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Abstract
Scene segmentation via unsupervised domain adaptation (UDA)
enables the transfer of knowledge acquired from source synthetic
data to real-world target data, which largely reduces the need for
manual pixel-level annotations in the target domain. To facilitate
domain-invariant feature learning, existing methods typically mix
data from both the source domain and target domain by simply
copying and pasting pixels. Such vanilla methods are usually sub-
optimal since they do not take into account how well the mixed
layouts correspond to real-world scenarios. Real-world scenarios
are with an inherent layout. Real-world scenarios are with an inher-
ent layout. We observe that semantic categories, such as sidewalks,
buildings, and sky, display relatively consistent depth distributions,
and could be clearly distinguished in a depth map. The model suf-
fers from confusion in predicting the target domain due to the
unrealistic mixing. For instance, it is not reasonable to directly
paste the near “pedestrian” pixels into the remote “sky” area. Based
on such observation, we propose a depth-aware framework to ex-
plicitly leverage depth estimation to mix categories and facilitate
two complementary tasks, i.e., segmentation and depth learning
in an end-to-end manner. In particular, the framework contains a
Depth-guided Contextual Filter (DCF) for data augmentation and
a cross-task encoder for contextual learning. DCF simulates the
real-world layouts, while the cross-task encoder further adaptively
fuses the complementing features between two tasks. Besides, sev-
eral public datasets do not provide depth annotation. Therefore,
we leverage the off-the-shelf depth estimation network to obtain
the pseudo depth. Extensive experiments show that our methods,
even with pseudo depth, achieve competitive performance, i.e., 77.7
mIoU on GTA→Cityscapes and 69.3 mIoU on Synthia→Cityscapes.

CCS Concepts
• Computing methodologies→ Scene understanding; Trans-
fer Learning.
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Figure 1: (a) Considering the driving scenario, we observe
that the object location is relatively stable according to the
distance from the camera. With such insight, we propose a
Depth-guided Contextual Filter (DCF) which is aware of the
semantic categories distribution in terms of Near, Middle,
and Far view to facilitate cross-domain mixing. (b) Since we
explicitly take the semantic layout into consideration, our
method achieves more realistic mixed samples compared to
existing state-of-the-art methods (Vanilla Mixed Sample) [10,
22]. As shown in the red box, “new” buildings are pasted
before the parked cars.
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1 Introduction
Semantic segmentation serves as a essential task in machine vi-
sion [15, 34, 35, 40, 41, 60, 73, 100], benefiting numerous vision
applications [7, 12, 72, 83, 85, 91, 101]. It has achieved significant
progress in the last few years [2, 6, 8, 12, 34–36, 45, 79]. It is worth
noting that prevailing models usually require large-scale training
datasets with high-quality annotations, such as ADE20K [98], to
achieve good performance and but such pixel-level annotations in
real-world are usually unaffordable and time-consuming [14]. One
straightforward idea is to train networks with synthetic data so that
the pixel-level annotations are easier to obtain [53, 54]. However,
the network trained with synthetic data results in poor scalability
when being deployed to a real-world environment due to multiple
†Corresponding author: yi.yang@uts.edu.au
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factors, such as weather, illumination, and road design. Therefore,
researchers resort to unsupervised domain adaptation (UDA) to
further tackle the variance between domains [70, 71]. One branch
of UDA methods attempts to mitigate the domain shift by aligning
the domain distributions [21, 47, 52, 77]. Another potential para-
digm to heal the domain shift is self-training [37, 84, 96, 102], which
recursively refine the target pseudo-labels. Taking one step further,
recent DACS [61] and follow-up works [10, 22–24, 27, 69] combine
self-training and ClassMix [50] to mix images from both source and
target domain. In this way, these works could craft highly perturbed
samples to assist training by facilitating learning shared knowledge
between two domains. Specifically, cross-domain mixing aims to
copy the corresponding regions of certain categories from a source
domain image and paste them onto an unlabelled target domain
image. We note that such a vanilla strategy leads to pasting a large
amount of objects to the unrealistic depth position. It is because
that every category has its own position distribution. For instance,
background classes such as “sky” and “vegetation” usually appear
farther away, while the classes that occupy a small number of pixels
such as “traffic signs” and “pole”, usually appear closer as shown
in Figure 1 (a). Such crafted training data compromise contextual
learning, leading to sub-optimal location prediction performance,
especially for small objects.

To address these limitations, we observe the real-world depth
distribution and find that semantic categories are easily separated
(disentangled) in the depth map since they follow a similar distri-
bution under certain scenarios, e.g., urban. Therefore, we propose
a new depth-aware framework, which contains Depth Contextual
Filter (DCF) and a cross-task encoder. In particular, DCF removes
unrealistic classesmixedwith the real-world target training samples
based on the depth information. On the other hand, multi-modal
data could improve the performance of deep representations and
the effective use of the deep multi-task features to facilitate the
final predictions is crucial. The proposed cross-task encoder con-
tains two specific heads to generate intermediate features for each
task and an Adaptive Feature Optimization module (AFO). AFO
encourages the network to optimize the fused multi-task features
in an end-to-end manner. Specifically, the proposed AFO adopts
a series of transformer blocks to capture the information that is
crucial to distinguish different categories and assigns high weights
to discriminative features and vice versa.

The main contributions are as follows: (1) We propose a sim-
ple Depth-Guided Contextual Filter (DCF) to explicitly leverage
the key semantic categories distribution hidden in the depth map,
enhancing the realism of cross-domain information mixing and
refining the cross-domain layout mixing. (2) We propose an Adap-
tive Feature Optimization module (AFO) that enables the cross-task
encoder to exploit the discriminative depth information and em-
bed it with the visual feature which jointly facilitates semantic
segmentation and pseudo depth estimation. (3) Albeit simple, the
effectiveness of our proposed methods has been verified by exten-
sive ablation studies. Despite the pseudo depth, our method still
achieves competitive accuracy on two commonly used scene adap-
tation benchmarks, namely 77.7 mIoU on GTA→Cityscapes and
69.3 mIoU on Synthia→Cityscapes.

2 Related Work
2.1 Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) aims to train a model on a
label-rich source domain and adapt the model to a label-scarce tar-
get domain. Some methods propose learning the domain-invariant
knowledge by aligning the source and target distribution at dif-
ferent levels. For instance, AdaptSegNet [62], ADVENT [65], and
CLAN [47] adversarially align the distributions in the feature space.
CyCADA [21] diminishes the domain shift at both pixel-level and
feature-level representation. DALN [4] proposes a discriminator-
free adversarial learning network and leverages the predicted dis-
criminative information for feature alignment. Both Wu et al.[77]
and Yue et al. [86] learn domain-invariant features by transferring
the input images into different styles, such as rainy and foggy,
while Zhao et al. [94] and Zhang et al. [89] diversify the feature
distribution via normalization and adding noise respectively. An-
other line of work refines pseudo-labels gradually under the it-
erative self-training framework, yielding competitive results. Fol-
lowing the motivation of generating highly reliable pseudo labels
for further model optimization, CBST [102] adopts class-specific
thresholds on top of self-training to improve the generated labels.
Feng et al.[16] acquire pseudo labels with high precision by lever-
aging the group information. PyCDA [39] constructs pseudo-labels
in various scales to further improve the training. Zheng et al.[95]
introduce memory regularization to generate consistent pseudo la-
bels. Other works propose either confidence regularization [96, 103]
or category-aware rectification [87, 88] to improve the quality of
pseudo labels. DACS [61] proposes a domain-mixed self-training
pipeline to mix cross-domain images during training, avoiding
training instabilities. Kim et al.[29], Li et al.[38] and Wang et al.[68]
combine adversarial and self-training for further improvement.
Chen et al.[5] establish a deliberated domain bridging (DDB) that
aligns and interacts with the source and target domain in the inter-
mediate space. SePiCo [78] and PiPa [10] adopt contrastive learning
to align the domains. Liu et al.[44] addresses the label shift problem
by adopting class-level feature alignment for conditional distribu-
tion alignment. Researchers also attempted to perform entropy
minimization [9, 65], and image translation [19, 81]. consistency
regularization[1, 13, 49, 99]. Recent multi-target domain adaptation
methods enable a single model to adapt a labeled source domain to
multiple unlabeled target domains [17, 32, 57]. However, the above
methods usually ignore the rich multi-modality information, which
can be easily obtained from the depth and other sensors.

2.2 Depth Estimation and Multi-task Learning
in Semantic Segmentation

Semantic segmentation and geometric information are shown to
be highly correlated [28, 42, 59, 64, 67, 74, 80, 90, 92, 93]. Recently
depth estimation has been increasingly used to improve the learn-
ing of semantics within the context of multi-task learning, but the
depth information should be exploited more precisely to help the
domain adaptation. SPIGAN [31] pioneered the use of geometric
information as an additional supervision by regularizing the gener-
ator with an auxiliary depth regression task. DADA [66] introduces
an adversarial training framework based on the fusion of semantic
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and depth predictions to facilitate the adaptation. GIO-Ada [11]
leverages the geometric information on both the input level and
output level to reduce domain shift. CTRL [55] encodes task de-
pendencies between the semantic and depth predictions to capture
the cross-task relationships. CorDA [69] bridges the domain gap
by utilizing self-supervised depth estimation on both domains. Wu
et al. [76] propose to further support semantic segmentation by
depth distribution density. Our work follows a similar spirit to
leverage depth knowledge as auxiliary supervision. It is worth not-
ing that our work is primarily different from existing works in the
following two aspects: (1) from the data perspective, we explicitly
delineate the depth distribution to refine data augmentation and
construct realistic training samples to enhance contextual learning.
(2) from the network perspective, our proposed multi-task learning
network not only adopts auxiliary supervision for learning more ro-
bust deep representations but also facilitates the multi-task feature
fusion by iterative deploying of transformer blocks to jointly learn
the rich multi-task information for improving the final predictions.

3 Method
3.1 Problem Formulation
In a typical Unsupervised Domain Adaptation (UDA) scenario, we
have a source domain, denoted 𝑆 , which consists of abundant la-
beled synthetic data. On the other hand, the target domain, rep-
resented by 𝑇 , contains unlabeled real-world data. For example,
we have labeled training samples

(
x𝑆 , y𝑆 , z𝑆 ∼ X𝑆 ,Y𝑆 ,Z𝑆

)
in the

source domain, where x𝑆 , y𝑆 are the training image and the corre-
sponding ground truth for semantic segmentation. z𝑆 is the label
for the depth estimation task. Similarly, we have unlabeled target
images sampled from target domain data

(
x𝑇 , z𝑇 ∼ X𝑇 ,Z𝑇

)
, where

x𝑇 is the unlabeled sample in the target domain and z𝑇 is the label
for the depth estimation task. Since depth annotation is not sup-
ported by common public datasets, we adopt pseudo depth that can
be easily generated by the off-the-shelf model [18].

3.2 Depth-guided Contextual Filter
In UDA, recent works Recent UDA works [10, 22–24, 50, 69] often
employ pixel mixing to create cross-domain augmented samples.
The basic idea is straightforward: take a portion of pixels from a
source domain image and transplant them onto an equivalent area
in a target domain image. However, this simple approach faces
challenges due to the inherent differences in structure and layout
between source and target domain data. To decrease noisy signals
and simulate augmented training samples with real-world layouts,
we propose Depth-guided Contextual Filter (DCF) to reduce the
noisy pixels that are naively mixed across domains. The implemen-
tation of DCF is represented as pseudo-code in Algorithm 1, where
the image x𝑆 and the corresponding semantic labels y𝑆 are sampled
from source domain data. The image x𝑇 and the depth label z𝑇
are from target domain data. Pseudo label ŷ𝑇 is then generated
as ŷ𝑇 = F𝜃

(
x𝑇

)
, where F𝜃 is a pre-trained semantic network. In

practice, F𝜃 usually has been trained on the source domain dataset
via supervised learning. Based on the hypothesis that most seman-
tic categories usually fall under a finite depth range, we introduce

Algorithm1Depth-guided Contextual Filter Algorithmwith Cross-
Image Mixing and Self Training

Input: Source domain: (x𝑆 , y𝑆 , z𝑆 ∼ X𝑆 ,Y𝑆 ,Z𝑆 ), Target domain:
(x𝑇 , z𝑇 ∼ X𝑇 ,Z𝑇 ). Semantic network F𝜃 .

1: Initialize network parameters 𝜃 randomly.
2: for iteration = 1 to 𝑛 do
3: ŷ𝑇 ← F𝜃

(
x𝑇

)
, Generate pseudo label

4: Pre-calculate the density value p for each class 𝑖 at each
depth interval from the target depth map z𝑇 ,

5: ŷ𝑀 ← M ⊙ y𝑆 + (1 −M) ⊙ ŷ𝑇 , Randomly select 50% cat-
egories and copy the category ground truth label from the
source image to target pseudo label
x𝑀 ← M ⊙ x𝑆 + (1 −M) ⊙ x𝑇 , Copy the corresponding
category region from the source image to the target image

6: Re-calculate the density value p̂ after the mixing,
7: Calculate the depth density distribution difference before

and after mixing,
8: Filter the category once the difference exceeds the threshold,
9: Re-generate the depth-aware binary maskM𝐷𝐶𝐹 ,

10: ŷ𝐹 ← MDCF ⊙ y𝑆 +
(
1 −MDCF

)
⊙ ŷ𝑇 , Generate the

filtered training samples with new DCF mask
x𝐹 ←MDCF ⊙ x𝑆 +

(
1 −MDCF

)
⊙ x𝑇 ,

11: Compute predictions
ȳ𝑆 ← 𝑎𝑟𝑔𝑚𝑎𝑥

(
F𝜃

(
x𝑆

))
,

ȳ𝐹 ← 𝑎𝑟𝑔𝑚𝑎𝑥

(
F𝜃

(
x𝐹

))
,

12: Compute loss for the batch:
ℓ ← L

(
ȳ𝑆 , y𝑆 , ȳ𝐹 , ŷ𝐹

)
.

13: Compute ∇𝜃 ℓ by backpropagation.
14: Perform stochastic gradient descent.
15: end for
16: return F𝜃

DCF, which divides the target depth map z𝑇 into a few discrete
depth intervals (Δ𝑧1, ...,Δ𝑧𝑛). For a given real-world target input
image x𝑇 combined with the pseudo label ŷ𝑇 and target depth map
z𝑇 , the density value at each depth interval (Δ𝑧1, ...,Δ𝑧𝑛) for each
class 𝑖 ∈ (1, . . . ,𝐶) can be counted and normalized as a probability.
We denote the density value for class 𝑖 at the depth interval Δ𝑧1 as
𝑝𝑖 (Δ𝑧1). All the density values make up the depth distribution in
the target domain image. Then we randomly select half of the cate-
gories on the source images to paste on the target domain image. In
practice, we apply a binary maskM to denote the corresponding
pixels. Then naive cross-domain mixed image x𝑀𝑖𝑥 and the mixed
label ŷ𝑀𝑖𝑥 can be formulated as:

x𝑀𝑖𝑥 =M ⊙ x𝑆 + (1 −M) ⊙ x𝑇 , (1)

ŷ𝑀𝑖𝑥 =M ⊙ y𝑆 + (1 −M) ⊙ ŷ𝑇 , (2)

where ⊙ denotes the element-wise multiplication of between the
mask and the image. The naively mixed images are visualized in
Figure 2. It could be observed that due to the depth distribution
difference between two domains, pixels of “Building” category are
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Figure 2: Source domain images 𝑥𝑆 and 𝑥𝑇 aremixed together,
using the ground truth label 𝑦𝑆 . The mixed images are de-
noised by our proposedDepth-guidedContextual Filter (DCF)
and then trained by the network.We illustrate DCFwith a set
of practical sample. As illustrated, the unrealistic “Building”
pixels from the source image are mixed pasted to the target
image, leading to a noisy mixed sample. DCF removes these
pixels and maintain mixed pixels of “Traffic Sign” and “Pole”
shown in the white dotted boxes, enhancing the realism of
cross-domain mixing. (Best viewed when zooming in.)

mixed from the source domain to the target domain, creating unreal-
istic images. Training with such training samples will compromise
contextual learning. Therefore, we propose to filter the pixels that
do not match the depth density distribution in the mixed image.
After the naive mixing, we re-calculate the density value for each
class at each depth interval. For example, the new density value
for class 𝑖 at the depth interval Δ𝑧1 is denoted as 𝑝𝑖 (Δ𝑧1). Then we
calculate the depth density distribution difference for each pasted
category and denote the difference for class 𝑖 at the depth interval
Δ𝑧1 as Δ𝑝𝑖 (Δ𝑧1) = |𝑝𝑖 (Δ𝑧1) − 𝑝𝑖 (Δ𝑧1) |. Once Δ𝑝𝑖 (Δ𝑧1) exceeds
the threshold of that category 𝑖 , these pasted pixels are removed.
After performing DCF, we confirm the final realistic pixels to be
mixed and construct a depth-aware binary maskMDCF , which
is changed dynamically based on the depth layout of the current
target image.

The filtered mixing samples are then generated. In practice, we
directly apply the updated depth-aware mask to replace the original
mask. Therefore, the new mixed sample and the label are as follows:

x𝐹 =MDCF ⊙ x𝑆 +
(
1 −MDCF

)
⊙ x𝑇 , (3)

ŷ𝐹 =MDCF ⊙ y𝑆 +
(
1 −MDCF

)
⊙ ŷ𝑇 . (4)

Because large objects such as “sky” and “terrain” usually aggregate
and occupy a large amount of pixels and small objects only occupy
a small amount of pixels in a certain depth range, we set different
filtering thresholds for each category. DCF uses pseudo semantic

labels for the target domain as there is no ground truth available.
Since the label prediction is not stable in the early stage, we apply a
warmup strategy to perform DCF after 10,000 iterations. Examples
of the input images, naively mixed samples and filtered samples
are presented in Figure 2. The sample after the process of the DCF
module has the pixels from the source domain that match the depth
distribution of the target domain, helping the network to better
deal with the domain gap.

3.3 Multi-task Scene Adaptation Framework
To exploit the relation between segmentation and depth learning,
we introduce a multi-task scene adaptation framework including a
high resolution semantic encoder, and a cross-task shared encoder
with a feature optimization module, which is depicted in Figure 3.
The proposed framework incorporates and optimizes the fusion of
depth information for improving the final semantic predictions.

High Resolution Semantic Prediction. Most supervised methods
use high resolution images for training, but common scene adapta-
tion methods usually use random crops of the image that is half of
the full resolution. To reduce the domain gap between scene adap-
tation and supervised learning while maintaining the GPU memory
consumption, we adopt a high-resolution encoder to encode HR
image crops into deep HR features. Then a semantic decoder is used
to generate the HR semantic predictions ȳℎ𝑟 . We adopt the cross
entropy loss for semantic segmentation:

L𝑆
ℎ𝑟

= E
[
−y𝑆 log ȳ𝑆

ℎ𝑟

]
, L𝐹

ℎ𝑟
= E

[
−ŷ𝐹 log ȳ𝐹

ℎ𝑟

]
, (5)

where ȳ𝑆
ℎ𝑟

and ȳ𝑇
ℎ𝑟

are high resolution semantic predictions. y𝑆

is the one-hot semantic label for the source domain and ŷ𝐹 is the
one-hot pseudo label for the depth-aware fused domain.

Adaptive Feature Optimization. In addition to the high resolu-
tion encoder, We use another cross-task encoder to encode input
images which are shared for both tasks. Depth maps are rich in
spatial depth information, but a naive concatenation of depth in-
formation directly to visual information causes some interference,
e.g. categories at similar depth positions are already well distin-
guished by visual information, and attention mechanisms can help
the network to select the crucial part of the multitask information.
In the proposed multi-task learning framework, the visual seman-
tic feature and depth feature is generated by a visual head and a
depth head, respectively. As shown in Figure 3, after applying batch
normalization, an Adaptive Feature Optimization module then con-
catenates the normalized input visual feature and the input depth
feature to create a fused multi-task feature by concatenation as
𝑓 𝑖𝑛
𝑓 𝑢𝑠𝑒

= CONCAT
(
𝑓 𝑖𝑛
𝑣𝑖𝑠

, 𝑓 𝑖𝑛
𝑑𝑒𝑝𝑡ℎ

)
. The fused feature is then fed into

a series of transformer blocks to capture the key information be-
tween the two tasks. The attention mechanism adaptively adjusts
the extent to which depth features are embedded in visual features:

𝑓 𝑜𝑢𝑡
𝑓 𝑢𝑠𝑒

=W𝑇𝑟𝑎𝑛𝑠

(
𝑓 𝑖𝑛
𝑓 𝑢𝑠𝑒

)
, (6)

whereW𝑇𝑟𝑎𝑛𝑠 is the transformer parameter. The learned output
of the transformer blocks is a weight map 𝛾 which is multiplied
back to the input visual feature and depth feature resulting in an
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L𝑣𝑖𝑠

L𝑑𝑒𝑝𝑡ℎ

Lℎ𝑟

Figure 3: The proposed multi-task learning framework. The input images 𝑥𝐹 are mixed from the source image 𝑥𝑆 and target
domain 𝑥𝑇 according to the depth (Please refer to Figure 2). Thenwe are fed 𝑥𝑆 and 𝑥𝐹 into the high resolution encoder to generate
high resolution predictions. To enhance multi-modal learning, the visual and depth feature created by the cross-task encoder
are fused and fed into the proposed Adaptive Feature Optimization module (AFO) for multimodal communication. Finally,
the multimodal communication via several transformer blocks incorporates and optimizes the fusion of depth information,
improving the final visual predictions.

optimized feature as:

𝜸 = 𝝈
(
W𝐶𝑜𝑛𝑣 ⊗ 𝑓 𝑜𝑢𝑡

𝑓 𝑢𝑠𝑒

)
, (7)

whereW𝐶𝑜𝑛𝑣 denotes the convolution parameter, ⊗ denotes the
convolution operation and 𝝈 represents the sigmoid function. The
weight matrix 𝜸 performs adaptive optimization of the muti-task
features. Then, the fused feature 𝑓 𝑜𝑢𝑡

𝑓 𝑢𝑠𝑒
is fed into different decoders

for predicting different final tasks, i.e., the visual and the depth task.
The output features are essentially multimodal features containing
crucial depth information:

𝑓 𝑜𝑢𝑡𝑣𝑖𝑠 = 𝑓 𝑖𝑛𝑣𝑖𝑠 ⊙ 𝜸 , 𝑓 𝑜𝑢𝑡
𝑑𝑒𝑝𝑡ℎ

= 𝑓 𝑖𝑛
𝑑𝑒𝑝𝑡ℎ

⊙ 𝜸 , (8)

where ⊙ represents element-wise multiplication. The optimized
visual and depth feature is then fed into the multimodal communica-
tion module for further processing. The multimodal communication
module refines the learning of key information between two tasks
by iterative use of transformer blocks. the inference is merely based
on the visual input when the feature optimization is fished. The
final semantic prediction ȳ𝑆

𝑣𝑖𝑠
and depth prediction z̄𝑆 can be gener-

ated from the final visual feature 𝑓 𝑓 𝑖𝑛𝑎𝑙
𝑣𝑖𝑠

and depth feature 𝑓 𝑓 𝑖𝑛𝑎𝑙
𝑑𝑒𝑝𝑡ℎ

by
visual head and depth head. Similar to high resolution predictions,
we use the cross entropy loss for the semantic loss calculation:

L𝑆
𝑣𝑖𝑠 = E

[
−y𝑆 log ȳ𝑆𝑣𝑖𝑠

]
, L𝐹

𝑣𝑖𝑠 = E
[
−ŷ𝐹 log ȳ𝐹𝑣𝑖𝑠

]
. (9)

We also employ berHu loss for depth regression at source domain:

L𝑆
𝑑𝑒𝑝𝑡ℎ

= E
[
berHu

(
z̄𝑆 − z𝑆

)]
, (10)

where 𝑧 and 𝑧 are predicted and ground truth semantic maps. Fol-
lowing [55, 66], we deploy the reversed Huber criterion [30], which

is defined as :

ber𝐻𝑢 (𝑒𝑧) =
{

|𝑒𝑧 | , |𝑒𝑧 | ≤ 𝐻
(𝑒𝑧 )2+𝐻 2

2𝐻 , |𝑒𝑧 | > 𝐻

𝐻 = 0.2 max ( |𝑒𝑧 |) ,
(11)

where 𝐻 is a positive threshold and we set it to 0.2 of the maximum
depth residual. Finally, the overall loss function is:

L = L𝑆
ℎ𝑟
+ L𝑆

𝑣𝑖𝑠 + 𝜆𝑑𝑒𝑝𝑡ℎL
𝑆
𝑑𝑒𝑝𝑡ℎ

+ L𝐹
ℎ𝑟
+ L𝐹

𝑣𝑖𝑠 , (12)

where hyperparameter 𝜆𝑑𝑒𝑝𝑡ℎ is the loss weight. Considering that
our main task is semantic segmentation and the depth estimation
is the auxiliary task, we empirically 𝜆𝑑𝑒𝑝𝑡ℎ = 𝜆𝑑𝑒𝑝𝑡ℎ = 1 ×10−3. We
also designed the ablation studies to change the weight of depth
task 𝜆𝑑𝑒𝑝𝑡ℎ to the level of 10−1 or 10−3.

4 Experiment
4.1 Implementation Details
Datasets.We evaluate the proposed framework on two scene adap-
tation settings, i.e., GTA→Cityscapes and SYNTHIA→Cityscapes,
following common protocols [1, 22–24, 61, 69]. Particularly, the
GTA5 dataset [53] is the synthetic dataset collected from a video
game, which contains 24,966 images annotated by 19 classes. Follow-
ing [69], we adopt depth information generated byMonodepth2 [18]
model which is trained merely on GTA image sequences. SYN-
THIA [54] is a synthetic urban scene dataset with 9,400 training
images and 16 classes. Simulated depth information provided by
SYNTHIA is adopted. GTA and SYNTHIA serve as source domain
datasets. The target domain dataset is Cityscapes, which is collected
from real-world street-view images. Cityscapes contains 2,975 unla-
beled training images and 500 validation images. The resolution of
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Figure 4: Qualitative results. From left to right: Target Image, Ground Truth, the visual results predicted by HRDA, MIC and
Ours. We highlight prediction differences in white dash boxes and it is observed that the proposed method predicts clear edges.

Cityscapes is 2048 × 1024 and the common protocol downscales the
size to 1024 × 512 to save memory. Following [69], the stereo depth
estimation from [56] is used. We leverage the Intersection Over
Union (IoU) for per-class performance and the mean Intersection
over Union (mIoU) over all classes to report the result. The code is
based on Pytorch [51].
Experimental Setup.We adopt DAFormer [22] network with MiT-
B5 backbone [79] for the high resolution encoder and DeepLabV2
network with ResNet-101 backbone for the cross-task encoder to
reduce the memory consumption. All backbones are initialized
with ImageNet pretraining. Our training procedure is based on
self-training methods with cross-domain mixing [22–24, 61] and
enhanced by our proposed Depth-guided Contextual Filter. Follow-
ing [23, 61], the input image resolution is half of the full resolution
for the cross-task encoder and full resolution for high resolution
encoder. We utilize the same data augmentation, e.g., color jitter
and Gaussian blur and empirically set pseudo labels threshold 0.968
following [61]. We train the network with batch size 2 for 40k
iterations on a Tesla V100 GPU.
Data Resolution. Our proposed depth-aware multi-task frame-
work contains a high resolution encoder and a cross-task encoder
with an adaptive feature optimization module (AFO). Previous
works [38, 61, 63] downsample Cityscapes to 1024 × and GTA
to 1280 × 720. Following [23], for the high resolution encoder, we
resize GTA to 2560 × 1440 and SYNTHIA to 2560 x 1520. Then the
crop size is 1024 × 1024. In addition, SegFormer [79] MLP decoder

with an embedding dimension of 256 is used for the high resolu-
tion branch. For the cross-task encoder branch, we follow common
UDA methods [22, 61] to adopt 1024 × 512 pixels (half of the full
resolution) for Cityscapes, 1280 × 760 for SYNTHIA and 1280 × 720
for GTA. In addition, a 512 × 512 random crop is extracted.

4.2 Comparison with SOTA
Results on GTA→Cityscapes.We show our results on GTA→
Cityscapes in Table 1 and highlight the best results in bold. Our
method yields significant performance improvement over the state-
of-the-art method MIC [24] from 75.9 mIoU to 77.7 mIoU. Usually,
classes that occupy a small number of pixels are difficult to adapt
and have a comparably low IoU performance. However, our method
demonstrates competitive IoU improvement in most categories es-
pecially on small objects such as +5.7 on “Rider”, +5.4 on “Fence”,
+5.2 on “Wall”, +4.4 on “Traffic Sign” and +3.4 on “Pole”. The result
shows the effectiveness of the proposed contextual filter and cross-
task learning framework in contextual learning. Our method also
increases the mIoU performance of classes that aggregate and oc-
cupy a large amount of pixels in an image by a smaller margin such
as +1.8 on “Pedestrain” and +1.1 on “Bike”, probably because the
rich texture and color information contained in the visual feature al-
ready has the ability to recognize these relatively easier classes. The
above observations are also qualitatively reflected in Figure 4, where
we visualize the segmentation results of the proposed method and
the comparison with previous strong transformer-based methods
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Table 1: Quantitative comparison with previous UDA methods on GTA→ Cityscapes. We present pre-class IoU and mIoU. The
best accuracy in every column is in bold. Our results are averaged over 3 random seeds.

Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU
AdaptSegNet [62] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
CyCADA [21] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7
CLAN [47] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
SP-Adv [58] 86.2 38.4 80.8 25.5 20.5 32.8 33.4 28.2 85.5 36.1 80.2 60.3 28.6 78.7 27.3 36.1 4.6 31.6 28.4 44.3

MaxSquare [9] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.3 34.2 44.3
AdvEnt [65] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
MRNet [95] 89.1 23.9 82.2 19.5 20.1 33.5 42.2 39.1 85.3 33.7 76.4 60.2 33.7 86.0 36.1 43.3 5.9 22.8 30.8 45.5
APODA [82] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9
CBST [102] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
MRKLD [103] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1
FADA [68] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1

Uncertainty [96] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
FDA [84] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

Adaboost [97] 90.7 35.9 85.7 40.1 27.8 39.0 49.0 48.4 85.9 35.1 85.1 63.1 34.4 86.8 38.3 49.5 0.2 26.5 45.3 50.9
DACS [61] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
BAPA [43] 94.4 61.0 88.0 26.8 39.9 38.3 46.1 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.0 45.1 54.2 57.4
ProDA [87] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
CaCo [26] 93.8 64.1 85.7 43.7 42.2 46.1 50.1 54.0 88.7 47.0 86.5 68.1 2.9 88.0 43.4 60.1 31.5 46.1 60.9 58.0

DAFormer [22] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
CAMix [99] 96.0 73.1 89.5 53.9 50.8 51.7 58.7 64.9 90.0 51.2 92.2 71.8 44.0 92.8 78.7 82.3 70.9 54.1 64.3 70.0
HRDA [23] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
MIC [24] 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9

CorDA† [69] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
FAFS† [3] 93.4 60.7 88.0 43.5 32.1 40.3 54.3 53.0 88.2 44.5 90.0 69.5 35.8 88.7 34.1 53.9 41.3 51.7 54.7 58.8
DBST† [3] 94.3 60.0 87.9 50.5 43.0 42.6 50.8 51.3 88.0 45.9 89.7 68.9 41.8 88.0 45.8 63.8 0.0 50.0 55.8 58.8
Ours† 97.5 80.7 92.1 66.4 62.3 63.1 67.7 75.7 91.8 52.4 93.9 81.6 61.8 94.7 88.3 90.0 81.2 65.8 69.6 77.7

† : Training with depth data.

HRDA [23], and MIC [24]. The qualitative results highlighted by
white dash boxes show that the proposed method largely improved
the prediction quality of challenging small object “Traffic Sign” and
large category “Terrain”.
Results on Synthia→Cityscapes.We show our results on SYN-
THIA→ Cityscapes in Table 1 and the results show the consistent
performance improvement of our method, increasing from 67.3 to
69.3 (+2.0 mIoU) compared to the state-of-the-art method MIC [24].
Especially, our method significantly increases the IoU performance
of the challenging class “SideWalk” from 50.5 to 63.1 (+12.6 mIoU).
It is also noticeable that our method remains competitive in seg-
menting most individual classes and yields a significant increase of
+6.8 on “Road”, +6.6 on “Bus”, +3.9 on “Pole”, +3.7 on “Road”, +3.2
on “Wall” and +2.9 on “Truck”.

4.3 Ablation Study and Further Disccussion
Ablation Study on Different Scene Adaptation Frameworks.
We combine our method with different scene adaptation architec-
tures on GTA→Cityscapes. Table 4 shows that our method achieves
consistent and significant improvements across different methods
with different network architectures. Firstly, our method improves
the state-of-the-art performance by +1.8 mIoU. Then we evaluate
the proposed method on two strong methods based on transformer
backbone, yielding +3.2 mIoU and +2.3 mIoU performance increase
on DAFormer [22] and HRDA [23], respectively. Secondly, we evalu-
ate ourmethod onDeepLabV2 [6] architecture with ResNet-101 [20]
backbone. We show that we improve the performance of the CNN-
based cross-domain mixing method, i.e., DACS by +4.1 mIoU. The
ablation study verifies the effectiveness of our method in leveraging

depth information to enhance cross-domain mixing not only on
Transformer-based networks but also on CNN-based architecture.
Ablation Study on Different Components of the Proposed
Method. In order to verify the effectiveness of our proposed com-
ponents, we train four different models from M1 to M4 and show
the result in Table 3. “ST Base” means the self training baseline with
semantic segmentation branch and depth regression branch. “Naive
Mix" denotes the cross-domain mixing strategy. “DCF” represents
the proposed depth-aware mixing (Depth-guided Contextual Filter).
“AFO" denotes the proposed Adaptive Feature Optimization mod-
ule and we used two different method to perform AFO. Firstly, we
leverage channel attention (CA) that could select useful information
along the channel dimension to perform the feature optimization.
In this method, the fused feature is adaptively optimized by SENet
[25], the output is a weighted vector which is multiplied back to
the visual and depth feature. We leavrage “AFO (CA)” to denote
this method. Secondly, we leverage the iterative use of transformer
block to adaptively optimize the multi-task feature. In this case, the
output of the transformer block is a weighted map. The Multimodal
Communication (MMC) module is then used to incorporate rich
knowledge from the depth prediction. We denote this method as
“AFO (Trans + MMC)”. M1 is the self-training baseline with depth
regression based on DAFormer architecture. M2 adds the cross-
domain mixing strategy for improvement and shows a competitive
result of 76.0 mIoU. M3 is the model with the Depth-guided Con-
textual Filter, increasing the performance from 76.0 to 77.1 mIoU
(+1.1 mIoU), which demonstrates the effectiveness of transferring
the mixed training images to real-world layout with the help of the
depth information. M4 adds the multi-task framework that lever-
ages Channel Attention (CA) mechanism to fuse the discriminative
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Table 2: Quantitative comparison with previous UDA methods on SYNTHIA→ Cityscapes. We present pre-class IoU, mIoU and
mIoU*. mIoU and mIoU* are averaged over 16 and 13 categories, respectively. The best accuracy in every column is in bold.Our
results are averaged over 3 random seeds.

Method Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU* mIoU
SIBAN [46] 82.5 24.0 79.4 − − − 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3 −

PatchAlign [63] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 46.5 40.0
AdaptSegNet [62] 84.3 42.7 77.5 − − − 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7 −

CLAN [47] 81.3 37.0 80.1 − − − 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8 −
CBST [102] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 48.9 42.6
MRNet [95] 82.0 36.5 80.4 4.2 0.4 33.7 18.0 13.4 81.1 80.8 61.3 21.7 84.4 32.4 14.8 45.7 50.2 43.2
MRKLD [103] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 50.1 43.8
CCM [33] 79.6 36.4 80.6 13.3 0.3 25.5 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.3 29.9 52.0 52.9 45.2

Uncertainty [96] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 54.9 47.9
BL [38] 86.0 46.7 80.3 − − − 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4 −
DT [75] 83.0 44.0 80.3 − − − 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1 −
IAST [48] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 -

DAFormer [22] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 67.4 60.9
CAMix [99] 87.4 47.5 88.8 − − − 55.2 55.4 87.0 91.7 72.0 49.3 86.9 57.0 57.5 63.6 69.2 −
HRDA [23] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 72.4 65.8
MIC [24] 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 94.6 81.0 58.9 90.1 61.9 67.1 64.3 74.0 67.3

DADA† [66] 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 49.8 42.6
CorDA† [69] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 62.8 55.0

Ours† 93.4 63.1 89.8 51.1 9.1 61.4 66.9 64.0 88.0 94.5 80.9 56.6 90.9 68.5 63.7 66.6 75.9 69.3
† : Training with depth data.

Table 3: Ablation study of different components of our pro-
posed framework on GTA→Cityscapes. The results are aver-
aged over 3 random seeds.

Method ST Base. Naive Mix. DCF. AFO. (CA) AFO. (Trans + MMC) mIoU↑
M1 ✓ 73.1
M2 ✓ ✓ 76.0
M3 ✓ ✓ ✓ 77.1
M4 ✓ ✓ ✓ ✓ 77.3
M5 ✓ ✓ ✓ ✓ 77.7

Table 4: Compatibility of the proposed method on different
UDA methods and backbones on GTA→Cityscapes. Our re-
sults are averaged over 3 random seeds.

Backbone UDA Method w/o w/ Diff.
DeepLabV2 [6] DACS [61] 52.1 56.2 +4.1
DAFormer [22] DAFormer [22] 68.3 71.5 +3.2
DAFormer [22] HRDA [23] 73.8 76.1 +2.3
DAFormer [22] MIC [24] 75.9 77.7 +1.8

depth feature into the visual feature. The segmentation result is
increased by a small margin (+0.2 mIoU), which means CA could
help the network to adaptively learn to focus or to ignore infor-
mation from the auxiliary task to some extent. M5 is our proposed
depth-aware multi-task model with both Depth-guided Contextual
Filter and Adaptive Feature Optimization (AFO) module. Compared
to M3, M5 has a mIoU increase of +0.6 from 77.1 to 77.7, which
shows the effectiveness of multi-modal feature optimization using
transformers to facilitate contextual learning.
Ablation study on GTA+SYNTHIA → Cityscapes. We eval-
uate the proposed method on multi-source domains setting and
report the quantitative result on GTA+SYNTHIA → Cityscapes.
With multi-source domain data, the model can be trained more

Table 5: Quantitative results onGTA+SYNTHIA→Cityscapes.
Here we use the vanilla backbone for a fair comparison.

Method mIoU (%) Δ mIoU (%)
Baseline (Single Source) 52.1 -

Multi Source 54.2 +2.1
Adaboost [97] 50.8 -

Multi Source + Depth 56.7 +4.6

robust to the unlabelled target environment. We adopt DACS [61]
as our baseline with 52.1 mIoU (Only GTA) performance shown in
Table 5. With more source-domain data, the model yields a better
result of 54.2 mIoU. Then, we can observe that our method yields
a larger improvement from 54.2 to 56.7 mIoU, demonstrating that
the proposed model could adapt multi-domain depth to the target
domain and hence increase performance.

5 Conclusion
In this work, we introduce a new depth-aware scene adaptation
framework that effectively leverages the guidance of depth to en-
hance data augmentation and contextual learning. The proposed
framework not only explicitly refines the cross-domain mixing by
stimulating real-world layouts with the guidance of depth distri-
butions of objects, but also introduced a cross-task encoder that
adaptively optimizes the multi-task feature and focused on the dis-
criminative depth feature to help contextual learning. By integrat-
ing our depth-aware framework into existing self-training methods
based on either transformer or CNN, we achieve state-of-the-art
performance on two widely used benchmarks and a significant
improvement on small-scale categories. Extensive experimental
results verify our motivation to transfer the training images to real-
world layouts and demonstrate the effectiveness of our multi-task
framework in improving scene adaptation performance.
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