as a small lesion region. In this manner, the impact of the noise

n non-disease regions and misalignment can be alleviated. Sec-

nd, AG-CNN has three branches, i.e. a global branch, a local branch

nd a fusion branch. While the local branch exhibits the attention

echanism, it may lead to information loss in cases where the le-

ion areas are distributed in the whole images, such as Pneumonia.

herefore, a global branch is needed to compensate for this error.

e show that the global and local branches are complementary to

ach other and, once fused, yield favorable accuracy to the state of

he art. 

The working mechanism of AG-CNN is similar to that of a ra-

iologist. We first learn a global branch that takes the global im-

ge as input: a radiologist may first browse the whole CXR image.

hen, we discover and crop a local lesion region and train a local

ranch: a radiologist will concentrate on the local lesion area after
he overall browse. Finally, the global and local branches are fused

o fine-tune the whole network: a radiologist will comprehensively

onsider the global and local information before making decisions.

Our contributions are summarized as follows. 

• Chest X-ray images classification suffers from exploring the

distinct lesion areas. A visual attention-guided region infer-

ence approach is proposed to localize the local lesion area.

The attention-guided method crops the discriminative regions

to classify the chest X-ray image and thus corrects the image

alignment and reduces the impact of noise. 
• An attention-guided convolutional neural network is proposed

to diagnose thorax diseases. AG-CNN simulates the human ex-

pert in terms of attention. The latter not only focuses on the

global appearance but also looks for the specific lesion areas,

before combining the two perspectives to reach a final deci-

sion. AG-CNN employs and fuses global and local information

to mimic the human diagnosing procedure and achieves com-

petitive accuracy. 

. Related works 

The problem of Chest X-ray image classification has been ex-

ensively explored in the field of medical image analysis. Recently,

ang et al. [25] release the ChestX-ray14 dataset, which is the

argest chest X-ray dataset by far. ChestX-ray14 collects 112,120

rontal-view chest X-ray images of 30,805 unique patients. Each ra-

iography is labeled with one or more of 14 common thorax dis-

ases. It is also large enough for deep learning, so we adopt it for

erformance evaluation. 

Deep learning for chest X-ray image analysis. Deep networks have

een explored and succeeded in various tasks of computer vision

27,30,31] . Recent surveys [3,14,18] have demonstrated that deep

earning technologies have been extensively applied to the field

f medical image analysis [11,20] , especially in chest X-ray image

lassification [4,19,25] . Yao et al. [29] and Kumar et al. [12] classify

he chest X-ray images by investigating the potential dependen-

ies among the labels from the aspect of multi-label problems. Ra-

purkar et al. [19] train a convolutional neural network to address

he multi-label classification problem. With the aid of additional

adiology reports, Wang et al. [26] improve the chest X-ray im-

ge classification performance with saliency-encoded text and im-

ge embeddings. Guendel et al. [5] propose a location-aware dense

etwork to recognize the abnormality in the CXR image. This pa-

er departs from the previous methods in that we make use of the

ttention mechanism and fuse the local and global information to

mprove the classification performance without auxiliary medical

eport or lesion position. 

Global-local strategy in other domains. Combining the global and

ocal cues has been explored in tasks of different domains, such as

ocument analysis [1] , object detection and recognition [15,17] , im-

ge retrieval [9,21] , and natural image classification [16,28,32] . Ak-

ari et al. [1] propose an adaptive multi-modal multi-view ranking

odel to jointly regularize the relatedness among modalities, the

ffects of feature views extracted from different modalities, as well

s the complex relations among multi-modal documents. Luo et al.

15] propose to detect the salient object with a simplified convolu-

ional neural network which combines local and global information

hrough a multi-resolution 4 × 5 grid structure. Shyu et al. [21] try

o access the utility of localized versus global features for the do-

ain of HRCT images of the lung. Yang et al. [28] design a network

or learning the localized informative regions in a self-supervision

echanism for fine-grained recognition. However, in the field of

hest X-ray image analysis, the global-local strategy has not been

ell explored. In this paper, we propose a chest X-ray recognition

pproach in analogy to the human expert in terms of attention. We



40 Q. Guan, Y. Huang and Z. Zhong et al. / Pattern Recognition Letters 131 (2020) 38–45 

Fig. 2. Overall framework of the attention guided convolutional neural network (AG-CNN, showing ResNet-50 as backbone). “BCE” represents binary cross entropy loss. The 

spatial resolution of heatmap generated from the last convolutional layer of the global branch is 7 × 7. Then we resize the heatmap to 224 × 224 by bilinear interpolation. 

The input image is added to the heatmap for visualization. 
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focus on exploring both the global and the informative local cues

to reach a final decision of chest X-ray images. In this sense, the

proposed method contributes to mimicking the human diagnosing

procedure and reporting competitive accuracy. 

Attention models in medical image analysis. The CXR classifica-

tion problem needs to tell the relatively subtle differences between

different diseases. Usually, a disease is often characterized by a

lesion region, which contains critical cues for classification. Tang

et al. [24] identify the disease category and localize the lesion areas

through an attention-guided curriculum learning method. Severity-

level attributes mined from radiology reports are leveraged. Guan

et al. [4] introduce a category-wise attention learning method

which aims to strengthen the relevant features and suppress the ir-

relevant features for chest X-ray image classification. In this paper,

AG-CNN locates the salient regions with an attention guided mask

inference process, and learns the discriminative feature for classi-

fication. Compared with the method which relies on bounding box

annotations, our method only needs image-level labels without any

extra information. 

3. The proposed approach 

3.1. Structure of AG-CNN 

The architecture of AG-CNN is presented in Fig. 2 . Basically, it

has two major branches, i.e. the global and local branches, and a

fusion branch. Both the global and local branches are classification

networks that predict whether the pathologies are present or not.

Given an image, the global branch is first fine-tuned from a clas-

sification CNN using the global image. Then, we crop an attractive

region from the global image and train it for classification on the

local branch. Finally, the last pooling layers of both the global and

local branches are concatenated for fine-tuning the fusion branch. 

Global and local branches. The global branch informs the under-

lying CXR information derived from the global image as input. In

the global branch, we train a variant of ResNet-50 [6] as the back-

bone model. It consists of five down-sampling blocks, followed by

a global max pooling layer and a C-dimensional fully connected

(FC) layer for classification. At last, a sigmoid layer is added to nor-

malize the output vector p g ( c | I ) of FC layer by 

˜ p g (c| I) = 1 / (1 + exp(−p g (c| I))) , (1)
here I is the global image. ˜ p g (c| I) represents the probability score

f I belonging to the c th class, c ∈ { 1 , 2 , . . . , C} . We optimize the

arameter W g of global branch by minimizing the binary cross-

ntropy (BCE) loss: 

 (W g ) = −1 

C 

C ∑ 

c=1 

l c log( ̃  p g (c| I)) + (1 − l c ) log(1 − ˜ p g (c| I)) , (2)

here l c is the groundtruth label of the c th class, C is the number

f pathologies. 

On the other hand, the local branch focuses on the lesion area

nd is expected to alleviate the drawbacks of only using the global

mage. In more details, the local branch possesses the same convo-

utional network structure with the global branch. Note that, these

wo branches do not share weights since they have distinct pur-

oses. We denote the probability score of local branch as ˜ p l (c| I c ) ,
 l as the parameters of local branch. Here, I c is the input image of

ocal branch. We perform the same normalization and optimization

s the global branch. 

Fusion branch. The fusion branch first concatenates the Pool5

utputs of the global and local branches. The concatenated layer is

onnected to a 15-dimensional FC layer for final classification. The

robability score is ˜ p f (c| [ I, I c ]) . We denote W f as the parameters of

usion branch and optimize W f by Eq. (2) . 

.2. Attention guided mask inference 

In this paper, we construct a binary mask to locate the discrim-

native regions for classification in the global image. It is produced

y performing thresholding operations on the feature maps, which

an be regarded as an attention process. This process is described

elow. 

Given a global image, let f k g (x, y ) represent the activation of

patial location ( x, y ) in the k th channel of the output of the last

onvolutional layer, where k ∈ { 1 , . . . , K} , K = 2048 in ResNet-50.

 denotes the global branch. We first take the absolute value of

he activation values f k g (x, y ) at position ( x, y ). Then the attention

eatmap H g is generated by counting the maximum values along

hannels, 

 g (x, y ) = max 
k 

(| f k g (x, y ) | ) , k ∈ { 1 , . . . , K} . (3)

he values in H g directly indicate the importance of the activations

or classification. In Figs. 1 (b) and 3 (the second row), some ex-
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Fig. 3. The process of lesion area generation. ( Top: ) global CXR images of various 

thorax diseases for the global branch. Note that we do not use the bounding boxes 

for training or testing. ( Middle: ) corresponding visual examples of the output of the 

mask inference process. Higher/lower response is denoted with red/blue. ( Bottom: ) 

cropped and resized images from the green bounding boxes which are fed to the 

local branch. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Algorithm 1: Attention Guided CNN Procedure. 

Input : Input image I; Label vector L ; Threshold τ . 

Output : Probability score ˜ p f (c| [ I, I c ]) . 
Initialization : The global and local branch weights. 

1 Learning W g with I, computing ˜ p g (c| I) , optimizing by Eq. (2) 

(Stage I); 

2 Computing mask M and the bounding box coordinates 

[ x min , y min , x max , y max ] , cropping out I c from I; 

3 Learning W l with I c , computing ˜ p l (c| I c ) , optimizing by Eq. (2) 

(Stage II); 

4 Concentrating Pool g and Pool l , learning W f , computing ˜ p f (c| [ I, I c ]) , optimizing by Eq. (2). 
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mples of the heatmaps are shown. We observe that the discrimi-

ative regions (lesion areas) of the images are activated. Heatmap

an be constructed by computing different statistical values across

he channel dimensions, such as L1 distance 1 
K 

∑ K 
k =1 | f k g (x, y ) | or

2 distance 1 
K 

√ ∑ K 
k =1 ( f k g (x, y )) 2 . Different statistics result in sub- 

le numerical differences in heatmap, but may not effect the clas-

ification significantly. Therefore, we compute the heatmap with

q. (3) in our experiment. The comparison of these statistics is pre-

ented in Section 4.2 . 

We design a binary mask M to locate the regions with large ac-

ivation values. If the value of a certain spatial position ( x, y ) in

he heatmap is larger than a threshold τ , the value at correspond-

ng position in the mask is assigned with 1. Specifically, 

(x, y ) = 

{
1 , H g (x, y ) > τ

0 , otherwise 
, (4)

here τ is the threshold that controls the size of attended region.

 larger τ leads to a smaller region, and vice versa. With the mask

 , we draw a maximum connected region that covers the discrim-

native points in M . The maximum connected region is denoted as

he minimum and maximum coordinates in horizontal and vertical

xis [ x min , y min , x max , y max ] . At last, the local discriminative region

 c is cropped from the input image I and is resized to the same size

s I . We visualize the bounding boxes and cropped patches with

= 0 . 7 in Fig. 3 . The attention informed mask inference method is

ble to locate the regions (green bounding boxes) which are rea-

onably close to the groundtruth (red bounding boxes). 

.3. Training strategy of AG-CNN 

This paper adopts a three-stage training scheme for AG-CNN. 

Stage I. Using the global images, we fine-tune the global branch

etwork pretrained by ImageNet. ˜ p g (c| I) is normalized by Eq. 1 . 

Stage II. Once the local image I c is obtained by mask inference

ith threshold τ , we feed it into the local branch for fine-tuning.˜ p l (c| I c ) is also normalized by Eq. (1) . When we fine-tune the local

ranch, the weights in the global branch are fixed. 

Stage III. Let Pool g and Pool l represent the Pool5 layer out-

uts of the global and local branches, respectively. We concatenate

hem for a final stage of fine-tuning and normalize the probabil-

ty score ˜ p f (c| [ I, I c ]) by Eq. (1) . Similarly, the weights of previous

wo branches are fixed when we fine-tune the weights of fusion

ranch. 

In each stage, we use the model with the hyper-parameter τ
ith the highest AUC score on the validation set for testing. The

verall AG-CNN training procedure is presented in Algorithm 1 .

Variants of training strategy may influence the performance of

G-CNN. We discuss it in Section 4.2 . 
. Experiment 

Dataset. We evaluate the AG-CNN framework using the ChestX-

ay14 [25] . ChestX-ray14 collects 112,120 frontal-view images of

0,805 unique patients. 51,708 images of them are labeled with up

o 14 pathologies, while the others are labeled as “No Finding”. 

Evaluation protocol. In our experiment, we randomly shuffle the

ataset into three subsets: 70% for training, 10% for validation and

0% for testing. Each image is labeled with a 15-dim vector L =
 l 1 , l 2 , . . . , l c , . . . , l C ] in which l c ∈ { 0 , 1 } , C = 15 . l 15 represents the

abel with “No Finding”. 

.1. Experimental details 

For training (any of the three stages), we perform data augmen-

ation by resizing the original images to 256 × 256, randomly re-

ized cropping to 224 × 224, and random horizontal flipping. The

mageNet mean value is subtracted from the image. When using

esNet-50 as backbone, we optimize the network using SGD with

 mini-batch size of 126, 6 4, 6 4 for global, local and fusion branch,

espectively. But for DenseNet-121, the network is optimized with

 mini-batch of 64, 32, and 32, respectively. We train each branch

or 50 epochs. The learning rate starts from 0.01 and is divided by

0 after 20 epochs. We use a weight decay of 0.0 0 01 and a mo-

entum of 0.9. During validation and testing, we also resize the

mage to 256 × 256, and then perform center cropping to obtain

n image of size 224 × 224. Except in Section 4.3 , we set τ to 0.7

hich yields the best performance on the validation set. We imple-

ent the proposed framework with Pytorch. We train the network

n a computer with NVIDIA TITAN Xp GPUs. The training process

f global or local branch takes about 6 hours on the ChestX-ray14

ataset (more than 80,0 0 0 training samples). 

.2. Evaluation 

We evaluate our method on the ChestX-ray14 dataset. Mostly,

esNet-50 [6] is used as backbone, but the AUC and ROC curve

btained by DenseNet-121 [8] are also presented. 

Global branch (baseline) performance. We first report the per-

ormance of the baseline, i.e. the global branch. Results are sum-

arized in Table 1 and Fig. 7 . The average AUC across the 14

horax diseases arrives at 0.841 and 0.840, using ResNet-50 and

enseNet-121, respectively. For both backbone networks, these are

ompetitive compared with the previous state of the art. Except

erina, the AUC scores of the other 13 pathologies are very close

o or even higher than [19] . Moreover, we observe that Infiltration

as the lower recognition accuracy (0.728 and 0.717 for ResNet-

0 and DenseNet-121, respectively). This is because the diagno-

is of Infiltration mainly relies on the texture change among the

ung area, which is challenging to recognize. The pathology Car-

iomegaly achieves higher recognition accuracy (0.904 and 0.912
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Table 1 

Comparison results of various methods on ChestX-ray14. 

Fig. 4. The localization accuracy of different threshold of τ . Each sub-figure is the accuracy for different τ . And in each sub-figure, different color represents the threshold 

of IoU (T(IoU)) when measuring the accuracy of the predicted bounding box. Better view as zoomed. 
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for ResNet-50 and DenseNet-121, respectively), which is character-

ized by the relative solid region (heart). 

Performance of the local branch. We crop the most discrimina-

tive region to improve the classification accuracy. The local branch

is trained on the cropped and resized discrimative patches, which

is supposed to provide attention mechanisms complementary to

the global branch. The performance of the local branch is demon-

strated in Table 1 and Fig. 7 . 

Using ResNet-50 and DenseNet-121, the average AUC score is

0.817 and 0.810, respectively, which is higher than [12,25] . Despite

of being competitive, the local branch yields lower accuracy than

the global branch. The probable reason for this observation is that

the lesion region estimation and cropping process may lead to in-

formation loss which is critical for recognition. So the local branch

may suffer from inaccurate estimation of the attention area. Gen-

erally, the area where the lung is inflamed is relative large and its

corresponding attention heatmap shows a scattered distribution.

With a higher value of τ , only a very small patch is cropped in

original image. For the classes “Hernia” and “Consolidation”, the

local and global branch yield very similar accuracy. We speculate

that the cropped local patch is consist with the lesion area in the

global image. 

To illustrate the effectiveness of the cropping strategy of AG-

CNN, we test the localization accuracy using the ground truth

bounding boxes provided by [25] . Intersection over Union (IoU) is

computed between the cropped region in AG-CNN and the ground
ruth. A correct localization result is defined by requiring IoU

 T(IoU), where T(IoU) is a threshold. We measure the effect of

he parameter τ and T(IoU) in AG-CNN. Fig. 4 presents the local-

zation accuracy of different τ in { 0 . 2 , 0 . 3 , . . . , 0 . 9 } . In each sub-

gure, different color represents the threshold of IoU when mea-

uring the accuracy of the predicted bounding box. As shown in

ig. 4 , lower τ produces worse localization accuracy. And at the

ame time, when T(IoU) becomes larger than 0.3, the localization

ccuracy of most pathologies reduces to zero. In general localiza-

ion task, the T(IoU) is expected at least greater than 0.5. Therefore,

e expect that the selected τ could provide a relatively larger lo-

alization accuracy to satisfy the localized region near to the true

esion area. When τ in {0.5, 0.6, 0.7}, the localization accuracy are

etter than others. While τ is larger than 0.8, the accuracy drops

ignificantly. Thus, {0.5, 0.6, 0.7} is suggested for the hyperparame-

er τ . We compare the localization accuracy with existing meth-

ds and the results are summarized in Table 2 . Under different

oU thresholds, the localization accuracy of our method is consis-

ently higher than [25] . Because both our method and [25] only

se image-level labels, this comparison could be regarded as fair.

ompared with [13] , our method is inferior. The reason is that

13] uses additional ground truth bounding boxes which we do

ot use. Therefore, it is expected that [13] has a higher localiza-

ion accuracy due to its usage of additional supervision. However,

e also notice that our method is advantageous in localizing the

mall lesions for the disease “Nodule”: the accuracy of “Nodule”
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Table 2 

Comparison of localization accuracy. 

T(IoU) Model Atel Card Effu Infi Mass Nodu Pne1 Pne2 mean 

[25] 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.57 

0.1 [13] 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63 0.73 

Ours 0.48 0.71 0.67 0.67 0.65 0.58 0.62 0.58 0.62 

[25] 0.47 0.68 0.45 0.48 0.26 0.05 0.35 0.23 0.37 

0.2 [13] 0.53 0.97 0.76 0.83 0.59 0.29 0.50 0.51 0.62 

Ours 0.27 0.59 0.50 0.50 0.48 0.42 0.45 0.41 0.45 

[25] 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.22 

0.3 [13] 0.36 0.94 0.56 0.66 0.45 0.17 0.39 0.44 0.50 

Ours 0.14 0.50 0.41 0.41 0.37 0.33 0.34 0.32 0.35 

[25] 0.09 0.28 0.20 0.12 0.07 0.01 0.08 0.07 0.12 

0.4 [13] 0.25 0.88 0.37 0.50 0.33 0.11 0.26 0.29 0.37 

Ours 0.06 0.39 0.30 0.30 0.27 0.24 0.25 0.23 0.25 

[25] 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.06 

0.5 [13] 0.14 0.84 0.22 0.30 0.22 0.07 0.17 0.19 0.27 

Ours 0.03 0.21 0.16 0.16 0.14 0.13 0.14 0.12 0.14 

[25] 0.02 0.08 0.05 0.02 0.00 0.01 0.02 0.03 0.03 

0.6 [13] 0.07 0.73 0.15 0.18 0.16 0.03 0.10 0.12 0.19 

Ours 0.00 0.09 0.06 0.06 0.06 0.05 0.06 0.06 0.06 

[25] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.01 

0.7 [13] 0.04 0.52 0.07 0.09 0.11 0.01 0.05 0.05 0.12 

Ours 0.00 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 

∗ Note that [25] and ours are supervised by image-level labels, while [13] is supervised by both 

image-level labels and partially bounding box-level annotations. 
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Fig. 6. ROC curves of AG-CNN on the 14 diseases (ResNet-50 and DenseNet-121 as 

backbones, respectively). 

 

e  

c  

d  

c  

b  

o  
esion region localization significantly exceeds [13] under all the

hresholds. Besides, the performance of some pathologies, such as

Mass”, “Pneumonia”, and “Pneumothorax” are very close to [13] . 

ut we also notice that the performance of “Atelectasis” is infe-

ior to [25] . And for “Cardiomegaly”, the localization accuracy is

ower than [25] when T(IoU) is less than 0.3, while it is slightly

igher than [25] when T(IoU) is greater or equal to 0.3. We an-

lyze that the main reason may be the AG-CNN focuses on the

mall discriminative regions for classification while not the whole

egion of interests. Therefore, the cases of “Atelectasis” and “Car-

iomegaly” could happen when the features learned by AG-CNN

over parts of the whole lesion area. Overall speaking, in terms of

isease localization, our method yields higher accuracy compared

ith [25] under the same setting, which serves as an explanation

f our superior performance. 

For the “no finding” images, AG-CNN can also learn the corre-

ponding masks. The automatically discovered ROIs in the “no find-

ng” class contain discriminative information of this class. These

OIs filter out some noisy and misaligned regions and force the

etwork to focus on these important regions during recognition.

hus, the ROIs help to distinguish “no finding” from the other 14

athologies. The “no finding” class plays a role like the background

lass in object detection. We visualize some cropped regions on

he heatmaps in Fig. 5 . 
ig. 5. Examples of heatmaps for “no finding” images. The cropped regions are de- 

oted by green bounding boxes. (For interpretation of the references to colour in 

his figure legend, the reader is referred to the web version of this article.) 
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Effectiveness of fusing global and local branches. We illustrate the

ffectiveness of the fusion branch, which yields the final classifi-

ation results of our model. The observations are consistent across

ifferent categories and the two backbones. We present the ROC

urves of 14 pathologies with these two backbones in Fig. 6 . For

oth ResNet-50 and DenseNet-121, the fusion branch, i.e. AG-CNN,

utperforms both the global branch and local branch. For exam-

le, when using ResNet-50, the performance gap from AG-CNN

o the global and local branches is 0.027 and 0.051, respectively.

pecifically AG-CNN (with DenseNet-121 as backbone) surpasses

he global and local branches for all 14 pathologies. 

We conduct another experiment, inputting a global image into

oth the global and local branches to verify the effectiveness of

using global and local cues. The same experimental settings with

ection 4.1 are performed. Three branches are trained together

ith ResNet-50 as backbone. The average AUC of global, local and

usion branches achieve to 0.845, 0.846 and 0.851, respectively. The

UC is lower 0.017 compared with inputting a local patch into the

ocal branch. The results show that AG-CNN is superior than both

lobal and local branches. In particular, the improvement is ben-

fit from the local discriminative region instead of increasing the

umber of network parameters. 

Comparison with the state of the art. We compare our results

ith the state-of-the-art methods [12,19,25,29] on the ChestX-

ay14 dataset. Wang et al. [25] classify and localize the thorax dis-
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Fig. 7. Average AUCs for different settings of τ on the test set (ResNet-50 as backbone). Note that the results from global branch are our baseline. 

Table 3 

Results of different training strategies. 

Strategy Global Local Fusion 

GL_F 0.823 0.801 0.825 

GLF 0.843 0.806 0.845 

G_LF 0.841 0.809 0.843 

G_L_F 0.841 0.817 0.868 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Results corresponding different statistics. 

Statistic Global Local Fusion 

Max 0.8412 0.8171 0.8680 

L1 0.8412 0.8210 0.8681 

L2 0.8412 0.8213 0.8672 
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Fig. 8. Average AUC scores of AG-CNN with different settings of τ on the validation 

set (ResNet-50 as backbone). 
ease in a unified weakly supervised framework. The reported re-

sults from Yao et al. [29] are based on the model in which la-

bels are considered independent. Kumar et al. [12] try different

boosting methods and cascade the previous classification results

for multi-label classification. 

Comparing with these methods, this paper contributes new state

of the art to the community: average AUC = 0.871. AG-CNN exceeds

the previous state of the art [19] by 2.9%. AUC scores of pathologies

such as Cardiomegaly and Infltration are higher than [19] by about

0.03. AUC scores of Mass, Fibrosis and Consolidation surpass [19] by

about 0.05. Furthermore, we train AG-CNN with 70% of the dataset,

but 80% are used in [12,19] . In nearly all the 14 classes, our method

yields best performance. Only Rajpurkar et al. [19] report higher

accuracy on Hernia . In all, the classification accuracy reported in

this paper compares favorably against previous art. 

Variant of training strategy analysis. Training three branches with

different orders influences the performance of AG-CNN. We per-

form 4 orders to train AG-CNN: (1) train global branch first, and

then local and fusion branch together (G_LF); (2) train global and

local branch together, and then fusion branch (GL_F); (3) train

three branches together (GLF); 4) train global, local and fusion

branch sequentially (G_L_F). Note that G_L_F is our three-stage

training strategy. We train the AG-CNN with different training

strategies. The experimental settings are same as Section 4.1 . We

present the classification performance of these training strategies

in Table 3 . 

AG-CNN yields better performance (0.868) with strategy of

training three branches sequentially (G_L_F). When global branch

is trained first, we perform the same model as the baseline in

Table 1 . Training with G_L_F, AG-CNN obviously improves the base-

line from 0.841 to 0.868. Compared with G_L_F, performance of

AG-CNN (G_LF) is much lower because its the inaccuracy of lo-

cal branch. When AG-CNN is trained with GL_F and GLF, it is in-

ferior to G_L_F. Compared with training two or three branches

(GL_F or GLF) together, training three branches in order (G_L_F)

achieves much better performance. This is because that training

global branch first could provide a relatively accurate discrimina-

tive region as the input of local branch. The performance of local
ranch is serious dependent on the global branch. From Table. 3 ,

e observe that a better performance in local branch leads to bet-

er performance in fusion branch. We infer that the performance

f local branch is essential to enhance the whole framework. 

Variant of heatmap analysis. In Table 4 , we report the perfor-

ance of using different heatmap computing methods. Based on

he same baseline, the performance is very close on both the lo-

al and fusion branch. It illustrates that different statistics result in

ubtle differences in local branch, but will not effect the classifica-

ion performance significantly. 

.3. Parameter analysis 

We analyze the sensitivity of AG-CNN to the parameter consists

n τ in Eq. 4 , which defines the local region and affects the clas-

ification accuracy. Fig. 8 shows the average AUC of AG-CNN over

ifferent τ on validation set. τ changes from 0.1 to 0.9. AG-CNN

s not very sensitive to the threshold in the mask inference. The

ariance of the model performance is about 0.003 over the differ-

nt τ . While τ is larger than 0.5, AG-CNN achieves much more

table and better performance (the average AUC is over 0.868), es-

ecially when τ is in [0.6, 0.8]. AG-CNN achieves the best perfor-

ance when τ is setting as 0.7. Fig. 7 compares the average AUC
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f the global, local branch and fusion branch on the test dataset

hen ResNet-50 is used as backbone. When τ is small ( e.g. , close

o 0), the local region is close to the global image. In such cases,

ost of the entries in the attention heatmap are preserved, indi-

ating that the cropped image patches are close to the original in-

ut. On the other hand, while τ is close to 1, e.g. , 0.9, the local

ranch is inferior to the global branch by a large margin (0.9%).

nder this circumstance, most of the information in the global im-

ge is discarded but only the top 10% largest values in the atten-

ion heatmap are retained. The cropped image patches reflect very

mall regions. Unlike the local branch, AG-CNN is relative stable to

hanges of the threshold τ . When concentrating the global and lo-

al branches, AG-CNN outperforms both branches by at least 1.7%

t τ = 0 . 4 and 0.5. AG-CNN exhibits the highest AUC ( > 0.866)

hen τ ranges between [0.6, 0.8]. 

. Conclusion 

In this paper, we propose an attention guided convolutional

eural network for thorax disease classification. Departing from

revious works which merely rely on the global information, we

ropose to combining the global and the local cues to make diag-

osis. An attention guided inference method is proposed to localize

he most discriminative region in the global image. Extensive ex-

eriments demonstrate that combining both global and local cues

ields state-of-the-art accuracy on the ChestX-ray14 dataset. In the

uture research, we will continue to investigate more accurate le-

ion localization method to improve the recognition performance. 
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