Joint Discriminative and Generative Learning for Person Re-identification

Zhedong Zheng^{1,2} Xiaodong Yang¹ Zhiding Yu¹ Liang Zheng³ Yi Yang² Jan Kautz¹

¹NVIDIA ²CAI, University of Technology Sydney ³Australian National University

3-min video

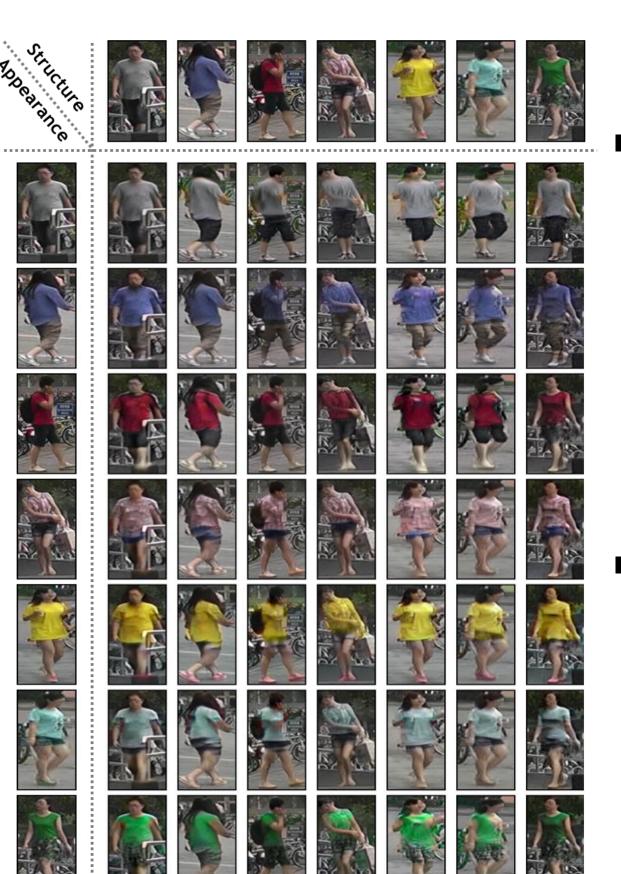
1. Motivation

- Training data is one of the keys to deep learning. How to generate more high-fidelity images from the original data? How to better make use of the generated images for training?
- Image generation and discriminative learning are highly-related. Can we mutually benefit the discriminative and generative learning tasks?

Discriminative

Generative

2. Contributions



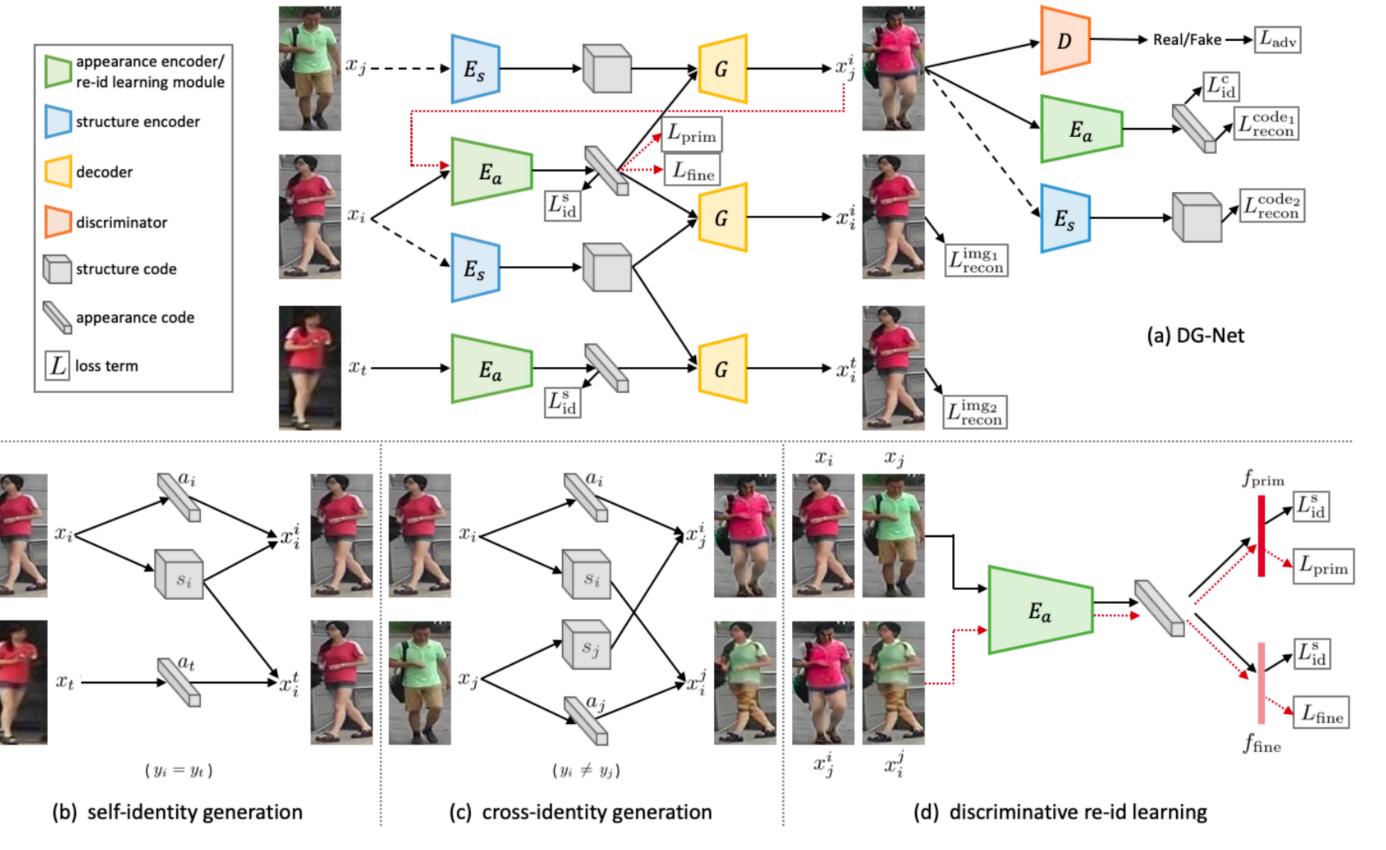
- Given N images, we can generate NxN high-fidelity images for training and therefore let the model see more realistic variants to boost re-id learning.
- We end-to-end couple image generation and re-id learning in a single unified network.

3. Method

Define two spaces for pedestrian images

Structure Space
body size, hair, carrying,
pose, background,
position, viewpoint, etc.

Overview of DG-Net



Objectives

self-identity generation	$L_{\text{recon}}^{\text{img}_1} = \mathbb{E}[\ x_i - G(a_i, s_i)\ _1].$	$L_{\text{recon}}^{\text{img}_2} = \mathbb{E}[\ x_i - G(a_t, s_i)\ _1].$		
	$L_{\text{recon}}^{\text{code}_1} = \mathbb{E}[\ a_i - E_a(G(a_i, s_j))\ _1],$	$L_{\text{recon}}^{\text{code}_2} = \mathbb{E}[\ s_j - E_s(G(a_i, s_j))\ _1].$		
cross-identity generation	$L_{\text{adv}} = \mathbb{E}[\log D(x_i) + \log(1 - D(G(a_i, s_j)))].$			
		$L_{\text{fine}} = \mathbb{E}[-\log(p(y_j x_j^i))].$		
discriminative learning	$L_{\text{prim}} = \mathbb{E}[-\sum_{i=1}^{K} a(k x_i^i) \log(\frac{p(k x_j^i)}{i})]$.)].		

4. Experiments

Generative evaluations

Comparison of the generated and real images on Market-1501 across different methods.

Example of success and failure cases.

Discriminative evaluations

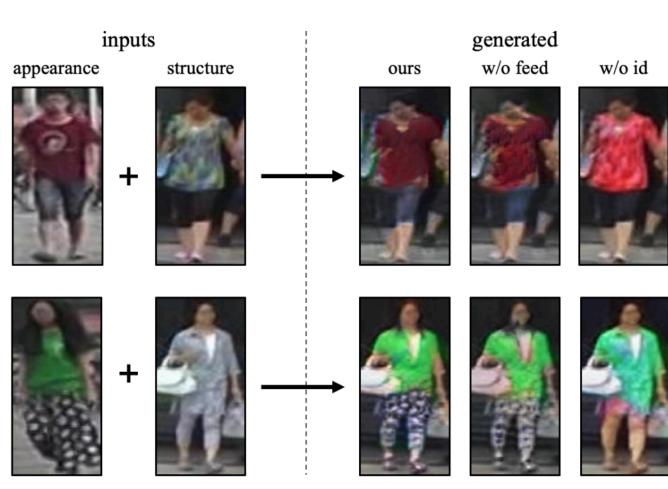
Market-1501 DukeMTMC-reID

Mathada	Market-	1501	DukeMTI	MC-reID	MSM	T17
Methods	Rank@1	mAP	Rank@1	mAP	Rank@1	l mAP
Baseline	89.6	74.5	82.0	65.3	68.8	36.2
$f_{ m prim}$	94.0	84.4	85.6	72.7	76.0	49.7
$f_{ m fine}$	91.6	75.3	78.7	61.2	71.5	43.5
$\overline{f_{ m prim},f_{ m fine}}$	94.8	86.0	86.6	74.8	77.2	52.3

Comparison of the baseline and learned features.

Methods	Rank@1	Rank@5	Rank@10	mAP
Deep [40]	47.6	65.0	71.8	23.0
PDC [35]	58.0	73.6	79.4	29.7
Verif-Identif [55]	60.5	76.2	81.6	31.6
GLAD [47]	61.4	76.8	81.6	34.0
PCB [39]	68.2	81.2	85.5	40.4
Ours	77.2	87.4	90.5	52.3

Comparison with the state-of-the-arts on MSMT17.



Comparison of the generated images by our full model, removing online feeding (w/o feed), and further removing identity supervision (w/o id).

Example of image generation by linear interpolation between two appearance codes.

Methods	Market-1501		DukeMTMC-reI	
Methods	Rank@1	mAP	Rank@1	mA
Verif-Identif [55]	79.5	59.9	68.9	49.3
DCF [22]	80.3	57.5	-	-
SSM [2]	82.2	68.8	-	-
SVDNet [38]	82.3	62.1	76.7	56.8
PAN [57]	82.8	63.4	71.6	51.5
GLAD [47]	89.9	73.9	-	-
HA-CNN [24]	91.2	75.7	80.5	63.8
MLFN [4]	90.0	74.3	81.0	62.8
Part-aligned [37]	91.7	79.6	84.4	69.3
PCB [39]	93.8	81.6	83.3	69.2
Mancs [43]	93.1	82.3	84.9	71.8
DeformGAN [34]	80.6	61.3	-	-
LSRO [56]	84.0	66.1	67.7	47.1
Multi-pseudo [17]	85.8	67.5	76.8	58.6
PT [27]	87.7	68.9	78.5	56.9
PN-GAN [31]	89.4	72.6	73.6	53.2
FD-GAN [10]	90.5	77.7	80.0	64.5
Ours	94.8	86.0	86.6	74.8

Comparison with the state-of-the-arts on Market and Duke